Details

Microwave Circuit Design Using Linear and Nonlinear Techniques


Microwave Circuit Design Using Linear and Nonlinear Techniques


3. Aufl.

von: George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, Matthias Rudolph

149,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 08.04.2021
ISBN/EAN: 9781119741695
Sprache: englisch
Anzahl Seiten: 1200

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology</b></p> <p>The third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material.</p> <p>The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book’s treatment of a wide variety of topics, like:</p> <ul> <li>An in-depth discussion of the foundations of RF and microwave systems, including Maxwell’s equations, applications of the technology, analog and digital requirements, and elementary definitions</li> <li>A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements</li> <li>Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET</li> <li>Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain</li> </ul> <p>Perfect for microwave integrated circuit designers, the third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> also has a place on the bookshelves of electrical engineering researchers and graduate students. It’s comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.</p> <p> </p>
<p>Foreword xv</p> <p>Preface xvii</p> <p>1 RF/Microwave Systems 1</p> <p>1.1 Introduction 1</p> <p>1.2 Maxwell's equations 12</p> <p>1.3 Frequency bands, modes, and waveforms of operation 12</p> <p>1.4 Analog and digital signals 16</p> <p>1.5 Elementary functions 25</p> <p>1.6 Basic RF transmitters and receivers 31</p> <p>1.7 RF wireless/microwave/millimeter wave applications 33</p> <p>1.8 Modern CAD for nonlinear circuit analysis 37</p> <p>1.9 Dynamic Load Line 37</p> <p>2 Lumped and Distributed Elements 43</p> <p>2.1 Introduction 43</p> <p>2.2 Transition from RF to Microwave Circuits 43</p> <p>2.3 Parasitic E_ects on Lumped Elements 46</p> <p>2.4 Distributed Elements 54</p> <p>2.5 Hybrid Element: Helical Coil 55</p> <p>v</p> <p>vi CONTENTS</p> <p>3 Active Devices 61</p> <p>3.1 Microwave Transistors 61</p> <p>3.1.1 Transistor Classi_cation 61</p> <p>3.1.2 Bipolar Transistor Basics 63</p> <p>3.1.3 GaAs and InP Heterojunction Bipolar Transistors 77</p> <p>3.1.4 SiGe HBTs 90</p> <p>3.1.5 Field-E_ect Transistor Basics 95</p> <p>3.1.6 GaN, GaAs, and InP HEMTs 106</p> <p>3.1.7 MOSFETs 112</p> <p>3.1.8 Packaged Transistors 130</p> <p>3.2 Example: Selecting Transistor and Bias for Low-Noise</p> <p>Ampli_cation 134</p> <p>3.3 Example: Selecting Transistor and Bias for Oscillator Design 138</p> <p>3.4 Example: Selecting Transistor and Bias for Power Ampli_cation 141</p> <p>3.4.1 Biasing HEMTs 143</p> <p>3.4.2 Biasing HBTs 145</p> <p>4 Two-Port Networks 153</p> <p>4.1 Introduction 153</p> <p>4.2 Two-Port Parameters 154</p> <p>4.3 S Parameters 163</p> <p>4.4 S Parameters from SPICE Analysis 164</p> <p>4.5 Mason Graphs 165</p> <p>4.6 Stability 168</p> <p>4.7 Power Gains, Voltage Gain, and Current Gain 171</p> <p>4.7.1 Power Gain 171</p> <p>4.7.2 Voltage Gain and Current Gain 177</p> <p>4.7.3 Current Gain 178</p> <p>4.8 Three-Ports 179</p> <p>4.9 Derivation of Transducer Power Gain 182</p> <p>4.10 Di_erential S Parameters 184</p> <p>4.10.1 