Details

Meteorological Measurements and Instrumentation


Meteorological Measurements and Instrumentation


Advancing Weather and Climate Science 1. Aufl.

von: Giles Harrison

70,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 14.10.2014
ISBN/EAN: 9781118745755
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning,  data acquisition considerations and data processing principles necessary for reliable measurements. This also allows the long history of atmospheric measurements to be placed in the context of the requirements of modern climate science, by building the physical science appreciation of the instrumental record and looking forward to new and emerging sensor and recording technologies.
<p>Series Foreword xi</p> <p>Preface xiii</p> <p>Acknowledgements xv</p> <p>Disclaimer xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 The instrumental age 2</p> <p>1.2 Measurements and the climate record 2</p> <p>1.3 Clouds and rainfall 3</p> <p>1.4 Standardisation of air temperature measurements 4</p> <p>1.5 Upper air measurements 5</p> <p><i>1.5.1 Manned balloon ascents </i>6</p> <p><i>1.5.2 Self-reporting upper air instruments </i>7</p> <p>1.6 Scope and structure 8</p> <p><b>2 Principles of Measurement and Instrumentation 9</b></p> <p>2.1 Instruments and measurement systems 9</p> <p><i>2.1.1 Instrument response characterisation </i>10</p> <p><i>2.1.2 Measurement quality </i>12</p> <p>2.2 Instrument response time 14</p> <p><i>2.2.1 Response to a step-change </i>14</p> <p><i>2.2.2 Response to an oscillation </i>15</p> <p>2.3 Deriving the standard error 18</p> <p><i>2.3.1 Sample mean </i>18</p> <p><i>2.3.2 Standard error </i>20</p> <p><i>2.3.3 Quoting results </i>20</p> <p>2.4 Calculations combining uncertainties 21</p> <p><i>2.4.1 Sums and differences </i>21</p> <p><i>2.4.2 Products and quotients </i>22</p> <p><i>2.4.3 Uncertainties from functions </i>23</p> <p>2.5 Calibration experiments 23</p> <p><b>3 Electronics and Analogue Signal Processing 27</b></p> <p>3.1 Voltage measurements 28</p> <p>3.2 Signal conditioning 28</p> <p><i>3.2.1 Operational amplifiers </i>29</p> <p><i>3.2.2 Operational amplifier fundamentals </i>30</p> <p><i>3.2.3 Signal amplification </i>31</p> <p><i>3.2.4 Buffer amplifiers </i>33</p> <p><i>3.2.5 Inverting amplifier </i>33</p> <p><i>3.2.6 Line driving </i>35</p> <p><i>3.2.7 Power supplies </i>36</p> <p>3.3 Voltage signals 38</p> <p><i>3.3.1 Electrometers </i>38</p> <p><i>3.3.2 Microvolt amplifier </i>40</p> <p>3.4 Current measurement 41</p> <p><i>3.4.1 Current to voltage conversion </i>42</p> <p><i>3.4.2 Photocurrent amplifier </i>43</p> <p><i>3.4.3 Logarithmic measurements </i>44</p> <p><i>3.4.4 Calibration currents </i>45</p> <p>3.5 Resistance measurement 46</p> <p><i>3.5.1 Thermistor resistance measurement </i>46</p> <p><i>3.5.2 Resistance bridge methods </i>47</p> <p>3.6 Oscillatory signals 50</p> <p><i>3.6.1 Oscillators </i>50</p> <p><i>3.6.2 Phase-locked loops </i>53</p> <p><i>3.6.3 Frequency to voltage conversion </i>54</p> <p>3.7 Physical implementation 54</p> <p><b>4 Data Acquisition Systems and Initial Data Analysis 57</b></p> <p>4.1 Data acquisition 57</p> <p><i>4.1.1 Count data </i>59</p> <p><i>4.1.2 Frequency data </i>60</p> <p><i>4.1.3 Interval data </i>60</p> <p><i>4.1.4 Voltage data </i>61</p> <p><i>4.1.5 Sampling </i>63</p> <p><i>4.1.6 Time synchronisation </i>66</p> <p>4.2 Custom data logging systems 66</p> <p><i>4.2.1 Data acquisition cards </i>67</p> <p><i>4.2.2 Microcontroller systems </i>67</p> <p><i>4.2.3 Automatic Weather