Micro Energy Harvesting

Micro Energy Harvesting

Advanced Micro and Nanosystems 11. Aufl.

von: Danick Briand, Eric Yeatman, Shad Roundy, Oliver Brand, Gary K. Fedder, Christofer Hierold, Jan G. Korvink, Osamu Tabata

147,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 21.04.2015
ISBN/EAN: 9783527672936
Sprache: englisch
Anzahl Seiten: 490

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.


With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices.<br> The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches.<br> In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.<br>
<p>About the Volume Editors XVII</p> <p>List of Contributors XIX</p> <p><b>1 Introduction to Micro Energy Harvesting 1</b><br /><i>Danick Briand, Eric Yeatman, and Shad Roundy</i></p> <p>1.1 Introduction to the Topic 1</p> <p>1.2 Current Status and Trends 3</p> <p>1.3 Book Content and Structure 4</p> <p><b>2 Fundamentals of Mechanics and Dynamics 7</b><br /><i>Helios Vocca and Luca Gammaitoni</i></p> <p>2.1 Introduction 7</p> <p>2.2 Strategies for Micro Vibration Energy Harvesting 8</p> <p>2.2.1 Piezoelectric 9</p> <p>2.2.2 Electromagnetic 10</p> <p>2.2.3 Electrostatic 11</p> <p>2.2.4 From Macro to Micro to Nano 11</p> <p>2.3 Dynamical Models for Vibration Energy Harvesters 12</p> <p>2.3.1 Stochastic Character of Ambient Vibrations 14</p> <p>2.3.2 Linear Case 1: Piezoelectric Cantilever Generator 14</p> <p>2.3.3 Linear Case 2: Electromagnetic Generator 15</p> <p>2.3.4 Transfer Function 15</p> <p>2.4 Beyond Linear Micro-Vibration Harvesting 16</p> <p>2.4.1 Frequency Tuning 16</p> <p>2.4.2 Multimodal Harvesting 17</p> <p>2.4.3 Up-Conversion Techniques 17</p> <p>2.5 Nonlinear Micro-Vibration Energy Harvesting 18</p> <p>2.5.1 Bistable Oscillators: Cantilever 19</p> <p>2.5.2 Bistable Oscillators: Buckled Beam 21</p> <p>2.5.3 Monostable Oscillators 23</p> <p>2.6 Conclusions 24</p> <p>Acknowledgments 24</p> <p>References 24</p> <p><b>3 Electromechanical Transducers 27</b><br /><i>Adrien Badel, Fabien Formosa, andMickaël Lallart</i></p> <p>3.1 Introduction 27</p> <p>3.2 Electromagnetic Transducers 27</p> <p>3.2.1 Basic Principle 27</p> <p> Induced Voltage 28</p> <p> Self-Induction 28</p> <p> Mechanical Aspect 29</p> <p>3.2.2 Typical Architectures 30</p> <p> Case Study 30</p> <p> General Case 33</p> <p>3.2.3 Energy Extraction Cycle 33</p> <p> Resistive Cycle 34</p> <p> Self-Inductance Cancelation 34</p> <p> Cycle with Rectification 35</p> <p> Active Cycle 36</p> <p>3.2.4 Figures of Merit and Limitations 36</p> <p>3.3 Piezoelectric Transducers 37</p> <p>3.3.1 Basic Principles and Constitutive Equations 37</p> <p> Physical Origin of Piezoelectricity in Ceramics and Crystals 37</p> <p> Constitutive Equations 38</p> <p>3.3.2 Typical Architectures for Energy Harvesting 39</p> <p> Modeling 39</p> <p> Application to Typical Configurations 40</p> <p>3.3.3 Energy Extraction Cycles 41</p> <p> Resistive Cycles 41</p> <p> Cycles with Rectification 43</p> <p> Active Cycles 43</p> <p> Comparison 43</p> <p>3.3.4 Maximal Power Density and Figure of Merit 44</p> <p>3.4 Electrostatic Transducers 45</p> <p>3.4.1 Basic Principles 45</p> <p> Gauss’s Law 45</p> <p> Capacitance C0 45</p> <p> Electric Potential 46</p> <p> Energy 46</p> <p> Force 47</p> <p>3.4.2 Design Parameters for a Capacitor 47</p> <p> Architecture 47</p> <p> Dielectric 