Details

Microwave and RF Engineering


Microwave and RF Engineering


Microwave and Optical Engineering, Band 1 1. Aufl.

von: Roberto Sorrentino, Giovanni Bianchi, Kai Chang

112,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 30.04.2010
ISBN/EAN: 9780470660218
Sprache: englisch
Anzahl Seiten: 912

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>An essential text for both students and professionals, combining detailed theory with clear practical guidance</b> <p>This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling.</p> <p>With examples taken from the authors' own experience, this book also covers:</p> <ul> <li>network and signal theory;</li> <li>electronic technology with guided electromagnetic propagation;</li> <li>microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwave circuits (MMICs), wireless architectures and integrated circuits;</li> <li>passive microwave components, control components;</li> <li>microwave filters and matching networks.</li> <li>Simulation files are included in a CD Rom, found inside the book.</li> </ul> <p><i>Microwave and RF Engineering</i> presents up-to-date research and applications at different levels of difficulty, creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject.</p>
<p>About the Authors xv</p> <p>Preface xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Microwaves and radio frequencies 1</p> <p>1.2 Frequency bands 4</p> <p>1.3 Applications 6</p> <p>Bibliography 8</p> <p><b>2 Basic electromagnetic theory 9</b></p> <p>2.1 Introduction 9</p> <p>2.2 Maxwell’s equations 9</p> <p>2.3 Time-harmonic EM fields; polarization of a vector 12</p> <p>2.4 Maxwell’s equations in the harmonic regime 14</p> <p>2.5 Boundary conditions 15</p> <p>2.6 Energy and power of the EM field; Poynting’s theorem 17</p> <p>2.7 Some fundamental theorems 19</p> <p>2.7.1 Uniqueness theorem 19</p> <p>2.7.2 Lorentz’s reciprocity theorem 19</p> <p>2.7.3 Love’s equivalence theorem 20</p> <p>2.8 Plane waves 21</p> <p>2.9 Solution of the wave equation in rectangular coordinates 22</p> <p>2.9.1 Plane waves: an alternative derivation 24</p> <p>2.9.2 TEM waves 25</p> <p>2.9.3 TE and TM waves 26</p> <p>2.10 Reflection and transmission of plane waves; Snel’s laws 27</p> <p>2.10.1 Snel’s laws; total reflection 28</p> <p>2.10.2 Reflection and transmission (Fresnel’s) coefficients 31</p> <p>2.10.3 Reflection from a conducting plane 34</p> <p>2.11 Electrodynamic potentials 36</p> <p>Bibliography 38</p> <p><b>3 Guided EM propagation 39</b></p> <p>3.1 Introduction 39</p> <p>3.2 Cylindrical structures; solution of Maxwell’s equations as TE, TM and TEM modes 41</p> <p>3.3 Modes of propagation as transmission lines 48</p> <p>3.4 Transmission lines as 1-D circuits 52</p> <p>3.5 Phase velocity, group velocity and energy velocity 55</p> <p>3.6 Properties of the transverse modal vectors e<i><sub>t</sub></i>, h<i><sub>t</sub></i>; field expansion in a waveguide 57</p> <p>3.7 Loss, attenuation and power handling in real waveguides 59</p> <p>3.8 The rectangular waveguide 61</p> <p>3.9 The ridge waveguide 67</p> <p>3.10 The circular waveguide 68</p> <p>3.11 The coaxial cable 72</p> <p>3.12 The parallel-plate waveguide 74</p> <p>3.13 The stripline 76</p> <p>3.14 The microstrip line 78</p> <p>3.14.1 The planar waveguide model 82</p> <p>3.15 The coplanar waveguide 82</p> <p>3.16 Coupled lines 84</p> <p>3.16.1 Basic principles for EM analysis 85</p> <p>3.16.2 Equivalent circuit modelling 86</p> <p>Bibliography 88</p> <p><b>4 Microwave