Measurements 186</p> <p>4.10.2 Example 187</p> <p>4.11 Twisted-Wire Pair Lines 187</p> <p>4.12 Low-Noise and High-Power Ampli_er Design 190</p> <p>4.13 Low-Noise Ampli_er Design Examples 193</p> <p>5 Impedance Matching 209</p> <p>5.1 Introduction 209</p> <p>5.2 Smith Charts and Matching 209</p> <p>5.3 Impedance Matching Networks 217</p> <p>CONTENTS vii</p> <p>5.4 Single-Element Matching 217</p> <p>5.5 Two-Element Matching 219</p> <p>5.6 Matching Networks Using Lumped Elements 220</p> <p>5.7 Matching Networks Using Distributed Elements 221</p> <p>5.7.1 Twisted-Wire Pair Transformers 221</p> <p>5.7.2 Transmission Line Transformers 223</p> <p>5.7.3 Tapered Transmission Lines 224</p> <p>5.8 Bandwidth Constraints for Matching Networks 225</p> <p>6 Microwave Filters 241</p> <p>6.1 Introduction 241</p> <p>6.2 Low-Pass Prototype Filter Design 242</p> <p>6.2.1 Butterworth Response 242</p> <p>6.2.2 Chebyshev Response 245</p> <p>6.3 Transformations 247</p> <p>6.3.1 Low-Pass Filters: Frequency and Impedance Scaling 247</p> <p>6.3.2 High-Pass Filters 250</p> <p>6.3.3 Bandpass Filters 251</p> <p>6.3.4 Narrow-Band Bandpass Filters 255</p> <p>6.3.5 Band-Stop Filters 259</p> <p>6.4 Transmission Line Filters 260</p> <p>6.4.1 Semilumped Low-Pass Filters 263</p> <p>6.4.2 Richards Transformation 266</p> <p>6.5 Exact Designs and CAD Tools 274</p> <p>6.6 Real-Life Filters 275</p> <p>6.6.1 Lumped Elements 275</p> <p>6.6.2 Transmission Line Elements 275</p> <p>6.6.3 Cavity Resonators 275</p> <p>6.6.4 Coaxial Dielectric Resonators 276</p> <p>6.6.5 Thin-Film Bulk-Wave Acoustic Resonator (FBAR) 276</p> <p>7 Noise in Linear and Nonlinear Two-Ports 281</p> <p>7.1 Introduction 281</p> <p>7.2 Signal-to-Noise Ratio 283</p> <p>7.3 Noise Figure Measurements 285</p> <p>7.4 Noise Parameters and Noise Correlation Matrix 286</p> <p>7.4.1 Correlation Matrix 287</p> <p>7.4.2 Method of Combining Two-Port Matrix 288</p> <p>7.4.3 Noise Transformation Using the [ABCD] Noise</p> <p>Correlation Matrices 288</p> <p>7.4.4 Relation Between the Noise Parameter and [CA] 289</p> <p>viii CONTENTS</p> <p>7.4.5 Representation of the ABCD Correlation Matrix in</p> <p>Terms of Noise Parameters [13]: 290</p> <p>7.4.6 Noise Correlation Matrix Transformations 291</p> <p>7.4.7 Matrix De_nitions of Series and Shunt Element 292</p> <p>7.4.8 Transferring All Noise Sources to the Input 292</p> <p>7.4.9 Transformation of the Noise Sources 294</p> <p>7.4.10 ABCD Parameters for CE, CC, and CB Con_gurations 294</p> <p>7.5 Noisy Two-Port Description 295</p> <p>7.6 Noise Figure of Cascaded Networks 301</p> <p>7.7 Inuence of External Parasitic Elements 303</p> <p>7.8 Noise Circles 305</p> <p>7.9 Noise Correlation in Linear Two-Ports Using Correlation</p> <p>Matrices 309</p> <p>7.10 Noise Figure Test Equipment 312</p> <p>7.11 How to Determine Noise Parameters 313</p> <p>7.12 Noise in Nonlinear Circuits 314</p> <p>7.12.1 Noise sources in the nonlinear domain 316</p> <p>7.13 Transistor Noise Modeling 319</p> <p>7.13.1 Noise modeling of bipolar and heterobipolar transistors 320</p> <p>7.13.2 Noise Modeling of Field-e_ect Transistors 332</p> <p>7.14 Bibliography 342</p> <p>8 Small- and Large-Signal Ampli_er Design 347</p> <p>8.1 Introduction 347</p> <p>8.2 Single-Stage Ampli_er Design 349</p> <p>8.2.1 High