48</p> <p>3.4.3 Energy Extraction Cycles 48</p> <p> Charge-Constrained Cycle 49</p> <p> Voltage-Constrained Cycle 50</p> <p> Electret Cycle 51</p> <p>3.4.4 Limits 51</p> <p> Parasitic Capacitors 51</p> <p> Breakdown Voltage 53</p> <p> Pull-In Force 53</p> <p>3.5 Other Electromechanical Transduction Principles 53</p> <p>3.5.1 Electrostrictive Materials 53</p> <p> Physical Origin and Constitutive Equations 53</p> <p> Energy Harvesting Strategies 54</p> <p>3.5.2 Magnetostrictive Materials 55</p> <p> Physical Origin 55</p> <p> Constitutive Equations 56</p> <p>3.6 Effect of the Vibration Energy Harvester Mechanical Structure 56</p> <p>3.7 Summary 58</p> <p>References 59</p> <p><b>4 Thermal Fundamentals 61</b><br /><i>Mathieu Francoeur</i></p> <p>4.1 Introduction 61</p> <p>4.2 Fundamentals of Thermoelectric Power Generation 62</p> <p>4.2.1 Overview of Nanoscale Heat Conduction and the Seebeck Effect 62</p> <p>4.2.2 Heat Transfer Analysis ofThermoelectric Power Generation 64</p> <p>4.3 Near-FieldThermal Radiation andThermophotovoltaic Power Generation 66</p> <p>4.3.1 Introduction 66</p> <p>4.3.2 Theoretical Framework: Fluctuational Electrodynamics 67</p> <p>4.3.3 Introduction toThermophotovoltaic Power Generation and Physics of Near-Field Radiative Heat Transfer between Two Bulk Materials Separated by a Subwavelength Vacuum Gap 70</p> <p>4.3.4 Nanoscale-Gap Thermophotovoltaic Power Generation 76</p> <p>4.4 Conclusions 80</p> <p>Acknowledgments 80</p> <p>References 81</p> <p><b>5 Power Conditioning for Energy Harvesting – Theory and Architecture 85</b><br /><i>Stephen G. Burrow and Paul D.Mitcheson</i></p> <p>5.1 Introduction 85</p> <p>5.2 The Function of Power Conditioning 85</p> <p>5.2.1 Interface to the Harvester 86</p> <p>5.2.2 Circuits with Resistive Input Impedance 87</p> <p>5.2.3 Circuits with Reactive Input Impedance 89</p> <p>5.2.4 Circuits with Nonlinear Input Impedance 90</p> <p>5.2.5 Peak Rectifiers 90</p> <p>5.2.6 Piezoelectric Pre-biasing 92</p> <p>5.2.7 Control 94</p> <p> Voltage Regulation 94</p> <p> Peak Power Controllers 96</p> <p>5.2.8 System Architectures 97</p> <p> Start-Up 97</p> <p>5.2.9 Highly Dynamic Load Power 98</p> <p>5.3 Summary 100</p> <p>References 100</p> <p><b>6 ThermoelectricMaterials for Energy Harvesting 103</b><br /><i>Andrew C.Miner</i></p> <p>6.1 Introduction 103</p> <p>6.2 Performance Considerations in Materials Selection: zT 103</p> <p>6.2.1 Properties of Chalcogenides (Group 16) 106</p> <p>6.2.2 Properties of Crystallogens (Group 14) 106</p> <p>6.2.3 Properties of Pnictides (Group 15) 107</p> <p>6.2.4 Properties of Skutterudites 108</p> <p>6.3 Influence of Scale on Material Selection and Synthesis 110</p> <p>6.3.1 Thermal Conductance Mismatch 111</p> <p>6.3.2 Domination of Electrical Contact Resistances 112</p> <p>6.3.3 Domination of Bypass Heat Flow 113</p> <p>6.3.4 Challenges inThermoelectric Property Measurement 113</p> <p>6.4 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches 114</p> <p>6.5 Thermal Expansion and Its Role in Materials Selection 115</p> <p>6.6 Raw Material Cost Considerations 116</p> <p>6.7 Material Synthesis with Particular Relevance to Micro Energy Harvesting 116</p> <p>6.7.1 Electroplating, Electrophoresis, Dielectrophoresis 117</p> <p>6.7.2 Thin andThick Film Deposition 118</p> <p>6.8 Summary 118</p> <p>References 119</p> <p><b>7 Piezoelectric Materials for Energy Harvesting 123</b><br /><i>Emmanuel Defay, Sébastien Boisseau, and Ghislain Despesse</i></p> <p>7.1 Introduction 123</p> <p>7.2 What Is Piezoelectricity? 