Details

Microwave Photonics


Microwave Photonics


1. Aufl.

von: Jianping Yao, José Capmany, Ming Li

115,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.03.2024
ISBN/EAN: 9781394205301
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>MICROWAVE PHOTONICS</b> <p> <b>Overview of techniques in the field of microwave photonics, including recent developments in quantum microwave photonics and integrated microwave photonics</b> <p><i>Microwave Photonics </i>offers a comprehensive overview of the microwave photonic techniques developed in the last 30 years, covering topics such as photonics generation of microwave signals, photonics processing of microwave signals, photonics distribution of microwave signals, photonic generation and distribution of UWB signals, photonics generation and processing of arbitrary microwave waveforms, photonic true time delay beamforming for phased array antennas, photonics-assisted instantaneous microwave frequency measurement, quantum microwave photonics, analog-to-digital conversion and more. <p>The text is supported by a companion website for instructors, including learning objectives and questions/problems to further enhance student learning. <p>Written by key researchers in the field, <i>Microwave Photonics </i>includes information on: <ul><li>Group-velocity dispersion and nonlinear effects in fibers, light coherence in light sources, phase and intensity modulators, photodetectors, and fiber Bragg gratings </li><li>Injection locking, phase lock loops, external modulation, opto-electronic oscillators, and array waveguide gratings </li><li>Photonic microwave delay-line filters with negative and complex coefficients and non-uniformly spaced photonic microwave delay-line filters </li><li>Double- and single-sideband modulation, radio over fiber networks, and microwave photonics to coherent communication systems </li><li>UWB generation, coding, and distribution over fiber, and instantaneous microwave frequency measurement via power monitoring </li><li>True time delay beamforming</li></ul> <p>Exploring the subject in depth, with expansive coverage of techniques developed in the last 30 years, <i>Microwave Photonics </i>is an essential reference for graduate students and researchers to learn microwave photonic technologies.
<p>About the Authors xi</p> <p>About the Companion Website xiii</p> <p><b>1 Introduction to Microwave Photonics 1</b></p> <p>1.1 Photonic Generation of Microwave Signals 1</p> <p>1.2 Photonic Microwave Signal Processing 1</p> <p>1.3 Photonic Distribution of Microwave Signals 2</p> <p>1.4 Photonic Generation of Ultra-wideband Signals 2</p> <p>1.5 Photonic Generation of Microwave Arbitrary Waveforms 3</p> <p>1.6 Microwave Photonic Beamforming Networks for Phased Array Antennas 3</p> <p>1.7 Photonic-Assisted Instantaneous Microwave Frequency Measurements 3</p> <p>1.8 Microwave Photonic Sensors 4</p> <p>1.9 Photonic Analog-to-Digital Conversion 4</p> <p>1.10 Novel Optoelectronic Oscillators 4</p> <p>1.11 Quantum Microwave Photonics 5</p> <p>1.12 Integrated Microwave Photonics 5</p> <p>1.13 Applications of Microwave Photonics 5</p> <p><b>2 Optical Devices for Microwave Photonics 7</b></p> <p>2.1 Introduction 7</p> <p>2.2 Optical Fibers and Planar Waveguides 7</p> <p>2.2.1 Structure and Geometry of Optical Fibers and Planar Waveguides 8</p> <p>2.2.2 Basic Electromagnetic Theory for Optical Fibers and Planar Waveguides 10</p> <p>2.2.3 Propagation in Optical Fibers 12</p> <p>2.2.4 Propagation in Planar Dielectric Waveguides 21</p> <p>2.3 Light Sources, Detectors, and Modulators 24</p> <p>2.3.1 Fundamentals of the Interaction Between Radiation and Matter 24</p> <p>2.3.2 Semiconductor Materials for Optical Sources and Detectors 27</p> <p>2.3.3 Optical Sources 38</p> <p>2.3.4 Optical Detectors 59</p> <p>2.3.5 Optical Modulators 66</p> <p>2.4 Fiber Bragg Gratings 73</p> <p>2.4.1 Theory and Design of Fiber Bragg Grating Filters 75</p> <p>2.4.2 