Gain 349</p> <p>8.2.2 Maximum Available Gain and Unilateral Gain 350</p> <p>8.2.3 Low-Noise Ampli_er 357</p> <p>8.2.4 High-Power Ampli_er 359</p> <p>8.2.5 Broadband Ampli_er 360</p> <p>8.2.6 Feedback Ampli_er 362</p> <p>8.2.7 Cascode Ampli_er 364</p> <p>8.2.8 Multistage Ampli_er 370</p> <p>8.2.9 Distributed Ampli_er and Matrix Ampli_er 371</p> <p>8.2.10 Millimeter-Wave Ampli_ers 376</p> <p>8.3 Frequency Multipliers 376</p> <p>8.3.1 Introduction 376</p> <p>8.3.2 Passive Frequency Multiplication 377</p> <p>8.3.3 Active Frequency Multiplication 378</p> <p>8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA</p> <p>Ampli_ers 380</p> <p>8.5 Stability Analysis and Limitations 384</p> <p>CONTENTS ix</p> <p>8.6 Problems 391</p> <p>9 Power Ampli_er Design 393</p> <p>9.1 Introduction 393</p> <p>9.2 Characterizing transistors for power-ampli_er design 396</p> <p>9.3 Single-Stage Power Ampli_er Design 402</p> <p>9.4 Multistage Design 408</p> <p>9.5 Power-Distributed Ampli_ers 417</p> <p>9.6 Class of Operation 433</p> <p>9.6.1 Optimizing Conduction Angle 437</p> <p>9.6.2 Optimizing Harmonic Termination 446</p> <p>9.6.3 Analog Switch-Mode Ampli_ers 451</p> <p>9.7 E_ciency and Linearity Enhancement PA Topologies 456</p> <p>9.7.1 The Doherty Ampli_er 456</p> <p>9.7.2 Outphasing Ampli_ers 460</p> <p>9.7.3 Kahn EER and Envelope Tracking Ampli_ers 462</p> <p>9.8 Digital Microwave Power Ampli_ers (class-D/S) 473</p> <p>9.8.1 Voltage-Mode Topology 475</p> <p>9.8.2 Current-Mode Topology 480</p> <p>9.9 Power Ampli_er Stability 487</p> <p>10 Oscillator Design 499</p> <p>10.1 Introduction 499</p> <p>10.2 Compressed Smith Chart 502</p> <p>10.3 Series or Parallel Resonance 506</p> <p>10.4 Resonators 507</p> <p>10.4.1 Dielectric Resonators 508</p> <p>10.4.2 YIG Resonators 512</p> <p>10.4.3 Varactor Resonators 517</p> <p>10.4.4 Ceramic Resonators 518</p> <p>10.4.5 Coupled Resonator 519</p> <p>10.4.6 Resonator Measurements 525</p> <p>10.5 Two-Port Oscillator Design 531</p> <p>10.6 Negative Resistance From Transistor Model 535</p> <p>10.7 Oscillator Q and Output Power 547</p> <p>10.8 Noise in Oscillators: Linear Approach 550</p> <p>10.8.1 Leeson's Oscillator Model 550</p> <p>10.8.2 Low-Noise Design 557</p> <p>10.9 Analytic Approach to Optimum Oscillator Design Using</p> <p>S Parameters 568</p> <p>10.10 Nonlinear Active Models for Oscillators 583</p> <p>x CONTENTS</p> <p>10.10.1 Diodes with Hyperabrupt Junction 584</p> <p>10.10.2 Silicon Versus Gallium Arsenide 585</p> <p>10.10.3 Expressions for gm and Gd 587</p> <p>10.10.4 Nonlinear Expressions for Cgs, Ggf , and Ri 590</p> <p>10.10.5 Analytic Simulation of I{V Characteristics 591</p> <p>10.10.6 Equivalent-Circuit Derivation 591</p> <p>10.10.7 Determination of Oscillation Conditions 591</p> <p>10.10.8 Nonlinear Analysis 594</p> <p>10.10.9 Conclusion 596</p> <p>10.11 Oscillator Design Using Nonlinear Cad Tools 596</p> <p>10.11.1 Parameter Extraction Method 600</p> <p>10.11.2 Example of Nonlinear Design Methodology: 4-GHz</p> <p>Oscillator{ Ampli_er 604</p> <p>10.11.3 Conclusion 610</p> <p>10.12 Microwave Oscillators Performance 610</p> <p>10.13 Design of an Oscillator Using Large-Signal Y Parameters 614</p> <p>10.14 Example for Large-Signal Design Based on Bessel Functions 617</p> <p>10.15 Design Example for