circuits 91</b></p> <p>4.1 Introduction 91</p> <p>4.2 Microwave circuit formulation 91</p> <p>4.3 Terminated transmission lines 94</p> <p>4.4 The Smith chart 97</p> <p>4.5 Power flow 105</p> <p>4.6 Matrix representations 109</p> <p>4.6.1 The impedance matrix 109</p> <p>4.6.2 The admittance matrix 110</p> <p>4.6.3 The ABCD or chain matrix 111</p> <p>4.6.4 The scattering matrix 112</p> <p>4.7 Circuit model of a transmission line section 119</p> <p>4.8 Shifting the reference planes 123</p> <p>4.9 Loaded two-port network 124</p> <p>4.10 Matrix description of coupled lines 125</p> <p>4.11 Matching of coupled lines 126</p> <p>4.12 Two-port networks using coupled-line sections 127</p> <p>Bibliography 129</p> <p><b>5 Resonators and cavities 131</b></p> <p>5.1 Introduction 131</p> <p>5.2 The resonant condition 131</p> <p>5.3 Quality factor or <i>Q</i> 134</p> <p>5.4 Transmission line resonators 136</p> <p>5.5 Planar resonators 139</p> <p>5.6 Cavity resonators 142</p> <p>5.7 Computation of the <i>Q</i> factor of a cavity resonator 144</p> <p>5.8 Dielectric resonators 146</p> <p>5.9 Expansion of EM fields 147</p> <p>5.9.1 Helmholtz’s theorem 148</p> <p>5.9.2 Electric and magnetic eigenvectors 148</p> <p>5.9.3 General solution of Maxwell’s equations in a cavity 153</p> <p>5.9.4 Resonances in ideal closed cavities 154</p> <p>5.9.5 The cavity with one or two outputs 155</p> <p>5.9.6 Excitation of cavity resonators 157</p> <p>Bibliography 161</p> <p><b>6 Impedance matching 163</b></p> <p>6.1 Introduction 163</p> <p>6.2 Fano’s bound 163</p> <p>6.3 Quarter-wavelength transformer 165</p> <p>6.4 Multi-section quarter-wavelength transformers 167</p> <p>6.4.1 The binomial transformer 171</p> <p>6.4.2 Chebyshev polynomials; the Chebyshev transformer 172</p> <p>6.5 Line and stub transformers; stub tuners 178</p> <p>6.6 Lumped <i>L</i> networks 180</p> <p>Bibliography 185</p> <p>Simulation files 185</p> <p><b>7 Passive microwave components 187</b></p> <p>7.1 Introduction 187</p> <p>7.2 Matched loads 187</p> <p>7.3 Movable short circuit 188</p> <p>7.4 Attenuators 190</p> <p>7.5 Fixed phase shifters 193</p> <p>7.5.1 Loaded-line phase shifters 193</p> <p>7.5.2 Reflection-type phase shifters 194</p> <p>7.6 Junctions and interconnections 195</p> <p>7.6.1 Guide-to-coaxial cable transition 198</p> <p>7.6.2 Coaxial-to-microstrip transition 203</p> <p>7.7 Dividers and combiners 204</p> <p>7.7.1 The Wilkinson divider 205</p> <p>7.7.2 Hybrid junctions 209</p> <p>7.7.3 Directional couplers 211</p> <p>7.8 Lumped element realizations 221</p> <p>7.9 Multi-beam forming networks 223</p> <p>7.9.1 The Butler matrix 224</p> <p>7.9.2 The Blass matrix 225</p> <p>7.9.3 The Rotman lens 227</p> <p>7.10 Non-reciprocal components 230</p> <p>7.10.1 Isolator 232</p> <p>7.10.2 Circulator 232</p> <p>Bibliography 234</p> <p>Simulation files 235</p> <p><b>8 Microwave filters 237</b></p> <p>8.1 Introduction 237</p> <p>8.2 Definitions 237</p> <p>8.3 Lowpass prototype 239</p> <p>8.3.1 Butterworth filters 240</p> <p>8.3.2 Chebyshev filters 240</p> <p>8.3.3 Cauer filters 244</p> <p>8.3.4 Synthesis of the lowpass prototype 245</p> <p>8.4 Semi-lumped lowpass filters 250</p> <p>8.5 Frequency transformations 254</p> <p>8.5.1 Lowpass to highpass transformation 255</p> <p>8.5.2 Lowpass to bandpass transformation 257</p> <p>8.5.3 Lowpass to bandstop transformation 260</p> <p>8.5.4 Richards transformation 261</p> <p>8.6 Kuroda identities 264</p> <p>8.7 Immittance inverters 267</p> <p>8.7.1 Filters with line-coupled