Details

Micro- and Nanomanipulation Tools


Micro- and Nanomanipulation Tools


Advanced Micro and Nanosystems 1. Aufl.

von: Yu Sun, Xinyu Liu, Oliver Brand, Gary K. Fedder, Christofer Hierold, Jan G. Korvink, Osamu Tabata

156,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.08.2015
ISBN/EAN: 9783527690220
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. <br> The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic manipulation for biophysical applications are also covered. In the second part of the book, the main focus is on microrobotic tools. Alongside magnetic micromanipulators, bacteria and untethered, chapters also discuss silicon nano- and integrated optical tweezers. The book closes with a number of chapters on nanomanipulation using AFM and nanocoils under optical and electron microscopes. Exciting images from the tiniest robotic systems at the nano-level are used to illustrate the examples throughout the work.<br> A must-have book for readers with a background ranging from engineering to nanotechnology.
<p>About the Editors XVII</p> <p>Series Editors Preface XIX</p> <p>Preface XXI</p> <p>List of Contributors XXV</p> <p><b>1 High-Speed Microfluidic Manipulation of Cells 1</b><br /><i>Aram J. Chung and Soojung Claire Hur</i></p> <p>1.1 Introduction 1</p> <p>1.2 Direct Cell Manipulation 3</p> <p>1.2.1 Electrical Cell Manipulation 3</p> <p>1.2.2 Magnetic Cell Manipulation 4</p> <p>1.2.3 Optical Cell Manipulation 4</p> <p>1.2.4 Mechanical Cell Manipulation 5</p> <p>1.2.4.1 Constriction-Based Cell Manipulation 5</p> <p>1.2.4.2 Shear-Induced Cell Manipulation 7</p> <p>1.3 Indirect Cell Manipulation 9</p> <p>1.3.1 Cell Separation 9</p> <p>1.3.1.1 Hydrodynamic (Passive) Cell Separation 13</p> <p>1.3.1.2 Nonhydrodynamic (Active) Particle Separation 18</p> <p>1.3.2 Cell Alignment (Focusing) 25</p> <p>1.3.2.1 Cell Alignment (Focusing) for Flow Cytometry 28</p> <p>1.3.2.2 Cell Solution Exchange 29</p> <p>1.4 Summary 31</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>2 Micro and Nano Manipulation and Assembly by Optically Induced Electrokinetics 41</b><br /><i>Fei Fei Wang, Sam Lai, Lianqing Liu, Gwo-Bin Lee, and Wen Jung Li</i></p> <p>2.1 Introduction 41</p> <p>2.2 Optically Induced Electrokinetic (OEK) Forces 45</p> <p>2.2.1 Classical Electrokinetic Forces 45</p> <p>2.2.1.1 Dielectrophoresis (DEP) 45</p> <p>2.2.1.2 AC Electroosmosis (ACEO) 46</p> <p>2.2.1.3 Electrothermal Effects (ET) 47</p> <p>2.2.1.4 Buoyancy Effects 47</p> <p>2.2.1.5 Brownian Motion 47</p> <p>2.2.2 Optically Induced Electrokinetic Forces 48</p> <p>2.2.2.1 OEK Chip: Operational Principle and Design 48</p> <p>2.2.2.2 Spectrum-Dependent ODEP Force 53</p> <p>2.2.2.3 Waveform-Dependent ODEP Force 54</p> <p>2.3 OEK-Based Manipulation and Assembly 55</p> <p>2.3.1 Manipulation and Assembly of Nonbiological Materials 55</p> <p>2.3.2 Biological Entities: Cells and Molecules 60</p> <p>2.3.3 Manipulation of Fluidic Thin Films 63</p> <p>2.4 Summary 