Best Phase Noise and Good Output Power 622</p> <p>10.16 A Design Example for a 350MHz _xed frequency Colpitts</p> <p>Oscillator 630</p> <p>10.16.1 1/f Noise: 644</p> <p>10.17 2400 MHz MOSFET-Based Push{Pull Oscillator 645</p> <p>10.17.1 Design Equations 647</p> <p>10.17.2 Design Calculations 652</p> <p>10.17.3 Phase Noise 653</p> <p>10.18 CAD Solution for Calculating Phase Noise in Oscillators 656</p> <p>10.18.1 General Analysis of Noise Due to Modulation and</p> <p>Conversion in Oscillators 656</p> <p>10.18.2 Modulation by a Sinusoidal Signal 657</p> <p>10.18.3 Modulation by a Noise Signal 658</p> <p>10.18.4 Oscillator Noise Models 659</p> <p>10.18.5 Modulation and Conversion Noise 661</p> <p>10.18.6 Nonlinear Approach for Computation of Noise Analysis</p> <p>of Oscillator Circuits 661</p> <p>10.18.7 Noise Generation in Oscillators 663</p> <p>10.18.8 Frequency Conversion Approach 663</p> <p>10.18.9 Conversion Noise Analysis 664</p> <p>10.18.10Noise Performance Index Due to Frequency Conversion 664</p> <p>10.18.11Modulation Noise Analysis 666</p> <p>10.18.12Noise Performance Index Due to Contribution of</p> <p>Modulation Noise 668</p> <p>10.18.13PM{AM Correlation Coe_cient 669</p> <p>CONTENTS xi</p> <p>10.19 Phase Noise Measurement 670</p> <p>10.19.1 Phase Noise Measurement Techniques 671</p> <p>10.20 Back to Conventional Phase Noise Measurement System</p> <p>(Hewlett-Packard) 684</p> <p>10.21 State-of-the-art 688</p> <p>10.21.1 ANALOG SIGNAL PATH 689</p> <p>10.21.2 DIGITAL SIGNAL PATH 690</p> <p>10.21.3 PULSED PHASE NOISE MEASUREMENT 692</p> <p>10.21.4 CROSS-CORRELATION 693</p> <p>10.22 INSTRUMENT PERFORMANCE 694</p> <p>10.23 Noise in Circuits and Semiconductors [10.87, 10.88, 10.99] 695</p> <p>10.24 Validation Circuits 699</p> <p>10.24.1 1000-MHz Ceramic Resonator Oscillator (CRO) 699</p> <p>10.24.2 4100-MHz Oscillator with Transmission Line Resonators 703</p> <p>10.24.3 2000-MHz GaAs FET-Based Oscillator 707</p> <p>10.25 Analytical Approach For Designing E_cient Microwave FET</p> <p>and Bipolar Oscillators (Optimum Power) 709</p> <p>10.25.1 Series Feedback (MESFET) 709</p> <p>10.25.2 Parallel Feedback (MESFET) 714</p> <p>10.25.3 Series Feedback (Bipolar) 716</p> <p>10.25.4 Parallel Feedback (Bipolar) 719</p> <p>10.25.5 An FET Example 720</p> <p>10.25.6 Simulated Results 729</p> <p>10.25.7 Synthesizers 732</p> <p>10.25.8 Self-Oscillating Mixer 732</p> <p>10.26 Introduction 735</p> <p>10.27 Large signal noise analysis 735</p> <p>10.28 Quantifying Phase Noise 743</p> <p>10.29 Summary 745</p> <p>11 Frequency Synthesizer 769</p> <p>11.1 Building block of synthesizer 771</p> <p>11.1.1 Voltage controlled oscillator 771</p> <p>11.1.2 Reference oscillator 771</p> <p>11.1.3 Frequency divider 771</p> <p>11.1.4 Phase-Frequency Comparators 774</p> <p>11.1.5 Loop Filters - Filters for Phase Detectors Providing</p> <p>Voltage Output 779</p> <p>11.1.6 Example 784</p> <p>11.2 Important Characteristics of Synthesizers 787</p> <p>11.2.1 Frequency Range 787</p> <p>11.2.2 Phase Noise 788</p> <p>xii CONTENTS</p> <p>11.2.3 Spurious Response 788</p> <p>11.2.4 Transient Behavior of Digital Loops Using Tri-State</p> <p>Phase Detectors 788</p> <p>11.3 Practical Circuits 796</p> <p>11.4 The Fractional-N Principle 799</p> <p>11.4.1 Example: 802</p> <p>11.4.2 