Performance Characteristics of FBGs 77</p> <p>2.5 Array Waveguide Gratings 79</p> <p>2.6 Other Passive Components 82</p> <p>2.6.1 2 × 2 Couplers 82</p> <p>2.6.2 Isolators 83</p> <p>2.6.3 Circulators 84</p> <p>2.7 Chapter Summary 86</p> <p>References 86</p> <p><b>3 Photonic Generation of Microwave Signals 87</b></p> <p>3.1 Introduction 87</p> <p>3.2 Optical Injection Locking 88</p> <p>3.3 Optical Phase-Locked Loop 89</p> <p>3.4 Optical Injection Phase Locking 90</p> <p>3.5 Microwave Generation Based on External Modulation 91</p> <p>3.5.1 Intensity Modulator-Based Approach 91</p> <p>3.5.2 Phase-Modulator-Based Approach 92</p> <p>3.6 Microwave Generation Using a Dual-Wavelength Laser 93</p> <p>3.7 Microwave Generation Using an Optoelectronic Oscillator 96</p> <p>3.8 Performance Comparison of the Techniques for Photonic Microwave Generation 99</p> <p>3.9 Summary 101</p> <p>References 101</p> <p><b>4 Photonic-Assisted Microwave Signal Processing 105</b></p> <p>4.1 Introduction 105</p> <p>4.2 Microwave Photonic Filters 105</p> <p>4.2.1 Photonic Microwave Delay-Line Filters with Negative Coefficients 107</p> <p>4.2.2 Photonic Microwave Delay-Line Filters with Complex Coefficients 114</p> <p>4.2.3 Nonuniformly Spaced Photonic Microwave Delay-Line Filters 116</p> <p>4.3 Optical Mixing of Microwave Signals 119</p> <p>4.4 Coherent Microwave Photonic Filters 123</p> <p>4.5 Dynamic Range of a Microwave Photonic Filter 131</p> <p>4.6 Conclusion 132</p> <p>References 133</p> <p><b>5 Photonic Distribution of Microwave Signals 137</b></p> <p>5.1 Introduction 137</p> <p>5.2 Introduction to Microwave Photonics Links 137</p> <p>5.3 Figures of Merit of a Simple Microwave Photonic Link 138</p> <p>5.3.1 RF Gain 139</p> <p>5.3.2 Noise 141</p> <p>5.3.3 Dynamic Range 142</p> <p>5.4 Figures of Merit of a Filtered Microwave Photonic Link 148</p> <p>5.4.1 Filtered Intensity Modulated Direct Detection Links 149</p> <p>5.4.2 Filtered Phase Modulated Links 152</p> <p>5.4.3 Application Examples 155</p> <p>5.5 Introduction to Fiber-Wireless Systems 156</p> <p>5.6 Optical Transport of Wireless Signals 157</p> <p>5.6.1 Radio Over Fiber 157</p> <p>5.6.2 Intermediate Frequency Over Fiber 158</p> <p>5.6.3 Baseband Over Fiber 159</p> <p>5.7 Sources of Degradation and Impairments 160</p> <p>5.7.1 Chromatic Dispersion 160</p> <p>5.7.2 Optical Nonlinearities 163</p> <p>5.8 Fiber-Wireless Networks 165</p> <p>5.8.1 Spectral Efficiency 165</p> <p>5.8.2 Optical Subsystems for Fiber-Wireless Networks 166</p> <p>5.8.3 Application Scenarios 171</p> <p>5.9 Chapter Summary 174</p> <p>Problems 175</p> <p>References 176</p> <p><b>6 Photonic Generation of Ultra-Wideband Signals 181</b></p> <p>6.1 Introduction 181</p> <p>6.2 UWB Pulse Generation Based on PM-IM Conversion 182</p> <p>6.2.1 Optical Phase Modulation 183</p> <p>6.2.2 PM-IM Conversion 183</p> <p>6.2.3 UWB Pulse Generation Based on PM-IM Conversion in a Dispersive Device 189</p> <p>6.2.4 UWB Pulse Generation Based on PM-IM Conversion in an Optical Frequency Discriminator 191</p> <p>6.3 UWB Pulse Generation Based on a Photonic Microwave Delay Line Filter 195</p> <p>6.3.1 Photonic Microwave Delay-Line Filters for UWB Pulse Generation 196</p> <p>6.3.2 UWB Monocycle Generation with a Two-Tap Microwave Delay-Lines Filter 198</p> <p>6.3.3 UWB Doublet Generation with a Three-Tap Microwave Delay-Line Filter 200</p> <p>6.4 UWB Pulse Generation based on Spectral Shaping and Frequency-to-Time Mapping 201</p> <p>6.4.1 UWB Pulse Generation Based on Optical Spectral Shaping and Frequency-to-Time Mapping 202</p> <p>6.4.2 Implementation of All-Fiber UWB Pulse Generation based on Spectral Shaping and Frequency-to-Time Mapping 203</p> <p>6.5 Discussion and Conclusion 205</p> <p>References 206</p> <p><b>7 Photonic Generation of Microwave Arbitrary Waveforms 209</b></p> <p>7.1 Introduction 209</p> <p>7.2 Direct Space-to-Time Pulse Shaping 209</p> <p>7.3 Spectral-Shaping and Wavelength-to-Time Mapping 