123</p> <p>7.3 Thermodynamics: the RightWay to Describe Piezoelectricity 125</p> <p>7.4 Material Figure of Merit: the Electromechanical Coupling Factor 126</p> <p>7.4.1 Special Considerations for Energy Harvesting 128</p> <p>7.5 Perovskite Materials 129</p> <p>7.5.1 Structure 129</p> <p> Ferroelectricity in Perovskites 129</p> <p> Piezoelectricity in Perovskites: Poling Required 131</p> <p>7.5.2 PZT Phase Diagram 131</p> <p>7.5.3 Ceramics 132</p> <p> Fabrication Process 132</p> <p> Typical Examples for Energy Harvesting 134</p> <p>7.5.4 Bulk Single Crystals 135</p> <p> Perovskites 135</p> <p> Energy Harvesting with Perovskites Bulk Single Crystals 135</p> <p>7.5.5 Polycrystalline PerovskitesThin Films 136</p> <p> Fabrication Processes 136</p> <p> Energy Harvesting with Poly-PZT Films 136</p> <p>7.5.6 Single-Crystal Thin Films 137</p> <p> Fabrication Process 137</p> <p> Energy Harvesting with SC Perovskite Films 137</p> <p>7.5.7 Lead-Free 138</p> <p> Energy Harvesting with Lead-Free Materials 139</p> <p>7.6 Wurtzites 139</p> <p>7.6.1 Structure 139</p> <p>7.6.2 Thin Films and Energy Harvesting 140</p> <p>7.6.3 Doping 141</p> <p>7.7 PVDFs 141</p> <p>7.7.1 Structure 141</p> <p>7.7.2 Synthesis 143</p> <p>7.7.3 Energy Harvesters with PVDF 143</p> <p>7.8 Nanomaterials 143</p> <p>7.9 Typical Values for the Main Piezoelectric Materials 144</p> <p>7.10 Summary 145</p> <p>References 145</p> <p><b>8 Electrostatic/Electret-Based Harvesters 149</b><br /><i>Yuji Suzuki</i></p> <p>8.1 Introduction 149</p> <p>8.2 Electrostatic/Electret Conversion Cycle 149</p> <p>8.3 Electrostatic/Electret Generator Models 151</p> <p>8.3.1 Configuration of Electrostatic/Electret Generator 151</p> <p>8.3.2 Electrode Design for Electrostatic/Electret Generator 153</p> <p>8.4 Electrostatic Generators 156</p> <p>8.4.1 Design and Fabrication Methods 156</p> <p>8.4.2 Generator Examples 158</p> <p>8.5 Electrets and Electret Generator Model 160</p> <p>8.5.1 Electrets 160</p> <p>8.5.2 Electret Materials 161</p> <p>8.5.3 Charging Technologies 162</p> <p>8.5.4 Electret Generator Model 163</p> <p>8.6 Electret Generators 168</p> <p>8.7 Summary 171</p> <p>References 171</p> <p><b>9 Electrodynamic Vibrational Energy Harvesting 175</b><br /><i>Shuo Cheng, Clemens Cepnik, and David P. Arnold</i></p> <p>9.1 Introduction 175</p> <p>9.2 Theoretical Background 178</p> <p>9.2.1 Energy Storage, Dissipation, and Conversion 178</p> <p>9.2.2 Electrodynamic Physics 179</p> <p> Faraday’s Law 179</p> <p> Lorentz Force 180</p> <p>9.2.3 Simplified Electrodynamic Equations 180</p> <p>9.3 Electrodynamic Harvester Architectures 181</p> <p>9.4 Modeling and Optimization 183</p> <p>9.4.1 Modeling 184</p> <p> Lumped Element Method 184</p> <p> Finite Element Method 188</p> <p> Combination of Lumped Element Model and Finite Element Model 189</p> <p>9.4.2 Optimization 190</p> <p>9.5 Design and Fabrication 191</p> <p>9.5.1 Design of Electrodynamic Harvesters 192</p> <p>9.5.2 Fabrication of Electrodynamic Harvesters 194</p> <p>9.6 Summary 196</p> <p>References 197</p> <p><b>10 Piezoelectric MEMS Energy Harvesters 201</b><br /><i>Jae Yeong Park</i></p> <p>10.1 Introduction 