short-circuit stubs 273</p> <p>8.7.2 Parallel-coupled filters 277</p> <p>8.7.3 Comb-line filters 281</p> <p>Bibliography 286</p> <p>Simulation files 286</p> <p><b>9 Basic concepts for microwave component design 289</b></p> <p>9.1 Introduction 289</p> <p>9.2 Cascaded linear two-port networks 289</p> <p>9.3 Signal flow graphs 302</p> <p>9.4 Noise in two-port networks 303</p> <p>9.4.1 Noise sources 303</p> <p>9.4.2 Representation of noisy two-port networks 305</p> <p>9.4.3 Noise figure and noise factor 306</p> <p>9.4.4 Noise factor of cascaded networks 313</p> <p>9.4.5 Noise bandwidth 314</p> <p>9.5 Nonlinear two-port networks 316</p> <p>9.5.1 Harmonic and intermodulation products 317</p> <p>9.5.2 Harmonic distortion 317</p> <p>9.5.3 Intermodulation distortion 319</p> <p>9.5.4 Gain compression 321</p> <p>9.5.5 Intercept points 326</p> <p>9.5.6 Saturation and intercept point of cascaded two-port networks 328</p> <p>9.6 Semiconductors devices 334</p> <p>9.6.1 Basic semiconductor physics 334</p> <p>9.6.2 Junction diode 336</p> <p>9.6.3 Bipolar transistor 338</p> <p>9.6.4 Junction field effect transistor 339</p> <p>9.6.5 Metal oxide field effect transistor 340</p> <p>9.7 Electrical models of high-frequency semiconductor devices 342</p> <p>9.7.1 Linear models 342</p> <p>9.7.2 Nonlinear semiconductor models 348</p> <p>Bibliography 360</p> <p>Related Files 360</p> <p><b>10 Microwave control components 363</b></p> <p>10.1 Introduction 363</p> <p>10.2 Switches 363</p> <p>10.2.1 PIN diode switches 368</p> <p>10.2.2 FET switches 375</p> <p>10.2.3 MEMS switches 379</p> <p>10.2.4 Alternative multi-port switch structures 385</p> <p>10.3 Variable attenuators 389</p> <p>10.4 Phase shifters 400</p> <p>10.4.1 True-delay and slow-wave phase shifters 402</p> <p>10.4.2 Reflection phase shifters 404</p> <p>10.4.3 Stepped phase shifters 407</p> <p>10.4.4 Binary phase shifters 408</p> <p>10.4.5 Final considerations on phase shifters 412</p> <p>Bibliography 412</p> <p>Related files 413</p> <p><b>11 Amplifiers 415</b></p> <p>11.1 Introduction 415</p> <p>11.2 Small-signal amplifiers 415</p> <p>11.2.1 Gain definitions 416</p> <p>11.2.2 Stability 420</p> <p>11.2.3 Matching networks 424</p> <p>11.2.4 Maximum gain impedance matching 425</p> <p>11.3 Low-noise amplifiers 429</p> <p>11.4 Design of trial amplifier 432</p> <p>11.5 Power amplifiers 440</p> <p>11.5.1 Output power optimization with negligible transistor parasitics 440</p> <p>11.5.2 Output power optimization in presence of transistor parasitics 444</p> <p>11.5.3 Load pull 451</p> <p>11.5.4 Balanced amplifiers 454</p> <p>11.5.5 PA classes 459</p> <p>11.5.6 Amplifier linearization 473</p> <p>11.5.7 Additional PA issues 481</p> <p>11.6 Other amplifier configurations 482</p> <p>11.6.1 Feedback amplifiers 483</p> <p>11.6.2 Distributed amplifiers 485</p> <p>11.6.3 Differential pairs 489</p> <p>11.6.4 Active loads 494</p> <p>11.6.5 Cascode configuration 495</p> <p>11.7 Some examples of microwave amplifiers 497</p> <p>11.7.1 Two-stage millimetre-wave amplifier 497</p> <p>11.7.2 Low-noise amplifier 499</p> <p>Bibliography 501</p> <p>Related files 501</p> <p><b>12 Oscillators 503</b></p> <p>12.1 Introduction 503</p> <p>12.2 General principles 503</p> <p>12.3 Negative resistance oscillators 508</p> <p>12.4 Positive feedback oscillators 512</p> <p>12.5 Standard oscillator configuration 518</p> <p>12.5.1 Inductively coupled oscillator 521</p> <p>12.5.2 Inductive gate feedback oscillator 523</p> <p>12.5.3 Hartley oscillator 525</p> <p>12.5.4 