65</p> <p>References 67</p> <p><b>3 Manipulation of DNA by Complex Confinement Using Nanofluidic Slits 75</b><br /><i>Elizabeth A. Strychalski and Samuel M. Stavis</i></p> <p>3.1 Introduction 75</p> <p>3.2 Slitlike Confinement of DNA 78</p> <p>3.3 Differential Slitlike Confinement of DNA 82</p> <p>3.4 Experimental Studies 83</p> <p>3.5 Design of Complex Slitlike Devices 86</p> <p>3.6 Fabrication of Complex Slitlike Devices 88</p> <p>3.7 Experimental Conditions 90</p> <p>3.8 Conclusion 92</p> <p>Disclaimer 93</p> <p>References 93</p> <p><b>4 Microfluidic Approaches for Manipulation and Assembly of One-Dimensional Nanomaterials 97</b><br /><i>Shaolin Zhou, Qiuquan Guo, and Jun Yang</i></p> <p>4.1 Introduction 97</p> <p>4.2 Microfluidic Assembly 99</p> <p>4.2.1 Hydrodynamic Focusing 100</p> <p>4.2.1.1 Concept and Mechanism 100</p> <p>4.2.1.2 2D and 3D Hierarchy 101</p> <p>4.2.1.3 Symmetrical and Asymmetrical Behavior 103</p> <p>4.2.2 HF-Based NWAssembly 104</p> <p>4.2.2.1 The Principle 104</p> <p>4.2.2.2 Device Design and Fabrication 105</p> <p>4.2.2.3 NWAssembly by Symmetrical Hydrodynamic Focusing 107</p> <p>4.2.2.4 NWAssembly by Asymmetrical Hydrodynamic Focusing 108</p> <p>4.3 Summary 112</p> <p>References 113</p> <p><b>5 Optically Assisted and Dielectrophoretical Manipulation of Cells and Molecules on Microfluidic Platforms 119</b><br /><i>Yen-Heng Lin and Gwo-Bin Lee</i></p> <p>5.1 Introduction 119</p> <p>5.2 Operating Principle and Fundamental Physics of the ODEP Platform 122</p> <p>5.2.1 ODEP Force 122</p> <p>5.2.2 Optically Induced ACEO Flow 123</p> <p>5.2.3 Electrothermal (ET) Force 125</p> <p>5.2.4 Experimental Setup of an ODEP Platform 126</p> <p>5.2.4.1 Light Source 126</p> <p>5.2.4.2 Materials of the Photoconductive Layer 127</p> <p>5.3 Applications of the ODEP Platform 129</p> <p>5.3.1 Cell Manipulation 129</p> <p>5.3.2 Cell Separation 130</p> <p>5.3.3 Cell Rotation 130</p> <p>5.3.4 Cell Electroporation 131</p> <p>5.3.5 Cell Lysis 131</p> <p>5.3.6 Manipulation of Micro- or Nanoscale Objects 132</p> <p>5.3.7 Manipulation of Molecules 134</p> <p>5.3.8 Droplet Manipulation 135</p> <p>5.4 Conclusion 136</p> <p>References 137</p> <p><b>6 On-Chip Microrobot Driven by Permanent Magnets for Biomedical Applications 141</b><br /><i>Masaya Hagiwara, Tomohiro Kawahara, and Fumihito Arai</i></p> <p>6.1 On-Chip Microrobot 141</p> <p>6.2 Characteristics of Microrobot Actuated by Permanent Magnet 142</p> <p>6.3 Friction Reduction for On-Chip Robot 144</p> <p>6.3.1 Friction Reduction by Drive Unit 144</p> <p>6.3.2 Friction Reduction by Ultrasonic Vibrations 146</p> <p>6.3.3 Experimental Evaluations of MMT 146</p> <p>6.3.3.1 Positioning Accuracy Evaluation 146</p> <p>6.3.3.2 Output Force Evaluation 149</p> <p>6.4 Fluid Friction Reduction for On-Chip Robot 150</p> <p>6.4.1 Fluid Friction Reduction by Riblet Surface 150</p> <p>6.4.2 Principle of Fluid Friction Reduction Using Riblet Surface 150</p> <p>6.4.3 Optimal Design of Riblet to Minimize the Fluid