213</p> <p>7.4 Temporal Pulse Shaping 221</p> <p>7.5 Microwave Waveform Generation Based on a Photonic Microwave Delay-Line Filter 228</p> <p>7.6 Conclusion 233</p> <p>References 234</p> <p><b>8 Microwave Photonics Beamforming Networks for Phased Array Antennas 237</b></p> <p>8.1 Introduction 237</p> <p>8.2 Basic Concepts on Phased Array Antennas 238</p> <p>8.2.1 Principles of Operation 238</p> <p>8.2.2 Design Parameters 241</p> <p>8.2.3 PAA Feed Architectures 245</p> <p>8.3 True Time Delay Optical Beamforming Networks 246</p> <p>8.4 Phase-Shift Optical Beamforming Networks 264</p> <p>8.5 Summary and Conclusions 269</p> <p>Problems 269</p> <p>References 271</p> <p><b>9 Photonic-Assisted Instantaneous Frequency Measurements 277</b></p> <p>9.1 Introduction 277</p> <p>9.2 Frequency Measurement Using an Optical Channelizer 279</p> <p>9.2.1 Optical Phased-Array WDM 280</p> <p>9.2.2 Free-Space Diffraction Grating 281</p> <p>9.2.3 Phase-Shifted Chirped Fiber Bragg Grating Arrays 282</p> <p>9.2.4 Integrated Optical Bragg Grating Fabry–Perot Etalon 283</p> <p>9.3 Frequency Measurement Based on Power Monitoring 283</p> <p>9.3.1 Chromatic Dispersion-Induced Microwave Power Penalty 284</p> <p>9.3.2 Break the Lower Frequency Bound 289</p> <p>9.3.3 IFM Based on Photonic Microwave Filters with Complementary Frequency Responses 292</p> <p>9.3.4 First-Order Photonic Microwave Differentiator 294</p> <p>9.3.5 Optical Power Fading Using Optical Filters 297</p> <p>9.4 Other Methods for Frequency Measurement 299</p> <p>9.4.1 Fabry–Perot Scanning Receiver 299</p> <p>9.4.2 Photonic Hilbert Transform 300</p> <p>9.4.3 Monolithically Integrated EDG 301</p> <p>9.4.4 Incoherent Frequency-to-Time Mapping 301</p> <p>9.5 Conclusion 303</p> <p>References 304</p> <p><b>10 Microwave Photonic Sensors 309</b></p> <p>10.1 Introduction 309</p> <p>10.2 Optical Sensors Based on a Dual-Wavelength Laser Source 310</p> <p>10.3 Optical Sensors Based on an Optoelectronic Oscillator 314</p> <p>10.4 Optical Sensors Based on Spectrum Shaping and Wavelength-to-Time Mapping 321</p> <p>10.5 Photonic Integrated Microwave Photonic Sensors 326</p> <p>10.6 Conclusion 329</p> <p>References 330</p> <p><b>11 Photonic Analog-to-Digital Conversion 333</b></p> <p>11.1 Introduction 333</p> <p>11.2 Basic Concepts on Analog-to-Digital Converters 334</p> <p>11.2.1 Types of Converters 334</p> <p>11.2.2 Operation Principles of the Nyquist ADC 335</p> <p>11.2.3 State of the Art of Electronic ADCs 338</p> <p>11.2.4 Classification of Photonic ADCs 340</p> <p>11.3 Photonic-Assisted ADCs 340</p> <p>11.3.1 Classification of Photonic-Assisted ADCs 340</p> <p>11.3.2 Optically Clocked Track-and-Hold Circuits 341</p> <p>11.3.3 Optical Replication Pre-Processors 343</p> <p>11.3.4 Optical Time-Stretched Pre-Processors 345</p> <p>11.4 Photonic Sampled/Electronic Quantized ADCs 347</p> <p>11.5 Electronic Sampled/Photonic Quantized ADCs 354</p> <p>11.6 Photonic Sampled/Photonic Quantized ADCs 355</p> <p>11.6.1 Classification of Photonic Sampled/Photonic Quantized Converters 355</p> <p>11.6.2 Intensity Modulation and Conversion 355</p> <p>11.6.3 Intensity Modulation and Optical Comparator 358</p> <p>11.6.4 Phase Modulation and Optical Beam Deflection 358</p> <p>11.7 Chapter Summary 361</p> <p>Problems 361</p> <p>References 363</p> <p><b>12 Novel Optoelectronic Oscillators 367</b></p> <p>12.1 Introduction 367</p> <p>12.2 Models for Optoelectronic Oscillators 368</p> <p>12.3 Parity-Time Symmetric OEO 378</p> <p>12.4 Fourier Domain Mode-Locked OEO 382</p> <p>12.5 OEPO 385</p> <p>12.6 Broad Random OEO 388</p> <p>12.7 Integrated OEO 392</p> <p>12.8 Discussion and Conclusion 395</p> <p>References 396</p> <p><b>13 Integrated Microwave Photonics 401</b></p> <p>13.1 Introduction 401</p> <p>13.2 Integration Technologies and Platforms 403</p> <p>13.2.1 Indium Phosphide 403</p> <p>13.2.2 Silicon Photonics 405</p> <p>13.2.3 Silicon Nitride 405</p> <p>13.2.4 Other Platforms 406</p> <p>13.2.5 