Spur-Suppression Techniques 805</p> <p>11.5 Digital Direct Frequency Synthesizer 808</p> <p>11.5.1 DDS advantages 811</p> <p>12 Microwave Mixer Design 815</p> <p>12.1 Introduction 815</p> <p>12.2 Diode Mixer Theory 823</p> <p>12.3 Single-Diode Mixers 836</p> <p>12.4 Single-Balanced Mixers 847</p> <p>12.5 Double-Balanced Mixers 863</p> <p>12.6 FET Mixer Theory 891</p> <p>12.7 Balanced FET Mixers 915</p> <p>12.8 Resistive (Reective) FET Mixers 930</p> <p>12.9 Special Mixer Circuits 938</p> <p>12.10 Mixer Noise 950</p> <p>12.10.1 Mixer Noise Analysis (MOSFET) 950</p> <p>12.10.2 Noise in resistive GaAs HEMT mixers1 958</p> <p>13 RF Switches and Attenuators 971</p> <p>13.1 pin Diodes 971</p> <p>13.2 pin Diode Switches 974</p> <p>13.3 pin Diode Attenuators 985</p> <p>13.4 FET Switches 987</p> <p>14 Simulation of Microwave Circuits 995</p> <p>14.1 Introduction 995</p> <p>14.2 Design Types 997</p> <p>14.2.1 Printed Circuit Board 997</p> <p>14.2.2 Monolithic Microwave Integrated Circuits 998</p> <p>14.3 Design Entry 999</p> <p>14.3.1 Schematic Capture 999</p> <p>14.3.2 Board and MMIC Layout 1000</p> <p>1Based on Michael Margraf, “Niederfrequenz-Rauschen und Intermodulationen von resistiven FET-Mischern,”</p> <p>PhD dissertation at Berlin Institute of Technology, 2004 (in German) [12]. Figures reprinted with permission.</p> <p>The mixer noise modeling approach was also published in [13, 14, 15].</p> <p>CONTENTS xiii</p> <p>14.4 Linear Circuit Simulation 1001</p> <p>14.4.1 Small-Signal AC and S-parameter Simulation 1001</p> <p>14.4.2 Example: Microwave Filter, Schematic Based 1004</p> <p>14.5 Nonlinear Simulation 1004</p> <p>14.5.1 Newton's Method 1006</p> <p>14.5.2 Transistor Modeling 1007</p> <p>14.5.3 Transient Simulation 1008</p> <p>14.5.4 Example: Transient 1010</p> <p>14.5.5 Harmonic Balance Simulation 1012</p> <p>14.5.6 Example: Harmonic Balance, One-tone Ampli_er 1016</p> <p>14.5.7 Example: Harmonic Balance, Two-tone Ampli_er 1017</p> <p>14.5.8 Envelope Simulation 1019</p> <p>14.5.9 Example: Envelope, Modulated Ampli_er 1023</p> <p>14.5.10 Mixing Circuit and Thermal Simulation 1024</p> <p>14.5.11 Example: Electrothermal 1027</p> <p>14.6 Electromagnetic Simulation 1029</p> <p>14.6.1 Method of Moments 1031</p> <p>14.6.2 Finite Element Method 1031</p> <p>14.6.3 Finite Di_erence Time Domain 1032</p> <p>14.6.4 Performing an EM Simulation 1032</p> <p>14.6.5 Example: Microwave Filter, EM Based 1034</p> <p>14.7 Design for Manufacturing 1034</p> <p>14.7.1 Circuit Optimization 1035</p> <p>14.7.2 Example: Optimization 1037</p> <p>14.7.3 Component Variation 1041</p> <p>14.7.4 Monte Carlo Analysis 1042</p> <p>14.7.5 Example: Monte Carlo Analysis 1044</p> <p>14.7.6 Yield Analysis and Yield Optimization 1047</p> <p>14.8 Oscillator Design and Simulation Example 1048</p> <p>14.8.1 STW Delay Line 1048</p> <p>14.8.2 Behavioral Simulation 1050</p> <p>14.8.3 Choosing an Ampli_er 1050</p> <p>14.8.4 DC Feed Design 1053</p> <p>14.8.5 Wilkinson Divider Design 1053</p> <p>14.8.6 Matching and Linear Oscillator Analysis 1053</p> <p>14.8.7 Optimization of Loop Gain and Phase 1057</p> <p>14.8.8 Nonlinear Oscillator Analysis 1057</p> <p>14.8.9 1/f Noise Characterization 1059</p> <p>14.8.10 Phase Noise Simulation 1066</p> <p>14.8.11 Oscillator Start-up Time 1069</p> <p>14.8.12 