Colpitts oscillator 526</p> <p>12.5.5 Clapp oscillator 527</p> <p>12.5.6 Differential oscillator 528</p> <p>12.6 Design of a trial oscillator 530</p> <p>12.7 Oscillator specifications 534</p> <p>12.8 Special oscillators 543</p> <p>12.8.1 Lumped element and transmission line oscillators 543</p> <p>12.8.2 Cavity oscillators and dielectric resonator oscillators 547</p> <p>12.8.3 Voltage-controlled oscillators 549</p> <p>12.8.4 Push–push oscillators 553</p> <p>12.8.5 Amplitude-stabilized oscillators 555</p> <p>12.9 Design of a push –push microwave VCO 557</p> <p>Bibliography 559</p> <p>Related files 559</p> <p><b>13 Frequency converters 561</b></p> <p>13.1 Introduction 561</p> <p>13.2 Detectors 561</p> <p>13.2.1 Quadratic diode detector 563</p> <p>13.2.2 Envelope detectors 570</p> <p>13.2.3 FET detectors 573</p> <p>13.3 Mixers 577</p> <p>13.3.1 Product detector 579</p> <p>13.3.2 Single-ended diode mixers 581</p> <p>13.3.3 Singly balanced diode mixers 584</p> <p>13.3.4 Doubly balanced diode mixers 590</p> <p>13.3.5 Subharmonically pumped mixers 594</p> <p>13.3.6 Image reject mixers 597</p> <p>13.3.7 Suppression in presence of amplitude and phase imbalance 600</p> <p>13.3.8 FET mixers 602</p> <p>13.3.9 Mixers based on differential pairs 606</p> <p>13.3.10 Mixer nonlinearities 617</p> <p>13.4 Frequency multipliers 625</p> <p>Bibliography 630</p> <p>Related files 630</p> <p><b>14 Microwave circuit technology 633</b></p> <p>14.1 Introduction 633</p> <p>14.2 Hybrid and monolithic integrated circuits 633</p> <p>14.2.1 High-frequency PCB 634</p> <p>14.2.2 Hybrid MICs 635</p> <p>14.2.3 MMICs 636</p> <p>14.2.4 Advanced hybrid MICs 637</p> <p>14.2.5 Parasitic elements associated to physical devices 637</p> <p>14.3 Basic MMIC elements 639</p> <p>14.3.1 Transmission lines 640</p> <p>14.3.2 Via holes 640</p> <p>14.3.3 Resistors 641</p> <p>14.3.4 Inductors 643</p> <p>14.3.5 Capacitors 645</p> <p>14.3.6 Semiconductor devices 646</p> <p>14.4 Simulation models and layout libraries 649</p> <p>14.4.1 Single element models 650</p> <p>14.4.2 Scalable models 650</p> <p>14.4.3 Nonlinear models 651</p> <p>14.4.4 MMIC statistical models 651</p> <p>14.4.5 Temperature-dependent models 652</p> <p>14.5 MMIC production technique 652</p> <p>14.5.1 Lithography 653</p> <p>14.5.2 On-wafer testing 655</p> <p>14.5.3 Cut and selection 655</p> <p>14.6 RFIC 656</p> <p>Bibliography 657</p> <p><b>15 RF and microwave architectures 659</b></p> <p>15.1 Introduction 659</p> <p>15.2 Review of modulation theory 659</p> <p>15.2.1 Amplitude modulation 660</p> <p>15.2.2 Angular modulation 663</p> <p>15.3 Transmitters 665</p> <p>15.3.1 Direct modulation transmitters 665</p> <p>15.3.2 Polar modulator 675</p> <p>15.3.3 Cartesian modulator 677</p> <p>15.3.4 Transmitters with frequency translation 681</p> <p>15.4 Receivers 682</p> <p>15.4.1 RF tuned receivers 682</p> <p>15.4.2 Superetherodyne receivers 692</p> <p>15.4.3 Zero-IF and low-IF receivers 696</p> <p>15.4.4 Walking IF receivers 699</p> <p>15.4.5 One practical IC-based receiver 701</p> <p>15.4.6 Digital receivers 703</p> <p>15.5 Further concepts on RF transmitters and receivers 710</p> <p>15.5.1 Transceivers 710</p> <p>15.5.2 CAD analysis of a radar transmitting subassembly 719</p> <p>15.5.3 Receiver performance analysis 725</p> <p>15.6 Special radio functional blocks 731</p> <p>15.6.1 Quadrature signal generation 731</p> <p>15.6.2 PLL 735</p> <p>15.6.3 ALC and AGC 744</p> <p>15.6.4 SDLVA 749</p> <p>Bibliography 753</p> <p>Related files 