201</p> <p>10.1.1 The General Governing Equation 202</p> <p>10.1.2 Design Consideration 203</p> <p>10.2 Development of Piezoelectric MEMS Energy Harvesters 204</p> <p>10.2.1 Overview 204</p> <p>10.2.2 Fabrication Technologies 205</p> <p>10.2.3 Characterization 211</p> <p> Frequency Response 211</p> <p> Output Power of Piezoelectric MEMS Energy Harvesters 211</p> <p>10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters 213</p> <p>10.3.1 Output Power 213</p> <p>10.3.2 Frequency Response 215</p> <p>10.3.3 Piezoelectric Material 217</p> <p>10.4 Summary 218</p> <p>References 218</p> <p><b>11 Vibration Energy Harvesting fromWideband and Time-Varying Frequencies 223</b><br /><i>Lindsay M.Miller</i></p> <p>11.1 Introduction 223</p> <p>Contents XI</p> <p>11.1.1 Motivation 223</p> <p>11.1.2 Classification of Devices 223</p> <p>11.1.3 General Comments 225</p> <p>11.2 Active Schemes for Tunable Resonant Devices 225</p> <p>11.2.1 Stiffness Modification for Frequency Tuning 226</p> <p> Modify L 226</p> <p> Modify E 227</p> <p> Modify keff Using Axial Force 227</p> <p> Modify keff Using an External Spring 229</p> <p> Modify keff Using an Electrical External Spring 231</p> <p>11.2.2 Mass Modification for Frequency Tuning 232</p> <p>11.3 Passive Schemes for Tunable Resonant Devices 232</p> <p>11.3.1 Modify meff by Coupling Mass Position with Beam Excitation 233</p> <p>11.3.2 Modify keff by Coupling Axial Force with Centrifugal Force from Rotation 234</p> <p>11.3.3 Modify L by Using Centrifugal Force to Toggle Beam Clamp Position 234</p> <p>11.4 Wideband Devices 235</p> <p>11.4.1 Multimodal Designs 236</p> <p>11.4.2 Nonlinear Designs 237</p> <p>11.5 Summary and Future Research Directions 240</p> <p>11.5.1 Summary of Tunable andWideband Strategies 240</p> <p>11.5.2 Areas for Future Improvement in Tunable andWideband Strategies 241</p> <p> Tuning range and resolution 241</p> <p> Tuning sensitivity to driving vibrations 242</p> <p> System Size considerations 242</p> <p>References 243</p> <p><b>12 Micro Thermoelectric Generators 245</b><br /><i>Ingo Stark</i></p> <p>12.1 Introduction 245</p> <p>12.2 Classification of Micro Thermoelectric Generators 247</p> <p>12.3 General Considerations for MicroTEGs 250</p> <p>12.4 Micro Device Technologies 252</p> <p>12.4.1 Research and Development 253</p> <p> Electrodeposition 253</p> <p> Silicon-MEMS Technology 253</p> <p> CMOS-MEMS Technology 254</p> <p> Other 255</p> <p>12.4.2 Commercialized Micro Technologies 257</p> <p> Micropelt Technology 257</p> <p> Nextreme/Laird Technology 258</p> <p> Thermogen Technology 259</p> <p>12.5 Applications of Complete Systems 260</p> <p>12.5.1 Energy-Autonomous Sensor for Air Flow Temperature 261</p> <p>12.5.2 Wireless Pulse Oximeter SpO2 Sensor 261</p> <p>12.5.3 Intelligent Thermostatic Radiator Valve (iTRV) 262</p> <p>12.5.4 Wireless Power Generator Evaluation Kit 263</p> <p>12.5.5 Jacket-IntegratedWireless Temperature Sensor 263</p> <p>12.6 Summary 264</p> <p>References 265</p> <p><b>13 Micromachined Acoustic Energy Harvesters 271</b><br /><i>Stephen Horowitz and Mark Sheplak</i></p> <p>13.1 Introduction 271</p> <p>13.2 Historical Overview 272</p> <p>13.2.1 A Brief History 272</p> <p>13.2.2 Survey of Reported Performance 274</p> <p>13.3 Acoustics Background 276</p> <p>13.3.1 Principles and Concepts 276</p> <p>13.3.2 Fundamentals