Stations </i>68</p> <p>4.3 Management of data files 69</p> <p><i>4.3.1 Data logger programming </i>69</p> <p><i>4.3.2 Data transfer </i>70</p> <p><i>4.3.3 Data file considerations </i>71</p> <p>4.4 Preliminary data examination 72</p> <p><i>4.4.1 In situ calibration </i>72</p> <p><i>4.4.2 Time series </i>73</p> <p><i>4.4.3 Irregular and intermittent time series </i>75</p> <p><i>4.4.4 Further data analysis </i>75</p> <p><b>5 Temperature 77</b></p> <p>5.1 The Celsius temperature scale 77</p> <p>5.2 Liquid in glass thermometry 78</p> <p><i>5.2.1 Fixed interval temperature scales </i>78</p> <p><i>5.2.2 Liquid-in-glass thermometers </i>79</p> <p>5.3 Electrical temperature sensors 80</p> <p><i>5.3.1 Thermocouple </i>81</p> <p><i>5.3.2 Semiconductor </i>81</p> <p><i>5.3.3 Thermistor </i>82</p> <p><i>5.3.4 Metal resistance thermometry </i>83</p> <p>5.4 Resistance thermometry considerations 86</p> <p><i>5.4.1 Thermistor measurement </i>87</p> <p><i>5.4.2 Platinum resistance measurement </i>89</p> <p>5.5 Thermometer exposure 90</p> <p><i>5.5.1 Radiation error of air temperature sensors </i>90</p> <p><i>5.5.2 Thermometer radiation screens </i>91</p> <p><i>5.5.3 Radiation errors on screen temperatures </i>93</p> <p><i>5.5.4 Lag times in screen temperatures </i>95</p> <p><i>5.5.5 Screen condition </i>98</p> <p><i>5.5.6 Modern developments in screens </i>99</p> <p>5.6 Surface and below-surface temperature measurements 99</p> <p><i>5.6.1 Surface temperatures </i>99</p> <p><i>5.6.2 Soil temperatures </i>100</p> <p><i>5.6.3 Ground heat flux density </i>100</p> <p><b>6 Humidity 103</b></p> <p>6.1 Water vapour as a gas 103</p> <p>6.2 Physical measures of humidity 105</p> <p><i>6.2.1 Absolute humidity </i>106</p> <p><i>6.2.2 Specific humidity </i>106</p> <p><i>6.2.3 Relative humidity </i>107</p> <p><i>6.2.4 Dew point and wet bulb temperature </i>107</p> <p>6.3 Hygrometers and their operating principles 109</p> <p><i>6.3.1 Mechanical </i>109</p> <p><i>6.3.2 Chemical </i>111</p> <p><i>6.3.3 Electronic </i>111</p> <p><i>6.3.4 Spectroscopic </i>112</p> <p><i>6.3.5 Radio refractive index </i>113</p> <p><i>6.3.6 Dew point meter </i>114</p> <p><i>6.3.7 Psychrometer </i>114</p> <p>6.4 Practical psychrometers 116</p> <p><i>6.4.1 Effect of temperature uncertainties </i>118</p> <p><i>6.4.2 Ventilation effects </i>118</p> <p><i>6.4.3 Freezing of the wet bulb </i>120</p> <p>6.5 Hygrometer calibration using salt solutions 121</p> <p>6.6 Comparison of hygrometry techniques 122</p> <p><b>7 Atmospheric Pressure 123</b></p> <p>7.1 Introduction 123</p> <p>7.2 Barometers 123</p> <p><i>7.2.1 Liquid barometers </i>124</p> <p><i>7.2.2 Mercury barometers </i>125</p> <p><i>7.2.3 Hypsometer </i>127</p> <p><i>7.2.4 Aneroid barometers </i>127</p> <p><i>7.2.5 Precision aneroid barometers </i>128</p> <p><i>7.2.6 Flexible diaphragm sensors </i>129</p> <p><i>7.2.7 Vibrating cylinder barometer </i>129</p> <p>7.3 Corrections to barometers 129</p> <p><i>7.3.1 Sea level correction </i>130</p> <p><i>7.3.2 Wind speed corrections </i>131</p> <p><b>8 Wind Speed and Direction 133</b></p> <p>8.1 Introduction 133</p> <p>8.2 Types of anemometer 133</p> <p><i>8.2.1 Pressure plate anemometers </i>133</p> <p><i>8.2.2 Pressure tube anemometer </i>134</p> <p><i>8.2.3 Cup anemometers </i>134</p> <p><i>8.2.4 Propeller anemometer </i>136</p> <p><i>8.2.5 Hot sensor anemometer </i>137</p> <p><i>8.2.6 Sonic anemometer </i>139</p> <p>8.3 Wind direction 141</p> <p><i>8.3.1 Wind vanes </i>142</p> <p><i>8.3.2 Horizontal wind components </i>144</p> <p><i>8.3.3 Multi-component research anemometers </i>146</p> <p>8.4 Anemometer exposure 146</p> <p><i>8.4.1 Anemometer deficiencies </i>146</p> <p>8.5 Wind speed from kite tether tension 148</p> <p><b>9 Radiation 151</b></p> <p>9.1 Introduction 151</p> <p>9.2 Solar geometry 154</p> <p><i>9.2.1 Orbital variations </i>154</p> <p><i>9.2.2 Diurnal variation </i>155</p> <p><i>9.2.3 Solar time corrections </i>155</p> <p><i>9.2.4 Day length calculation </i>156</p> <p><i>9.2.5 Irradiance calculation </i>157</p> <p>9.3 Shortwave radiation instruments 158</p> <p><i>9.3.1 Thermopile pyranometer </i>158</p> <p><i>9.3.2 Pyranometer theory </i>159</p> <p><i>9.3.3 Silicon pyranometers </i>162</p> <p>9.4 Pyrheliometers 162</p> <p>9.5 Diffuse solar radiation measurement 164</p> <p><i>9.5.1 Occulting disk method </i>164</p> <p><i>9.5.2 Shade ring method </i>165</p> <p><i>9.5.3 Reflected shortwave radiation </i>168</p> <p><i>9.5.4 Fluctuations in measured radiation </i>169</p> <p>9.6 Reference solar radiation instruments 171</p> <p><i>9.6.1 Cavity radiometer </i>172</p> <p><i>9.6.2 Secondary pyrheliometers </i>172</p> <p>9.7 Longwave instruments 173</p> <p><i>9.7.1 Pyrradiometer theory </i>173</p> <p><i>9.7.2 Pyrradiometer calibration </i>174</p> <p><i>9.7.3 Pyrgeometer measurements </i>175</p> <p><i>9.7.4 Commercial pyrradiometers </i>175</p> <p><i>9.7.5 Radiation thermometry </i>177</p> <p>9.8 Sunshine duration 178</p> <p><i>9.8.1 Campbell–Stokes sunshine recorder </i>180</p> <p><i>9.8.2 Electronic sensors </i>181</p> <p><b>10 Clouds, Precipitation and Atmospheric Electricity 183</b></p> <p>10.1 Introduction 183</p> <p>10.2 Visual range 183</p> <p><i>10.2.1 Point visibility meters </i>184</p> <p><i>10.2.2 Transmissometers </i>185</p> <p><i>10.2.3 Present weather sensors </i>185</p> <p>10.3 Cloud base measurements 186</p> <p>10.4 Rain gauges 187</p> <p><i>10.4.1 Tilting siphon </i>188</p> <p><i>10.4.2 Tipping bucket </i>188</p> <p><i>10.4.3 Disdrometers </i>191</p> <p>10.5 Atmospheric electricity 191</p> <p><i>10.5.1 Potential Gradient instrumentation </i>191</p> <p><i>10.5.2 Variability in the Potential Gradient </i>192</p> <p><i>10.5.3 Lightning detection </i>193</p> <p><b>11 Upper Air Instruments 195</b></p> <p>11.1 Radiosondes 195</p> <p><i>11.1.1 Sounding balloons </i>196</p> <p>11.2 Radiosonde technology 197</p> <p><i>11.2.1 Pressure sensor </i>199</p> <p><i>11.2.2 Temperature and humidity sensors </i>200</p> <p><i>11.2.3 Wind measurements from position information </i>201</p> <p><i>11.2.4 Data telemetry </i>202</p> <p><i>11.2.5 Radio transmitter </i>203</p> <p>11.3 Uncertainties in radiosonde measurements 204</p> <p><i>11.3.1 Response time </i>204</p> <p><i>11.3.2 Radiation errors </i>204</p> <p><i>11.3.3 Wet-bulbing </i>206</p> <p><i>11.3.4 Location error </i>207</p> <p><i>11.3.5 Telemetry errors </i>208</p> <p>11.4 Specialist radiosondes 209</p> <p><i>11.4.1 Cloud electrification </i>209</p> <p><i>11.4.2 Ozone </i>209</p> <p><i>11.4.3 Radioactivity and cosmic rays </i>210</p> <p><i>11.4.4 Radiation </i>210</p> <p><i>11.4.5 Turbulence </i>211</p> <p><i>11.4.6 Supercooled liquid water </i>211</p> <p><i>11.4.7 Atmospheric aerosol </i>212</p> <p>11.5 Aircraft measurements 212</p> <p><i>11.5.1 Air temperature </i>212</p> <p><i>11.5.2 Wind </i>212</p> <p><i>11.5.3 Pressure </i>213</p> <p><i>11.5.4 Altitude </i>213</p> <p>11.6 Small robotic aircraft 213</p> <p><b>12 Further Methods for Environmental Data Analysis 215</b></p> <p>12.1 Physical models 215</p> <p><i>12.1.1 Surface energy balance </i>215</p> <p><i>12.1.2 Turbulent quantities and eddy covariance </i>217</p> <p><i>12.1.3 Soil temperature model </i>218</p> <p><i>12.1.4 Vertical wind profile </i>220</p> <p>12.2 Solar radiation models 222</p> <p><i>12.2.1 Langley’s solar radiation method </i>222</p> <p><i>12.2.2 Surface solar radiation: Holland’s model </i>224</p> <p>12.3 Statistical models 225</p> <p><i>12.3.1 Histograms and distributions </i>226</p> <p><i>12.3.2 Statistical tests </i>226</p> <p><i>12.3.3 Wind gusts </i>229</p> <p>12.4 Ensemble averaging 229</p> <p><i>12.4.1 Solar radiation variation </i>230</p> <p><i>12.4.2 Pressure tides </i>231</p> <p><i>12.4.3 Carnegie curve </i>231</p> <p>12.5 Spectral methods 233</p> <p><i>12.5.1 Power spectra </i>233</p> <p><i>12.5.2 Micrometeorological power spectra </i>235</p> <p>12.6 Conclusion 237</p> <p><b>Appendix A Writing a Brief Instrumentation Paper 239</b></p> <p>A.1 Scope of an instrument paper 239</p> <p>A.2 Structure of an instrument paper 239</p> <p><i>A.2.1 Paper title </i>239</p> <p><i>A.2.2 Abstract </i>240</p> <p><i>A.2.3 Keywords </i>240</p> <p><i>A.2.4 Motivation </i>240</p> <p><i>A.2.5 Description </i>240</p> <p><i>A.2.6 Comparison </i>241</p> <p><i>A.2.7 Figures </i>241</p> <p><i>A.2.8 Summary </i>242</p> <p><i>A.2.9 Acknowledgements </i>242</p> <p>A.3 Submission and revisions 242</p> <p><b>Appendix B Anemometer Coordinate Rotations 243</b></p> <p>References 247</p> <p>Index 253</p>
"“Thorough” is an apt description for the content of this book. A specialist book on Meteorological Measurements is long overdue, and this book is welcome. If a book was destined for sensor system designers it would need to be a thick volume, but for meteorologists needing to have a less detailed description of instruments it is ideal....all scientists/engineers need to be conversant with sensor systems, albeit at a high level (ie. to know how a system works, not necessarily to design it!). So, this book is “pitched” at just the right level." <i>Weather</i>, Royal Meteorological Society, April 2015
<p><b>Giles Harrison</b> is Professor of Atmospheric Physics at the Department of Meteorology at the University of Reading, UK. His research focuses on one of the oldest experimental topics in meteorology, atmospheric electricity and the development of new surface and balloon-carried instruments for environmental measurements.
<p><b>Meteorological Measurements and Instrumentation</b> <p>This book describes the fundamental scientific principles underlying high-quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface-based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use, it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion on the electronic signal conditioning, data-acquisition considerations and data-processing principles necessary for reliable measurements. This also allows the long history of atmospheric measurements to be placed in the context of the requirements of modern climate science, by building the physical science appreciation of the instrumental record and looking forward to new and emerging sensor and recording technologies.

Diese Produkte könnten Sie auch interessieren:

Handbuch der Fließgewässer Norddeutschlands
Handbuch der Fließgewässer Norddeutschlands
von: Mario Sommerhäuser, Helmut Schuhmacher
PDF ebook
88,99 €
Hydroecology and Ecohydrology
Hydroecology and Ecohydrology
von: Paul J. Wood, David M. Hannah, Jon P. Sadler
PDF ebook
154,99 €
Analyzing Environmental Data
Analyzing Environmental Data
von: Walter W. Piegorsch, A. John Bailer
PDF ebook
76,99 €