Friction 152</p> <p>6.4.4 Fluid Force Analysis on MMT with Riblet Surface 153</p> <p>6.4.5 Fabrication Process of MMT with Riblet Surface Using Si–Ni Composite Structure 156</p> <p>6.4.6 Evaluation of Si–Ni Composite MMT with Optimal Riblet 158</p> <p>6.5 Applications of On-Chip Robot to Cell Manipulations 160</p> <p>6.5.1 Oocyte Enucleation 160</p> <p>6.5.2 Multichannel Sorting 162</p> <p>6.5.3 Evaluation of Effect of Mechanical Stimulation on Microorganisms 162</p> <p>6.6 Summary 165</p> <p>References 166</p> <p><b>7 Silicon Nanotweezers for Molecules and Cells Manipulation and Characterization 169</b><br /><i>Dominique Collard, Nicolas Lafitte, Hervé Guillou, Momoko Kumemura, Laurent Jalabert, and Hiroyuki Fujita</i></p> <p>7.1 Introduction 169</p> <p>7.2 SNT Operation and Design 170</p> <p>7.2.1 Design 170</p> <p>7.2.1.1 Electrostatic Actuation 171</p> <p>7.2.1.2 Mechanical Structure 171</p> <p>7.2.1.3 Capacitive Sensor 173</p> <p>7.2.2 Operation 174</p> <p>7.2.2.1 Instrumentation 174</p> <p>7.2.2.2 Characterization 175</p> <p>7.2.2.3 Modeling 176</p> <p>7.3 SNT Process 177</p> <p>7.3.1 MEMS Fabrication versus the Design Constrains and User Applications 177</p> <p>7.3.2 Sharp Tip Single Actuator SNT Process Flow 178</p> <p>7.3.2.1 Nitride Deposition 178</p> <p>7.3.2.2 Defining Crystallographic Alignment Structures 178</p> <p>7.3.2.3 Photolithography (Level 1) – Nitride Patterning for LOCOS 179</p> <p>7.3.2.4 Photolithography (Level 2) – Sensors and Actuators 179</p> <p>7.3.2.5 DRIE Front Side 180</p> <p>7.3.2.6 Sharp Tip Fabrication and Gap Control 181</p> <p>7.3.2.7 Photolithography (Level 3) and Rearside DRIE 182</p> <p>7.3.2.8 Releasing in Vapor HF 182</p> <p>7.3.3 Concluding Remarks on the Silicon Nanotweezers Microfabrication 183</p> <p>7.4 DNA Trapping and Enzymatic Reaction Monitoring 183</p> <p>7.5 Cell Trapping and Characterization 186</p> <p>7.5.1 Introducing Remarks 186</p> <p>7.5.2 Specific Issues 187</p> <p>7.5.3 Design of SNT 187</p> <p>7.5.4 Instrumentation 189</p> <p>7.5.5 Experimental Platform 190</p> <p>7.5.6 Cells in Suspension 190</p> <p>7.5.7 Spread Cells 192</p> <p>7.5.8 Cell Differentiation 193</p> <p>7.5.9 Concluding Remarks for Cell Characterization with SNT 194</p> <p>7.6 General Concluding Remarks and Perspectives 194</p> <p>Acknowledgments 196</p> <p>References 196</p> <p><b>8 Miniaturized Untethered Tools for Surgery 201</b><br /><i>Evin Gultepe, Qianru Jin, Andrew Choi, Alex Abramson, and David H. Gracias</i></p> <p>8.1 Introduction 201</p> <p>8.2 Macroscale Untethered Surgical Tools 203</p> <p>8.2.1 Localization and Locomotion without Tethers 204</p> <p>8.2.1.1 Localization 204</p> <p>8.2.1.2 Locomotion 206</p> <p>8.2.2 Powering and Activating a Small Machine 207</p> <p>8.2.2.1 Stored Chemical Energy 207</p> <p>8.2.2.2 Stored Mechanical Energy 208</p> <p>8.2.2.3 External Magnetic Field 208</p> <p>8.2.2.4 Other Sources of Energy 209</p> <p>8.3 Microscale Untethered Surgical Tools 210</p> <p>8.3.1 