Layout EM Cosimulation 1069</p> <p>14.8.13 Oscillator Design Summary 1070</p> <p>xiv CONTENTS</p> <p>14.9 Conclusion 1071</p> <p>References 1073</p> <p>Appendix A: Derivations for Unilateral Gain</p> <p>Section 1075</p> <p>Appendix B: Vector Representation of Two-Tone Intermodulation Products 1077</p> <p>Introduction 1077</p> <p>Single-Tone Analysis 1078</p> <p>Two-Tone Analysis 1080</p> <p>Bias-Induced Distortion 1086</p> <p>Summary 1089</p> <p>Single-Tone Volterra Series Expansion 1090</p> <p>Fundamental Term 1091</p> <p>dc Term 1091</p> <p>Nonlinear Parallel RC Network 1092</p> <p>Acknowledgments 1094</p> <p>Bibliography 1095</p> <p>Appendix C: Passive Microwave Elements 1097</p> <p>Lumped Elements 1098</p> <p>Distributed Elements 1100</p> <p>Discontinuities 1107</p> <p>Monolithic Elements 1110</p> <p>Special-Purpose Elements 1113</p> <p>Index 1119</p>
<p><b>George D. Vendelin</b> is Adjunct Professor at Stanford, Santa Clara, and San Jose State Universities, as well as UC-Berkeley-Extension. He is a Fellow of the IEEE and has over 40 years of microwave engineering design and teaching experience.</p><p><b>Anthony M. Pavio, PhD,</b> is Manager of the Phoenix Design Center for Rockwell Collins. He is a Fellow of the IEEE and was previously Manager at the Integrated RF Ceramics Center for Motorola Labs.</p><p><b>Ulrich L. Rohde</b> is a Professor of Technical Informatics, University of the Joint Armed Forces, in Munich, Germany; a member of the staff of other universities world-wide; partner of Rohde & Schwarz, Munich; and Chairman of the Board of Synergy Microwave Corporation. He is the author of two editions of <i>Microwave and Wireless Synthesizers: Theory and Design</i>.</p><p><b>Dr.-Ing. Matthias Rudolph</b> is Ulrich L. Rohde Professor for RF and Microwave Techniques at Brandenburg University of Technology in Cottbus, Germany and heads the low-noise components lab at the Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik in Berlin.</p>
<p><b>Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology</b></p><p>The third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material.</p><p>The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book’s treatment of a wide variety of topics, like:</p><li><bl>An in-depth discussion of the foundations of RF and microwave systems, including Maxwell’s equations, applications of the technology, analog and digital requirements, and elementary definitions</bl></li><li><bl>A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements</bl></li><li><bl>Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET</bl></li><li><bl>Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain</bl></li><p>Perfect for microwave integrated circuit designers, the third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> also has a place on the bookshelves of electrical engineering researchers and graduate students. It’s comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.</p>

Diese Produkte könnten Sie auch interessieren:

Constraint Networks
Constraint Networks
von: Christophe Lecoutre
PDF ebook
238,99 €
Fourier Methods in Imaging
Fourier Methods in Imaging
von: Roger L. Easton Jr.
PDF ebook
123,99 €
Wireless Communications
Wireless Communications
von: Andreas F. Molisch
PDF ebook
53,99 €