of Acoustics 276</p> <p>13.3.3 Challenges of Acoustic Energy Harvesting 277</p> <p>13.4 Electroacoustic Transduction 277</p> <p>13.4.1 Modeling 278</p> <p> Lumped Element Modeling (LEM) 278</p> <p> Equivalent Circuits 279</p> <p> Transduction 280</p> <p> Numerical Approaches 281</p> <p>13.4.2 Impedance Matching and Energy Focusing 281</p> <p>13.4.3 Transduction Methods 281</p> <p> Piezoelectric Transduction 281</p> <p> Electromagnetic Transduction 282</p> <p> Electrostatic Transduction 282</p> <p> Comparative Analysis 283</p> <p>13.4.4 Transduction Structures 284</p> <p> Structures for Impedance Matching 284</p> <p> Structures for Acoustical to Mechanical Transduction 286</p> <p>13.5 Fabrication Methods 288</p> <p>13.5.1 Materials 288</p> <p>13.5.2 Processes 289</p> <p>13.6 Testing and Characterization 289</p> <p>13.7 Summary 290</p> <p>Acknowledgments 290</p> <p>References 290</p> <p><b>14 Energy Harvesting from Fluid Flows 297</b><br /><i>Andrew S. Holmes</i></p> <p>14.1 Introduction 297</p> <p>14.2 Fundamental and Practical Limits 298</p> <p>Contents XIII</p> <p>14.3 MiniatureWind Turbines 301</p> <p>14.3.1 Scaling Effects in MiniatureWind Turbines 302</p> <p> Turbine Performance 302</p> <p> Generator and Bearing Losses 305</p> <p>14.4 Energy Harvesters Based on Flow Instability 306</p> <p>14.4.1 Vortex Shedding Devices 307</p> <p>14.4.2 Devices Based on Galloping and Flutter 310</p> <p>14.5 Performance Comparison 316</p> <p>14.6 Summary 317</p> <p>References 317</p> <p><b>15 Far-Field RF Energy Transfer and Harvesting 321</b><br /><i>Hubregt J. Visser and Ruud Vullers</i></p> <p>15.1 Introduction 321</p> <p>15.2 Nonradiative and Radiative (Far-Field) RF Energy Transfer 322</p> <p>15.2.1 Nonradiative Transfer 322</p> <p>15.2.2 Radiative Transfer 323</p> <p>15.2.3 Harvesting versus Transfer 324</p> <p>15.3 Receiving Rectifying Antenna 326</p> <p>15.3.1 Antenna–Rectifier Matching 326</p> <p> Voltage Boosting Technique 327</p> <p> Antenna Matched to Rectifier 328</p> <p> Antenna Not Matched to the Rectifier/Multiplier 329</p> <p> Consequences for the Rectifier and the Antenna Design 330</p> <p>15.4 Rectifier 330</p> <p>15.4.1 RF Input Impedance 331</p> <p>15.4.2 DC Output Voltage 332</p> <p>15.4.3 Antenna 334</p> <p> 50 Ω Antenna 335</p> <p> Complex Conjugately Matched Antenna 335</p> <p>15.4.4 Rectenna Results 336</p> <p>15.4.5 Voltage Up-Conversion 339</p> <p>15.5 Transmission 340</p> <p>15.6 Examples and Future Perspectives 341</p> <p>15.7 Conclusions 344</p> <p>References 344</p> <p><b>16 Microfabricated Microbial Fuel Cells 347</b><br /><i>Hao Ren and Junseok Chae</i></p> <p>16.1 Introduction 347</p> <p>16.2 Fundamentals of MEMS MFC 348</p> <p>16.2.1 Operation Principle 348</p> <p> Structure 348</p> <p> Materials 350</p> <p>16.2.2 Critical Parameters for Testing 350</p> <p> Anode and Cathode Potential, the Total Cell Potential 350</p> <p> Open Circuit Voltage (EOCV) 351</p> <p> Areal/Volumetric Current Density and Areal/Volumetric Power Density 351</p> <p> Internal Resistance and Areal Resistivity 352</p> <p> Efficiency 353</p> <p>16.3 Prior Art MEMS MFCS 354</p> <p>16.4 FutureWork 355</p> <p>16.4.1 Reducing Areal Resistivity 355</p> <p> Applying Materials with High Surface-Area-to-Volume Ratio 355</p> <p> Mitigating Oxygen Intrusion 358</p> <p>16.4.2 Autonomous Running 359</p> <p>16.4.3 Elucidating the EET Mechanism 359</p> <p>References 359</p> <p><b>17 Micro Photovoltaic Module Energy Harvesting 363</b><br /><i>Shunpu Li ,WensiWang, NingningWang, Cian O’Mathuna, and Saibal Roy</i></p> <p>17.1 Introduction 363</p> <p>17.1.1 p-n Junction and Crystalline Si Solar Cells 363</p> <p>17.1.2 Amorphous Silicon Solar Cell 366</p> <p>17.1.3 CIGS and CdTe Solar Cell Development 367</p> <p>17.1.4 Polymer Solar Cell 370</p> <p>17.1.5 Dye-Sensitized Solar Cells (DSSC) 373</p> <p>17.2 Monolithically Integration of Solar Cells with IC 375</p> <p>17.3 Low-Power Micro Photovoltaic Systems 376</p> <p>17.3.1 Maximum Power Point Tracking 376</p> <p>17.3.2 Output Voltage Regulation 379</p> <p>17.3.3 Indoor-Light-PoweredWireless Sensor Networks – a Case Study 380</p> <p>17.4 Summary 382</p> <p>References 383</p> <p><b>18 Power Conditioning for Energy Harvesting – Case Studies and Commercial Products 385</b><br /><i>Paul D.Mitcheson and Stephen G. Burrow</i></p> <p>18.1 Introduction 385</p> <p>18.2 Submilliwatt Electromagnetic Harvester Circuit Example 386</p> <p>18.3 Single-Supply Pre-biasing for Piezoelectric Harvesters 388</p> <p>18.4 Ultra-Low-Power Rectifier and MPPT for Thermoelectric Harvesters 392</p> <p>18.5 Frequency Tuning of an Electromagnetic Harvester 393</p> <p>18.6 Examples of Converters for Ultra-Low-Output Transducers 396</p> <p>18.7 Power Processing for Electrostatic Devices 397</p> <p>18.8 Commercial Products 397</p> <p>18.9 Conclusions 398</p> <p>References 399</p> <p><b>19 Micro Energy Storage: Considerations 401</b><br /><i>Dan Steingart</i></p> <p>19.1 Introduction 401</p> <p>19.2 Boundary Conditions 401</p> <p>19.2.1 Microbatteries 404</p> <p>19.2.2 Supercapacitors 405</p> <p>19.3 Primary Energy Storage Approaches 405</p> <p>19.3.1 Volume-Constrained versus Conformally Demanding Approaches 408</p> <p>19.3.2 Caveat Emptor 409</p> <p>19.3.3 FutureWork and First-Order Problems 409</p> <p>References 410</p> <p><b>20 Thermoelectric Energy Harvesting in Aircraft 415</b><br /><i>Thomas Becker, Alexandros Elefsiniotis, andMichail E. Kiziroglou</i></p> <p>20.1 Introduction 415</p> <p>20.2 Aircraft Standardization 416</p> <p>20.3 AutonomousWireless Sensor Systems 417</p> <p>20.4 Thermoelectric Energy Harvesting in Aircraft 419</p> <p>20.4.1 Efficiency of a Thermoelectric Energy Harvesting Device 420</p> <p>20.4.2 StaticThermoelectric Energy Harvester 421</p> <p>20.4.3 Dynamic Thermoelectric Energy Harvester 423</p> <p>20.5 Design Considerations 425</p> <p>20.6 Applications 427</p> <p>20.6.1 StaticThermoelectric Harvester for Aircraft Seat Sensors 427</p> <p>20.6.2 The Dynamic Thermoelectric Harvesting Prototype 428</p> <p>20.6.3 Heat Storage Thermoelectric Harvester for Aircraft Strain Sensors 428</p> <p>20.6.4 Outlook 430</p> <p>20.7 Conclusions 432</p> <p>References 433</p> <p><b>21 Powering Pacemakers with Heartbeat Vibrations 435</b><br /><i>M. Amin Karami and Daniel J. Inman</i></p> <p>21.1 Introduction 435</p> <p>21.2 Design Specifications 436</p> <p>21.3 Estimation of Heartbeat Oscillations 437</p> <p>21.4 Linear Energy Harvesters 438</p> <p>21.5 Monostable Nonlinear Harvesters 441</p> <p>21.6 Bistable Harvesters 446</p> <p>21.7 Experimental Investigations 450</p> <p>21.8 Heart Motion Characterization 450</p> <p>21.9 Conclusions 456</p> <p>Acknowledgment 457</p> <p>References 457</p> <p>Index 459</p>
<p>"The book is loaded with ideas using a wide range of different energy harvesting methods with detailed explanations of the principles of each method and new materials being used to take advantage of the surrounding energy...Engineers interested in energy harvest-ing will find this book to be a very good resource for learning about new methods for parasitically powering low power electronic devices." (<b>IEEE Electrical Insulation 17/03/2017<b>)</p>
<b>Danick Briand</b> obtained his PhD degree in the field of micro-chemical systems from the Institute of Microtechnology (IMT), University of Neuchatel, Switzerland, in 2001. He is currently a team leader at EPFL IMT Samlab in the field of EnviroMEMS, Energy and Enviromental MEMS. He has been awarded the Eurosensors Fellowship in 2010. He has been author or co-author on more than 150 papers published in scientific journals and conference proceedings. He is a member of several scientific and technical conference committees in the field of sensors and MEMS, participating also in the organization of workshop and conferences. His research interests in the field of sensors and microsystems include environmental and energy MEMS.<br /><br /><b>Eric M. Yeatman</b> has been a member of academic staff in Imperial College London since 1989, and Professor of Micro-Engineering since 2005. He is Deputy Head of the Department of Electrical and Electronic Engineering, and has published more than 160 papers and patents on optical devices and materials, and micro-electro-mechanical systems. In 2011 he was awarded the Royal Academy of Engineering Silver Medal. He has been principal or co-investigator on more than 20 research projects, and has acted as a design consultant for several international companies. His current research interests are in radio frequency and photonic MEMS devices, energy sources for wireless devices, and sensor networks.
Micro energy harvesting is the conversion of ambient energy, such as body warmth or machine vibration, into electric energy to locally power embedded, small-scale devices such as wireless personal health-monitoring systems or environmental sensors, making them independent of rapidly exhausted batteries or location restricted power grids. Enabling this unprecedented level of autonomy, particularly at the micro-scale, requires innovation in harvesting devices, power management circuits, and complete system design, in order to ensure the desired functionality and reliability of the respective device even if the supply of ambient energy varies with time.<br /><br />This book addresses a wide range of aspects of energy harvesting at the micro-scale, with a focus on miniaturized and micro-fabricated devices. It provides an overview of the field by compiling knowledge on design, materials development, device realization and aspects of system integration. The book covers emerging technologies such as nanotechnology-based materials and harvesters, as well as applications in power management, energy storage, medical applications and low-power system electronics. In addition, it surveys the energy harvesting principles being developed at the micro-scale based on chemical, thermal, mechanical as well as hybrid and nanotechnology approaches.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
105,99 €