754</p> <p><b>16 Numerical methods and CAD 757</b></p> <p>16.1 Introduction 757</p> <p>16.2 EM analysis 760</p> <p>16.2.1 The method of moments 761</p> <p>16.2.2 The finite difference method 763</p> <p>16.2.3 The FDTD method 766</p> <p>16.2.4 The finite element method 770</p> <p>16.2.5 The mode matching method 771</p> <p>16.3 Circuit analysis 780</p> <p>16.3.1 Linear analysis: the signal flow graph and the admittance matrix methods 780</p> <p>16.3.2 Time domain nonlinear analysis 785</p> <p>16.3.3 Frequency domain nonlinear analysis 786</p> <p>16.4 Optimization 788</p> <p>16.4.1 Definitions and basic concepts 789</p> <p>16.4.2 Objective function 790</p> <p>16.4.3 Constraints 791</p> <p>16.4.4 Optimization methods 791</p> <p>Bibliography 792</p> <p><b>17 Measurement instrumentation and techniques 795</b></p> <p>17.1 Introduction 795</p> <p>17.2 Power meters 795</p> <p>17.3 Frequency meters 798</p> <p>17.3.1 RF digital frequency meter 798</p> <p>17.3.2 Microwave digital frequency meter 799</p> <p>17.3.3 Frequency conversion frequency meters 800</p> <p>17.3.4 Frequency conversion frequency meter without preselector 802</p> <p>17.4 Spectrum analyzers 803</p> <p>17.4.1 Panoramic receiver 803</p> <p>17.4.2 Superheterodyne spectrum analyzer 806</p> <p>17.5 Wide-band sampling oscilloscopes 809</p> <p>17.6 Network analyzers 816</p> <p>17.6.1 Scalar analyzers 817</p> <p>17.6.2 Vector analyzers 821</p> <p>17.6.3 Noise figure meters 833</p> <p>17.7 Special test instruments 837</p> <p>17.7.1 IFM 837</p> <p>17.7.2 Complex test benches 843</p> <p>17.7.3 Test instruments for non-electrical quantities 846</p> <p>Bibliography 849</p> <p>Related files 849</p> <p>Appendix A Useful relations from vector analysis and trigonometric function identities 851</p> <p>Appendix B Fourier transform 861</p> <p>Appendix C Orthogonality of the eigenvectors in ideal waveguides 865</p> <p>Appendix D Standard rectangular waveguides and coaxial cables 869</p> <p>Appendix E Symbols for electric diagrams 873</p> <p>Appendix F List of acronyms 877</p> <p>Index 883</p>
<p><b>Roberto Sorrentino,</b> <i>University of Perugia, Italy</i> <p><b>Giovanni Bianchi,</b> <i>Verigy Ltd, Böblingen, Germany</i>
<p><b>Microwave and RF Engineering</b> <p><i>An essential text for both students and professionals, uniquely combining detailed theory with clear practical guidance</i> <p>This book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. <p>With examples taken from the authors' own experience, this book also covers: <ul> <li>network and signal theory;</li> <li>electronic technology with guided electromagnetic propagation;</li> <li>microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwave integrated circuits (MMICs), wireless architectures and integrated circuits;</li> <li>passive microwave components and control components;</li> <li>microwave filters and matching networks.</li> </ul> <p><i>Microwave and RF Engineering</i> presents up-to-date research and applications at different levels of difficulty, creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject.

Diese Produkte könnten Sie auch interessieren:

Foundations of Electromagnetic Compatibility
Foundations of Electromagnetic Compatibility
von: Bogdan Adamczyk
PDF ebook
117,99 €
Human Bond Communication
Human Bond Communication
von: Sudhir Dixit, Ramjee Prasad
EPUB ebook
105,99 €
Computer Vision in Vehicle Technology
Computer Vision in Vehicle Technology
von: Antonio M. López, Atsushi Imiya, Tomas Pajdla, Jose M. Álvarez
PDF ebook
81,99 €