Applications 210</p> <p>8.3.1.1 Angioplasty 210</p> <p>8.3.1.2 SurgicalWound Closure 212</p> <p>8.3.1.3 Biopsy 213</p> <p>8.3.1.4 Micromanipulation 214</p> <p>8.3.2 Locomotion 214</p> <p>8.3.2.1 Magnetic Force 215</p> <p>8.3.2.2 Electromechanical 217</p> <p>8.3.2.3 Optical Tweezers 218</p> <p>8.3.2.4 Biologic Tissue Powered 219</p> <p>8.4 Nanoscale Untethered Surgical Tools 219</p> <p>8.4.1 Fuel-Driven Motion 222</p> <p>8.4.2 Magnetic Field-Driven Motion 223</p> <p>8.4.3 AcousticWave-Driven Motion 225</p> <p>8.4.4 Light-Driven Motion 226</p> <p>8.4.5 Nano-Bio Hybrid Systems 227</p> <p>8.4.6 Artificial Molecular Machines 227</p> <p>8.5 Conclusion 228</p> <p>Acknowledgments 229</p> <p>References 229</p> <p><b>9 Single-Chip Scanning ProbeMicroscopes 235</b><br /><i>Neil Sarkar and Raafat R. Mansour</i></p> <p>9.1 Scanning Probe Microscopy 237</p> <p>9.2 The Role of MEMS in SPM 239</p> <p>9.3 CMOS–MEMS Manufacturing Processes Applied to sc-SPMs 240</p> <p>9.4 Modeling and Design of sc-SPMs 242</p> <p>9.4.1 Electrothermal Model of Self-Heated Resistor 245</p> <p>9.4.2 Electrothermal Model of Vertical Actuator 247</p> <p>9.4.3 Electro-Thermo-Mechanical Model 248</p> <p>9.5 Imaging Results 250</p> <p>9.6 Conclusion 254</p> <p>References 254</p> <p><b>10 Untethered Magnetic Micromanipulation 259</b><br /><i>Eric Diller and Metin Sitti</i></p> <p>10.1 Physics of Micromanipulation 260</p> <p>10.2 Sliding Friction and Surface Adhesion 260</p> <p>10.2.1 Adhesion 260</p> <p>10.2.1.1 van der Waals Forces 262</p> <p>10.2.2 Sliding Friction 263</p> <p>10.3 Fluid Dynamics Effects 264</p> <p>10.3.1 Viscous Drag on a Sphere 265</p> <p>10.4 Magnetic Microrobot Actuation 266</p> <p>10.5 Locomotion Techniques 266</p> <p>10.5.1 Motion in Two Dimensions 267</p> <p>10.5.2 Motion in Three Dimensions 267</p> <p>10.5.3 Magnetic Actuation Systems 268</p> <p>10.5.4 Special Coil Arrangements 269</p> <p>10.6 Manipulation Techniques 271</p> <p>10.6.1 Contact Micromanipulation 271</p> <p>10.6.1.1 Direct Pushing 271</p> <p>10.6.1.2 Grasping Manipulation 274</p> <p>10.6.2 Noncontact Manipulation 275</p> <p>10.6.2.1 Translation 276</p> <p>10.6.2.2 Rotation 277</p> <p>10.6.2.3 Parallel Manipulation 279</p> <p>10.6.3 Mobile Microrobotics Competition 279</p> <p>10.7 Conclusions and Prospects 280</p> <p>References 281</p> <p><b>11 Microrobotic Tools for Plant Biology 283</b><br /><i>Dimitrios Felekis, Hannes Vogler, Ueli Grossniklaus, and Bradley J. Nelson</i></p> <p>11.1 Why Do We Need a Mechanical Understanding of the Plant Growth Mechanism? 283</p> <p>11.2 Microrobotic Platforms for Plant Mechanics 285</p> <p>11.2.1 The Cellular Force Microscope 286</p> <p>11.2.1.1 Force Sensing Technology 286</p> <p>11.2.1.2 Positioning System 288</p> <p>11.2.1.3 Imaging System and Interface 289</p> <p>11.2.2 Real-Time CFM 290</p> <p>11.2.2.1 Positioning System 290</p> <p>11.2.2.2 Data Acquisition 291</p> <p>11.2.2.3 Automated Cell Selection and Positioning 292</p> <p>11.3 Biomechanical and Morphological Characterization of Living Cells 294</p> <p>11.3.1 Cell Wall Apparent Stiffness 295</p> <p>11.3.2 3D Stiffness and Topography Maps 299</p> <p>11.3.3 Real-Time Intracellular Imaging During Mechanical Stimulation 301</p> <p>11.4 Conclusions 302</p> <p>References 303</p> <p><b>12 Magnetotactic Bacteria for the Manipulation and Transport of Micro and Nanometer-Sized Objects 307</b><br /><i>Sylvain Martel</i></p> <p>12.1 Introduction 307</p> <p>12.2 Magnetotactic Bacteria 308</p> <p>12.3 Component Sizes and Related Manipulation Approaches 310</p> <p>12.3.1 Transport and Manipulation of MS Components 311</p> <p>12.3.2 Transport and Manipulation of AE Components 314</p> <p>12.3.3 Transport and Manipulation of ML Components 314</p> <p>12.4 Conclusions and Discussion 317</p> <p>References 318</p> <p><b>13 Stiffness and Kinematic Analysis of a Novel Compliant Parallel Micromanipulator for Biomedical Manipulation 319</b><br /><i>Xiao Xiao and Yangmin Li</i></p> <p>13.1 Introduction 319</p> <p>13.2 Design of the Micromanipulator 320</p> <p>13.3 Stiffness Modeling of the Micromanipulator 322</p> <p>13.3.1 Stiffness Matrix of the Flexure Element 323</p> <p>13.3.2 Stiffness Modeling of the Compliant P Module 324</p> <p>13.3.3 Stiffness Modeling of the Compliant 4S Module 325</p> <p>13.3.4 Stiffness Modeling of the Compliant P(4S) Chain 327</p> <p>13.3.5 Stiffness Modeling of the Complete Mechanism 327</p> <p>13.3.6 Model Validation Based on FEA 329</p> <p>13.4 Kinematics Modeling of the Micromanipulator 333</p> <p>13.5 Conclusion 336</p> <p>References 337</p> <p><b>14 Robotic Micromanipulation of Cells and Small Organisms 339</b><br /><i>Xianke Dong,Wes Johnson, Yu Sun, and Xinyu Liu</i></p> <p>14.1 Introduction 339</p> <p>14.2 Robotic Microinjection of Cells and Small Organisms 340</p> <p>14.2.1 Robotic Cell Injection 340</p> <p>14.2.1.1 Cell Immobilization Methods 343</p> <p>14.2.1.2 Image Processing and Computer Vision Techniques 344</p> <p>14.2.1.3 Control System Design 345</p> <p>14.2.1.4 Force Sensing and Control 347</p> <p>14.2.1.5 Experimental Validation of Injection Success and Survival Rates 349</p> <p>14.2.1.6 Parallel Cell Injection 350</p> <p>14.2.2 Robotic Injection of Caenorhabditis elegans 350</p> <p>14.3 Robotic Transfer of Biosamples 351</p> <p>14.3.1 Pipette-Based Cell Transfer 351</p> <p>14.3.2 Microgripper/Microhand-Based Cell Transfer 352</p> <p>14.3.3 Microrobot-Based Cell Transfer 354</p> <p>14.3.4 Laser Trapping-Based Cell Transfer 355</p> <p>14.4 Robot-Assisted Mechanical Characterization of Cells 357</p> <p>14.4.1 MEMS-Based Cell Characterization 357</p> <p>14.4.2 Laser Trapping-Based Cell Characterization 358</p> <p>14.4.3 Atomic Force Microscopy (AFM)-Based Cell Characterization 359</p> <p>14.4.4 Micropipette Aspiration 359</p> <p>14.5 Conclusion 360</p> <p>References 361</p> <p><b>15 Industrial Tools for Micromanipulation 369</b><br /><i>Michaël Gauthier, Cédric Clévy, David Hériban, and Pasi Kallio</i></p> <p>15.1 