Comparative Analysis 406</p> <p>13.3 Application-Specific Photonic Integrated Circuits for Microwave Photonics 408</p> <p>13.3.1 Filters 409</p> <p>13.3.2 Microwave Signal Generators 409</p> <p>13.3.2.1 Optoelectronic Oscillators 411</p> <p>13.3.2.2 Comb Sources 413</p> <p>13.3.2.3 IR-UWB Generators 413</p> <p>13.3.2.4 Arbitrary Waveform Generators 415</p> <p>13.3.3 Tunable True Time Delay Lines and Phase Shifters 419</p> <p>13.3.4 Optical Beamforming 421</p> <p>13.4 Multifunctional Circuits 424</p> <p>13.5 Universal Microwave Photonic Processors 426</p> <p>13.5.1 Early Designs 427</p> <p>13.5.2 Waveguide Mesh Core Processors 428</p> <p>13.5.3 Waveguide Mesh MWP Universal Processors 434</p> <p>13.6 Conclusions and Future Prospects 441</p> <p>References 442</p> <p><b>14 Quantum Microwave Photonics 449</b></p> <p>14.1 Introduction 449</p> <p>14.2 Principle of the Single-Photon Detection Scheme 450</p> <p>14.3 Weak Signal Detection 453</p> <p>14.4 Quantum Microwave Photonic Signal Processing 454</p> <p>14.5 Nonlocal Frequency-to-Time Mapping 455</p> <p>14.6 Compressed Sensing 457</p> <p>14.7 Microwave Photonic Quantum Key Distribution 458</p> <p>14.8 Discussion and Conclusion 460</p> <p>References 461</p> <p><b>15 Future and Perspectives 465</b></p> <p>15.1 Introduction 465</p> <p>15.2 Future and Perspectives 465</p> <p>15.3 Discussion and Conclusion 468</p> <p>References 468</p> <p>Index 471</p>
<p><b>Jianping Yao </b>is a Distinguished Professor and University Research Chair in Microwave Photonics in the School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada. <p><b>José Capmany </b>is a Full Professor of photonics and the Leader of the Photonics Research Labs, Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de València, Valencia, Spain. <p><b>Ming Li </b>is a Full Professor with the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.
<p> <b>Overview of techniques in the field of microwave photonics, including recent developments in quantum microwave photonics and integrated microwave photonics</b> <p><i>Microwave Photonics </i>offers a comprehensive overview of the microwave photonic techniques developed in the last 30 years, covering topics such as photonics generation of microwave signals, photonics processing of microwave signals, photonics distribution of microwave signals, photonic generation and distribution of UWB signals, photonics generation and processing of arbitrary microwave waveforms, photonic true time delay beamforming for phased array antennas, photonics-assisted instantaneous microwave frequency measurement, quantum microwave photonics, analog-to-digital conversion and more. <p>The text is supported by a companion website for instructors, including learning objectives and questions/problems to further enhance student learning. <p>Written by key researchers in the field, <i>Microwave Photonics </i>includes information on: <ul><li>Group-velocity dispersion and nonlinear effects in fibers, light coherence in light sources, phase and intensity modulators, photodetectors, and fiber Bragg gratings </li><li>Injection locking, phase lock loops, external modulation, opto-electronic oscillators, and array waveguide gratings </li><li>Photonic microwave delay-line filters with negative and complex coefficients and non-uniformly spaced photonic microwave delay-line filters </li><li>Double- and single-sideband modulation, radio over fiber networks, and microwave photonics to coherent communication systems </li><li>UWB generation, coding, and distribution over fiber, and instantaneous microwave frequency measurement via power monitoring </li><li>True time delay beamforming</li></ul> <p>Exploring the subject in depth, with expansive coverage of techniques developed in the last 30 years, <i>Microwave Photonics </i>is an essential reference for graduate students and researchers to learn microwave photonic technologies.

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €