Details

Microbes for Climate Resilient Agriculture


Microbes for Climate Resilient Agriculture


1. Aufl.

von: Prem Lal Kashyap, Alok Kumar Srivastava, Shree Prakash Tiwari, Sudheer Kumar

176,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 12.12.2017
ISBN/EAN: 9781119275954
Sprache: englisch
Anzahl Seiten: 376

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive, edited volume pulling together research on manipulation of the crop microbiome for climate resilient agriculture</b></p> <p><i>Microbes for Climate Resilient Agriculture</i> provides a unique collection of data and a holistic view of the subject with quantitative assessment of how agricultural systems will be transformed in coming decades using hidden treasure of microbes. Authored by leaders in the field and edited to ensure conciseness and clarity, it covers a broad range of agriculturally important crops, discusses the impact of climate change on crops, and examines biotechnologically and environmentally relevant microbes. The book encapsulates the understanding of microbial mediated stress management at field level, and will serve as a springboard for novel research findings and new applications in the field.</p> <p>Chapter coverage includes: the role of the phytomicrobiome in maintaining biofuel crop production in a changing climate; the impact of agriculture on soil microbial community composition and diversity in southeast Asia; climate change impact on plant diseases; microalgae; photosynthetic microorganisms and bioenergy prospects; amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms; role of methylotrophic bacteria in climate change mitigation; conservation agriculture for climate change resilience; archaeal community structure; mycorrhiza-helping plants to navigate environmental stresses; endophytic microorganisms; bacillus thuringiensis; and microbial nanotechnology for climate resilient agriculture.</p> <ul> <li>Clear and succinct chapters contributed and edited by leaders in the field</li> <li>Covers microbes' beneficial and detrimental roles in the microbiome, as well as the functions they perform under stress</li> <li>Discusses the crop microbiome, nutrient cycling microbes, endophytes, mycorrhizae, and various pests and diseases, and their roles in sustainable farming</li> <li>Places research in larger context of climate change's effect on global agriculture</li> </ul> <i>Microbes for Climate Resilient Agriculture</i> is an important text for scientists and researchers studying microbiology, biotechnology, environmental biology, agronomy, plant physiology, and plant protection.
<p>ABOUT THE EDITORS xv</p> <p>LIST OF CONTRIBUTORS xix</p> <p>PREFACE xxiii</p> <p><b>1 THE ROLE OF THE PHYTOMICROBIOME IN MAINTAINING BIOFUEL CROP PRODUCTION IN A CHANGING CLIMATE 1<br /></b><i>Gayathri Ilangumaran, John R. Lamont and Donald L. Smith</i></p> <p>1.1 General Background on Climate Change 1</p> <p>1.2 More Extreme Weather More Often – More Crop Stress 2</p> <p>1.3 Biofuel Crops – Alternative to Fossil Fuels 3</p> <p>1.4 Avoiding Competition with Food Production 4</p> <p>1.5 Fuel Crops Grown on Marginal Lands – Constraints 4</p> <p>1.6 Plant Response to Stresses Related to Climate Change and Marginal Lands 6</p> <p>1.7 Sustaining Biofuel Crops Under Stressful Environments 7</p> <p>1.8 The Phytomicrobiome and Climate Change Conditions 8</p> <p>1.9 The Phytomicrobiome and Abiotic Plant Stress 8</p> <p>1.10 Mechanisms of Stress Tolerance in the Phytomicrobiome 9</p> <p>1.11 Phytomicrobiome Engineering 11</p> <p>1.12 The Phytomicrobiome in Biofuel Plants 12</p> <p>1.13 Role of the Phytomicrobiome in Phytoremediation by Biofuel Plants 13</p> <p>References 14</p> <p><b>2 THE IMPACT OF AGRICULTURE ON SOIL MICROBIAL COMMUNITY COMPOSITION AND DIVERSITY IN SOUTHEAST ASIA 25<br /></b><i>Binu M. Tripathi, Itumeleng Moroenyane and Jonathan M. Adams</i></p> <p>2.1 Introduction 25</p> <p>2.2 The Extent of Soil Microbial Diversity and their Status in Tropical Soils 27</p> <p>2.3 The Composition and Function of Microbial Communities in Tropical Soils of Southeast Asia 29</p> <p>2.3.1 Unique Soil Microbial Communities of Southeast Asia and their Potential Drivers 29</p> <p>2.4 The Impact of Land use Change on Soil Microbial Community Structure and Diversity 31</p> <p>2.5 The Impact of Land use Change on Soil Functional Gene Diversity 34</p> <p>2.6 Conclusions 35</p> <p>References 35</p> <p><b>3 CLIMATE CHANGE IMPACT ON PLANT DISEASES: OPINION, TRENDS AND MITIGATION STRATEGIES 41<br /></b><i>Sachin Gupta, Deepika Sharma and Moni Gupta</i></p> <p>3.1 Introduction 41</p> <p>3.2 Climate Change and Agriculture 42</p> <p>3.3 Interactions among Global Change Factors 43</p> <p>3.4 Pathogen–Host Plant Relationship under Changed Scenario 44</p> <p>3.5 Effect of Climate Change on Plant Diseases 44</p> <p>3.5.1 Temperature 46</p> <p>3.5.2 Drought 48</p> <p>3.5.3 Rainfall 48</p> <p>3.5.4 CO2 Concentration 48</p> <p>3.6 Adaptation and Mitigation Strategies for Climate Change 49</p> <p>3.6.1 Adaptation Strategies 49</p> <p>3.6.2 Mitigation Strategies 50</p> <p>3.7 Conclusion and Future Directions 51</p> <p>References 51</p> <p><b>4 MICROALGAE: POTENTIAL AGENTS FOR CARBON DIOXIDE MITIGATION 57<br /></b><i>Preeti Singh, Rahul Kunwar Singh and Dhananjay Kumar</i></p> <p>4.1 Introduction 57</p> <p>4.2 Carbon Capture and Storage 60</p> <p>4.3 Carbon Capture by Photosynthesis 60</p> <p>4.4 CO2 Mitigation by Microalgal Culture 60</p> <p>4.4.1 The Open Pond System 61</p> <p>4.4.2 The Closed Photobioreactor System 62</p> <p>4.4.3 The Environmentally Controlled System 62</p> <p>4.5 Advantages 62</p> <p>4.5.1 Integration of Microalgal Culture in Waste Water Treatment 62</p> <p>4.5.2 Ability of Microalgae to Tolerate the Greenhouse Gases 62</p> <p>4.6 Carbon Concentrating Mechanism of Microalgae 65</p> <p>4.7 CO2 Sequestration by Microalgae 65</p> <p>4.8 Cost Effectiveness 66</p> <p>4.8.1 Biofertilizer 66</p> <p>4.8.2 Biofuel 67</p> <p>4.8.3 Other Products 67</p> <p>4.9 Conclusion 68</p> <p>References 68</p> <p><b>5 PHOTOSYNTHETIC MICROORGANISMS AND BIOENERGY PROSPECTS: CHALLENGES AND POTENTIAL 75<br /></b><i>Balkrishna Tiwari, Sindhunath Chakraborty, Ekta Verma and Arun Kumar Mishra</i></p> <p>5.1 Introduction 75</p> <p>5.2 Photosynthetic Microbes 78</p> <p>5.3 Anoxigenic Photosynthetic Microbes 79</p> <p>5.3.1 Green Photosynthetic Bacteria 79</p> <p>5.3.2 Purple Bacteria 82</p> <p>5.3.3 Heliobacteria 84</p> <p>5.3.4 Prospects of Anoxigenic Photosynthetic Microbes in Bioenergy Production 86</p> <p>5.4 Oxygenic Photosynthetic Microbes 87</p> <p>5.4.1 Cyanobacteria 89</p> <p>5.4.2 Microalgae 93</p> <p>5.5 Biomass Production and Challenges 95</p> <p>5.6 Some Important Issues Associated with Biofuel Production 96</p> <p>5.6.1 Use of Water 96</p> <p>5.6.2 Nutrients and Competition with Crops 96</p> <p>5.6.3 Minimizing Algae Death from Biotic and Abiotic Factors 96</p> <p>5.6.4 Competition with Petroleum in Terms of Price 97</p> <p>5.7 Conclusions 97</p> <p>Acknowledgements 98</p> <p>References 98</p> <p><b>6 AMELIORATION OF ABIOTIC STRESSES IN PLANTS THROUGH MULTI‐FACETED BENEFICIAL MICROORGANISMS 105<br /></b><i>Usha Chakraborty, Bishwanath Chakraborty and Jayanwita Sarkar</i></p> <p>6.1 Introduction 105</p> <p>6.2 Temperature Stress Alleviation 107</p> <p>6.2.1 Alleviation by Bacteria 107</p> <p>6.2.2 Alleviation by Fungi 110</p> <p>6.3 Water and Salinity Stress Alleviation 112</p> <p>6.3.1 Alleviation by Bacteria 112</p> <p>6.3.2 Alleviation by Fungi 118</p> <p>6.4 Alleviation of Heavy Metal Toxicity 124</p> <p>6.5 Conclusions 131</p> <p>References 132</p> <p><b>7 ROLE OF METHYLOTROPHIC BACTERIA IN CLIMATE CHANGE MITIGATION 149<br /></b><i>Manish Kumar, Raghvendra Saxena, Rajesh Singh Tomar, Pankaj K. Rai and Diby Paul</i></p> <p>7.1 Introduction 149</p> <p>7.2 Methylotrophic Bacteria and their Role in Agriculture 151</p> <p>7.3 Volatile Organic Carbon Mitigation and Methylotrophs 152</p> <p>7.4 Carbon Cycling and Climate Change 152</p> <p>7.5 Methylotrophs Mitigating Methane 154</p> <p>7.6 Methylotrophs Mitigating Methane in Paddy Fields 158</p> <p>7.7 Conclusions 160</p> <p>Acknowledgements 160</p> <p>References 160</p> <p><b>8 CONSERVATION AGRICULTURE FOR CLIMATE CHANGE RESILIENCE: A MICROBIOLOGICAL PERSPECTIVE 165<br /></b><i>Raj Pal Meena and Ankita Jha</i></p> <p>8.1 Introduction 165</p> <p>8.2 The Effect of Climate Change on Agricultural Production 169</p> <p>8.3 Concepts and Principles of Conservation Agriculture 173</p> <p>8.4 The Ecological Role of Microbial Biodiversity in Agro‐Ecosystems 177</p> <p>8.5 Role of Microbial Population in C‐Sequestration, N, P Cycle 179</p> <p>8.6 Restoring Diversity in Large‐Scale Monocultures 180</p> <p>8.7 Enhancing Crops vis‐a‐vis Microbial Biodiversity to Reduce Vulnerability 181</p> <p>8.8 Conclusions 183</p> <p>References 183</p> <p><b>9 ARCHAEAL COMMUNITY STRUCTURE: RESILIENCE TO CLIMATE CHANGE 191<br /></b><i>M. Thomas, K.K. Pal and R. Dey</i></p> <p>9.1 Introduction 191</p> <p>9.2 Possible Role of Archaea in Agricultural Sustainability 192</p> <p>9.3 Ecology and Phylogeny of Domain Archaea 193</p> <p>9.4 Archaeal Contribution to Global Climate Change 194</p> <p>9.4.1 Archaeal Response to Increased Temperatures 195</p> <p>9.4.2 Archaeal Response to Biogeochemical Cycles 196</p> <p>9.5 Archaeal Mechanisms of Adaptation with Respect to Abiotic Changes 200</p> <p>9.6 Conclusions 200</p> <p>References 201</p> <p><b>10 MYCORRHIZA – HELPING PLANTS TO NAVIGATE ENVIRONMENTAL STRESSES 205<br /></b><i>Raghvendra Pratap Singh, Geetanjali Manchanda, Mian Nabeel Anwar, Jun Jie Zhang and Yue Zhang Li</i></p> <p>10.1 Introduction 205</p> <p>10.2 Arbuscular Mycorrhizae 207</p> <p>10.3 Elevated CO2 Levels 209</p> <p>10.4 High Temperature 211</p> <p>10.5 Salinity 214</p> <p>10.6 Conclusions 219</p> <p>References 220</p> <p><b>11 ENDOPHYTIC MICROORGANISMS: FUTURE TOOLS FOR CLIMATE RESILIENT AGRICULTURE 235<br /></b><i>R. Dey, K.K. Pal, M. Thomas, D.N. Sherathia, V.B. Mandaliya, R.A. Bhadania, M.B. Patel, P. Maida, D.H. Mehta, B.D. Nawade and S.V. Patel</i></p> <p>11.1 Introduction 235</p> <p>11.1.1 Climate Change – Impact and Need for Adaptation 236</p> <p>11.2 Endophytes and Climate Resilience 239</p> <p>11.2.1 High Temperature Stress 239</p> <p>11.2.2 Low Temperature Stress 240</p> <p>11.2.3 Moisture‐Deficit Stress 240</p> <p>11.2.4 Salinity Stress 242</p> <p>11.2.5 Waterlogging Stress 244</p> <p>11.3 Endophytes and Biotic Stress 245</p> <p>11.3.1 Plant Diseases 245</p> <p>11.3.2 Nematode Infestation 247</p> <p>11.3.3 Insect Pests 247</p> <p>11.4 Conclusions 247</p> <p>References 248</p> <p><b>12 BACILLUS THURINGIENSIS: GENETIC ENGINEERING FOR INSECT PEST MANAGEMENT 255<br /></b><i>Gothandapani Sellamuthu, Prabhakaran Narayanasamy and Jasdeep Chatrath Padaria</i></p> <p>12.1 Introduction 255</p> <p>12.2 Biology of Bacillus Thuringiensis 257</p> <p>12.2.1 Natural Occurrence of Bacillus thuringiensis 257</p> <p>12.2.2 Classification of Bt Toxins 258</p> <p>12.2.3 Mode of Action 260</p> <p>12.3 Biotechnological Approaches of Microbial Genes for Insect Pest Management 261</p> <p>12.3.1 Microbial Genes and Gene Pyramiding 261</p> <p>12.3.2 Alternative Insecticidal Genes 262</p> <p>12.3.3 Gene Pyramiding 262</p> <p>12.4 Methods for Development of Transgenic Crops 263</p> <p>12.4.1 Direct Gene Transfer 264</p> <p>12.4.2 Indirect Gene Transfer 266</p> <p>12.5 Field Evaluation and Commercially Available Insecticidal Crops 267</p> <p>12.5.1 Environmental Safety 269</p> <p>12.5.2 Ecological Balance and Food Safety 270</p> <p>12.6 Insecticide Resistance 270</p> <p>12.7 Conclusions 271</p> <p>References 271</p> <p><b>13 MICROBIAL NANOTECHNOLOGY FOR CLIMATE RESILIENT AGRICULTURE 279<br /></b><i>Prem Lal Kashyap, Pallavi Rai, Raj Kumar, Shikha Sharma, Poonam Jasrotia, Alok Kumar Srivastava and Sudheer Kumar</i></p> <p>13.1 Introduction 279</p> <p>13.2 Microbe Mediated Fabrication of Nanoparticles 281</p> <p>13.2.1 Bacteria 281</p> <p>13.2.2 Fungi 286</p> <p>13.2.3 Algae 287</p> <p>13.2.4 Viruses 292</p> <p>13.2.5 Actinomycetes 293</p> <p>13.3 Nanomaterials for Biotic and Abiotic Stress Management 295</p> <p>13.3.1 Biotic Stress Management 295</p> <p>13.3.2 Abiotic Stress Management 306</p> <p>13.4 Nano‐Fertilizers for Balanced Crop Nutrition 314</p> <p>13.5 Conclusion and Future Directions 315</p> <p>References 316</p> <p>INDEX 345</p>
<p><b>Prem Lal Kashyap,</b> Division of Crop Protection, ICAR–Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India <p><b>Alok Kumar Srivastava,</b> ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, India <p><b>Shree Prakash Tiwari,</b> Department of Microbiology, Veer Bahadur Singh Purvanchal University, Uttar Pradesh, India <p><b>Sudheer Kumar,</b> Division of Crop Protection, ICAR–Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
<p><b>A Comprehensive, Edited Volume Pulling Together Research on Manipulation of the Crop Microbiome for Climate Resilient Agriculture</b> <p><i>Microbes for Climate Resilient Agriculture</i> provides a unique collection of data and a holistic view of the subject with quantitative assessment of how agricultural systems will be transformed in coming decades using hidden treasure of microbes. Authored by leaders in the field and edited to ensure conciseness and clarity, it covers a broad range of agriculturally important crops, discusses the impact of climate change on crops, and examines biotechnologically and environmentally relevant microbes. The book encapsulates the understanding of microbial mediated stress management at field level, and will serve as a springboard for novel research findings and new applications in the field. <p>Chapter coverage includes: the role of the phytomicrobiome in maintaining biofuel crop production in a changing climate; the impact of agriculture on soil microbial community composition and diversity in southeast Asia; climate change impact on plant diseases; microalgae; photosynthetic microorganisms and bioenergy prospects; amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms; role of methylotrophic bacteria in climate change mitigation; conservation agriculture for climate change resilience; archaeal community structure; mycorrhiza-helping plants to navigate environmental stresses; endophytic microorganisms; bacillus thuringiensis; and microbial nanotechnology for climate resilient agriculture. <ul> <li>Clear and succinct chapters contributed and edited by leaders in the field</li> <li>Covers microbes' beneficial and detrimental roles in the microbiome, as well as the functions they perform under stress</li> <li>Discusses the crop microbiome, nutrient cycling microbes, endophytes, mycorrhizae, and various pests and diseases, and their roles in sustainable farming</li> <li>Places research in larger context of climate change's effect on global agriculture</li> </ul> <p><i>Microbes for Climate Resilient Agriculture</i> is an important text for scientists and researchers studying microbiology, biotechnology, environmental biology, agronomy, plant physiology, and plant protection.

Diese Produkte könnten Sie auch interessieren:

Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
PDF ebook
114,99 €
Biologische Bodensanierung
Biologische Bodensanierung
von: Kassem Alef
PDF ebook
40,99 €
Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
EPUB ebook
114,99 €