Introduction 369</p> <p>15.2 Microrobotics for Scientific Instrumentation 371</p> <p>15.2.1 MEMS Mechanical Testing 371</p> <p>15.2.2 Mechanical Testing of Fibrous Micro- and NanoScale Materials 372</p> <p>15.2.3 Mobile Microrobots for Testing 375</p> <p>15.3 Microrobotics for Microassembly 376</p> <p>15.3.1 Microassembly of Micromechanisms 377</p> <p>15.3.1.1 Microgrippers 379</p> <p>15.3.1.2 High-Resolution Vision System 380</p> <p>15.3.1.3 Integrated Assembly Platform 381</p> <p>15.3.2 Microassembly in MEMS and MOEMS Industries 382</p> <p>15.3.2.1 Thin Die Packaging 383</p> <p>15.3.2.2 Flexible MOEMS Extreme Assembly 384</p> <p>15.4 Future Challenges 387</p> <p>15.4.1 Current Opportunities 387</p> <p>15.4.2 Future Opportunity 388</p> <p>15.4.3 Barriers to Market 388</p> <p>15.4.4 Key Market Data 389</p> <p>References 389</p> <p><b>16 Robot-Aided Micromanipulation of Biological Cells with Integrated Optical Tweezers and Microfluidic Chip 393</b><br /><i>Xiaolin Wang, Shuxun Chen, and Dong Sun</i></p> <p>16.1 Introduction 393</p> <p>16.2 Cell Micromanipulation System with Optical Tweezers and Microfluidic Chip 395</p> <p>16.3 Enhanced Cell Sorting Strategy 396</p> <p>16.3.1 Operation Principle 396</p> <p>16.3.2 Microfluidic Chip Design 397</p> <p>16.3.3 Cell Transportation by Optical Tweezers 398</p> <p>16.3.4 Experimental Results and Discussion 400</p> <p>16.3.4.1 Isolation of Yeast Cells 400</p> <p>16.3.4.2 Isolation of hESCs 402</p> <p>16.3.4.3 Discussion 403</p> <p>16.4 Novel Cell Manipulation Tool 404</p> <p>16.4.1 Operation Principle 404</p> <p>16.4.2 Microwell Array-Based Microfluidic Chip Design 405</p> <p>16.4.3 Chip Preparation and Fluid Operation 406</p> <p>16.4.4 Experimental Results and Discussion 407</p> <p>16.4.4.1 Cell Levitation from Microwell 407</p> <p>16.4.4.2 Cell Assembly by Multiple Optical Traps 408</p> <p>16.4.4.3 Automated Cell Transportation and Deposition 408</p> <p>16.4.4.4 Isolation and Deposition on hESCs and Yeast Cells 410</p> <p>16.4.4.5 Quantification of the Experimental Results 411</p> <p>16.4.4.6 Discussion 413</p> <p>16.5 Conclusion 414</p> <p>References 415</p> <p><b>17 Investigating the Molecular Specific Interactions on Cell Surface Using Atomic Force Microscopy 417</b><br /><i>Mi Li, Lianqing Liu, Ning Xi, and Yuechao Wang</i></p> <p>17.1 Background 417</p> <p>17.2 Single-Molecule Force Spectroscopy 420</p> <p>17.3 Force Spectroscopy of Molecular Interactions on Tumor Cells from Patients 423</p> <p>17.4 Mapping the Distribution of Membrane Proteins on Tumor Cells 430</p> <p>17.5 Summary 435</p> <p>Acknowledgments 436</p> <p>References 436</p> <p><b>18 Flexible Robotic AFM-Based Systemfor Manipulation and Characterization of Micro- and Nano-Objects 441</b><br /><i>Hui Xie and Stéphane Régnier</i></p> <p>18.1 AFM-Based Flexible Robotic System for Micro- or Nanomanipulation 444</p> <p>18.1.1 The AFM-Based Flexible Robotic System 444</p> <p>18.1.1.1 The Flexible Robotic Setup 444</p> <p>18.1.1.2 Force Sensing during Pick-and-Place 444</p> <p>18.1.2 Experimental Results 446</p> <p>18.1.2.1 3D Micromanipulation Robotic System 446</p> <p>18.1.2.2 3D Nanomanipulation Robotic System 449</p> <p>18.1.3 Conclusion 453</p> <p>18.2 In situ Peeling of 1D Nanostructures Using a Dual-Probe Nanotweezer 453</p> <p>18.2.1 Methods 453</p> <p>18.2.2 Results and Discussion 457</p> <p>18.2.3 Conclusion 457</p> <p>18.3 In situ Quantification of Living Cell Adhesion Forces: Single-Cell Force Spectroscopy with a Nanotweezer 459</p> <p>18.3.1 Materials and Methods 459</p> <p>18.3.1.1 Nanotweezer Setup 459</p> <p>18.3.1.2 Cell Cultivation and Sample Preparation 461</p> <p>18.3.1.3 Nanotweezer Preparation 461</p> <p>18.3.2 Protocol of the Adhesion Force Measurement 462</p> <p>18.3.3 Clamping Detection during Cell Grasping 464</p> <p>18.3.3.1 Cell Release 466</p> <p>18.3.4 Experimental Results 466</p> <p>18.3.4.1 Cell–Substrate Adhesion Force Measurement 466</p> <p>18.3.4.2 Cell–Cell Adhesion Force Measurement 469</p> <p>18.3.5 Discussion 470</p> <p>18.3.6 Conclusion 471</p> <p>18.4 Conclusion and Future Directions 471</p> <p>References 472</p> <p><b>19 Nanorobotic Manipulation of Helical Nanostructures 477</b><br /><i>Lixin Dong, Li Zhang, Miao Yu, and Bradley J. Nelson</i></p> <p>19.1 Introduction 477</p> <p>19.2 Nanorobotic Manipulation Tools and Processes 479</p> <p>19.2.1 Nanomanipulators and Tools 479</p> <p>19.2.2 Nanorobotic Manipulation Processes 480</p> <p>19.3 Characterization of Helical Nanobelts 482</p> <p>19.3.1 Axial Pulling of Rolled-Up Helical Nanostructures 483</p> <p>19.3.2 Lateral Bending and Local Buckling of a Rolled-Up SiGe/Si Microtube 483</p> <p>19.3.3 Axial Buckling of Rolled-Up SiGe/Si Microtubes 485</p> <p>19.3.4 Tangential Unrolling of a Rolled-Up Si/Cr Ring 488</p> <p>19.3.5 Radial Stretching of a Si/Cr Nanoring 489</p> <p>19.4 Applications 492</p> <p>19.4.1 Typical Configurations of NEMS 492</p> <p>19.4.2 Motion Converters 492</p> <p>19.4.2.1 Design of Motion Converters 494</p> <p>19.4.2.2 Displacement Conversion 495</p> <p>19.4.2.3 Load Conversion 497</p> <p>19.4.2.4 Application in 3D Microscopy 498</p> <p>19.5 Summary 500</p> <p>References 501</p> <p><b>20 Automated Micro- and Nanohandling Inside the Scanning Electron Microscope 505</b><br /><i>Malte Bartenwerfer, Sören Zimmermann, Tobias Tiemerding, Manuel Mikczinski, and Sergej Fatikow</i></p> <p>20.1 Introduction and Motivation 505</p> <p>20.1.1 SEM-Based Manipulation 506</p> <p>20.2 State of the Art 508</p> <p>20.2.1 The Scanning Electron Microscope as Fundamental Tool 508</p> <p>20.2.2 Conditions for Automation on the Micro- and Nanoscales 509</p> <p>20.3 Automation Environment 511</p> <p>20.3.1 Robotic Setup 511</p> <p>20.3.1.1 Dedicated Setups 511</p> <p>20.3.1.2 Modular Setups 512</p> <p>20.3.2 Control Environment 514</p> <p>20.3.2.1 OFFIS Automation Framework 514</p> <p>20.4 Case Studies 517</p> <p>20.4.1 Manipulation and Automation Overview 517</p> <p>20.4.1.1 High-Speed Object Tracking Inside the SEM 519</p> <p>20.4.2 Assembly of Building Blocks: NanoBits 521</p> <p>20.4.2.1 Assembly Environment and Tools 521</p> <p>20.4.3 Handling of Colloidal Nanoparticles 524</p> <p>20.4.4 Measuring the Transverse Fiber Compression 526</p> <p>20.5 Outlook 530</p> <p>20.5.1 Future Developments 530</p> <p>20.5.2 Software and Automation 530</p> <p>Acknowledgments 531</p> <p>References 531</p> <p><b>21 Manipulation of Biological Cells under ESEM and Microfluidic Systems 537</b><br /><i>Toshio Fukuda, Masahiro Nakajima, Masaru Takeuchi, and Mohd Ridzuan Ahmad</i></p> <p>21.1 Introduction 537</p> <p>21.2 ESEM-Nanomanipulation System 538</p> <p>21.3 ESEM Observation of Single Cells 540</p> <p>21.4 Manipulation of Biological Cells under ESEM 541</p> <p>21.4.1 Cell Viability Detection Using Dual Nanoprobe 541</p> <p>21.4.2 Preparation of Dead Cell Colonies ofW303 Cells 543</p> <p>21.4.3 Fabrication of the Dual Nanoprobe 544</p> <p>21.4.4 Electrical Measurement Setup 545</p> <p>21.4.5 Experimental Results and Discussions 546</p> <p>21.4.5.1 Single-Cell Viability Assessment by Electrical Measurement under HVMode 547</p> <p>21.4.5.2 Single-Cell Viability Assessment by Electrical Measurement under ESEMMode 548</p> <p>21.5 Manipulation of Biological Cells under Microfluidics 549</p> <p>21.5.1 Nanoliters Discharge/Suction by Thermoresponsive Polymer Actuated Probe 549</p> <p>21.5.2 Fabrication of TPA Probe 550</p> <p>21.5.3 Solution Discharge by TPA Probe 552</p> <p>21.5.4 Suction and Discharge of Micro-Object by TPA Probe Inside Semiclosed Microchip 553</p> <p>21.5.4.1 Semiclosed Microchip 553</p> <p>21.5.4.2 Suction and Discharge of Microbead by TPA Probe Inside Semiclosed Microchip 554</p> <p>21.5.4.3 Cell Suction by TPA Probe Inside Semiclosed Microchip 556</p> <p>21.6 Conclusion 556</p> <p>References 557</p> <p>Index 559</p>
Yu Sun is professor in the Department of Mechanical and Industrial Engineering at the University of Toronto (Canada), with joint appointments in the Institute of Biomaterials and Biomedical Engineering and the Department of Electrical and Computer Engineering. After obtaining his PhD in mechanical engineering from the University of Minnesota, Yu Sun stayed for a postdoctoral research at the Swiss Federal Institute of Technology (ETH-Zurich). Currently, he is a McLean Senior Faculty Fellow at the University of Toronto and the Canada Research Chair in Micro and Nano Engineering Systems.<br> <br> Xinyu Liu is assistant professor in the Department of Mechanical Engineering at the McGill University in Montreal (Canada). After obtaining his PhD from the University of Toronto, he was post-doc at Harvard university before taking his current position at the McGill University. His research interests are robotics, MEMS/NEMS, and applied microfluidics, also referred to as lab-on-a-chip technologies, with a strong focus on bio-oriented applications.<br>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €