Details

Metal-Organic Frameworks


Metal-Organic Frameworks

Applications in Separations and Catalysis
1. Aufl.

von: Hermenegildo García, Sergio Navalón

160,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 22.02.2018
ISBN/EAN: 9783527809127
Sprache: englisch
Anzahl Seiten: 536

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Focusing on applications in separation, adsorption and catalysis, this handbook underlines the importance of this hot and exciting topic. It provides an excellent insight into the synthesis and modification of MOFs, their synthesis on an industrial scale, their use as CO2 and chemical warfare adsorbers, and the role of defects in catalysis. In addition, the authors treat such new aspects as biocatalysis and applications in photocatalysis and optoelectronic devices.
<p>Preface xiii</p> <p><b>1 The Stability of Metal–Organic Frameworks 1<br /></b><i>Georges Mouchaham, Sujing Wang, and Christian Serre</i></p> <p>1.1 Introduction 1</p> <p>1.2 Chemical Stability 2</p> <p>1.2.1 Strengthening the Coordination Bond 4</p> <p>1.2.1.1 High-Valence Cations and Carboxylate-Based Ligands 4</p> <p>1.2.1.2 Low-Valence Cations and Highly Complexing Ligands 9</p> <p>1.2.1.3 High-Valence Cations and Highly Complexing Ligands 11</p> <p>1.2.2 Protecting the Coordination Bond 12</p> <p>1.2.2.1 Introducing Bulky and/or Hydrophobic Groups 12</p> <p>1.2.2.2 Coating MOFs with Hydrophobic Matrices 13</p> <p>1.3 Thermal Stability 14</p> <p>1.4 Mechanical Stability 17</p> <p>1.5 Concluding Remarks 19</p> <p>Acknowledgments 20</p> <p>References 20</p> <p><b>2 Tuning the Properties of Metal–Organic Frameworks by Post-synthetic Modification 29<br /></b>Andrew D. Burrows, Laura K. Cadman, William J. Gee, Harina Amer Hamzah, Jane V. Knichal, and <i>Sébastien Rochat</i></p> <p>2.1 Introduction 29</p> <p>2.2 Post-synthetic Modification Reactions 30</p> <p>2.2.1 Covalent Post-synthetic Modification 31</p> <p>2.2.2 Inorganic Post-synthetic Modification 32</p> <p>2.2.3 Extent of the Reaction 33</p> <p>2.3 PSM for Enhanced Gas Adsorption and Separation 34</p> <p>2.3.1 PSM for Carbon Dioxide Capture and Separation 34</p> <p>2.3.2 PSM for Hydrogen Storage 35</p> <p>2.4 PSM for Catalysis 37</p> <p>2.4.1 Catalysis with MOFs Possessing Metal Active Sites 37</p> <p>2.4.2 Catalysis with MOFs containing Reactive Organic Functional Groups 39</p> <p>2.4.3 Catalysis with MOFs as Host Matrices 41</p> <p>2.5 PSM for Sequestration and Solution Phase Separations 42</p> <p>2.5.1 Metal Ion Sequestration 42</p> <p>2.5.2 Anion Sequestration 43</p> <p>2.5.3 Removal of Organic Molecules from Solution 43</p> <p>2.6 PSM for Biomedical Applications 44</p> <p>2.6.1 Therapeutic MOFs and Biosensors 44</p> <p>2.6.2 PSM by Change of Physical Properties 46</p> <p>2.7 Post-synthetic Cross-Linking of Ligands in MOF Materials 46</p> <p>2.7.1 Pre-synthetically Cross-Linked Ligands 47</p> <p>2.7.2 Post-synthetic Cross-Linking of MOF Linkers 47</p> <p>2.7.3 Post-synthetically Modifying the Nature of Cross-Linked MOFs 49</p> <p>2.8 Conclusions 51</p> <p>References 51</p> <p><b>3 Synthesis of MOFs at the Industrial Scale 57<br /></b><i>Ana D. G. Firmino, Ricardo F. Mendes, João P.C. Tomé, and Filipe A. Almeida Paz</i></p> <p>3.1 Introduction 57</p> <p>3.2 MOF Patents from Academia versus the Industrial Approach 58</p> <p>3.3 Industrial Approach to MOF Scale-up 64</p> <p>3.4 Examples of Scaled-up MOFs 66</p> <p>3.5 Industrial Synthetic Routes toward MOFs 69</p> <p>3.5.1 Electrochemical Synthesis 69</p> <p>3.5.2 Continuous Flow 70</p> <p>3.5.3 Mechanochemistry and Extrusion 72</p> <p>3.6 Concluding Remarks 74</p> <p>Acknowledgments 75</p> <p>List of Abbreviations 75</p> <p>References 76</p> <p><b>4 From Layered MOFs to Structuring at the Meso-/Macroscopic Scale 81<br /></b><i>David Rodríguez-San-Miguel, Pilar Amo-Ochoa, and Félix Zamora</i></p> <p>4.1 Introduction 81</p> <p>4.2 Designing Bidimensional Networks 82</p> <p>4.3 Methodological Notes Regarding Characterization of 2D Materials 84</p> <p>4.3.1 Morphological and Structural Characterization 84</p> <p>4.3.2 Spectroscopic and Diffractometric Characterization 88</p> <p>4.4 Preparation and Characterization 92</p> <p>4.4.1 Bottom-Up Approaches 92</p> <p>4.4.1.1 On-Surface Synthesis 92</p> <p>4.4.1.2 Synthesis at Water/Air or Solvent-to-Solvent Interface 92</p> <p>4.4.1.3 Synthesis at the Liquid–Liquid Interface 100</p> <p>4.4.2 Miscellaneous 104</p> <p>4.4.2.1 Direct Colloidal Formation 104</p> <p>4.4.2.2 Surfactant Mediated 104</p> <p>4.4.3 Top-Down Approaches 105</p> <p>4.4.3.1 Liquid Phase Exfoliation (LPE) 106</p> <p>4.4.3.2 Micromechanical Exfoliation 110</p> <p>4.5 Properties and Potential Applications 111</p> <p>4.5.1 Gas Separation 111</p> <p>4.5.2 Electronic Devices 112</p> <p>4.5.3 Catalysis 113</p> <p>4.6 Conclusions and Perspectives 115</p> <p>Acknowledgments 116</p> <p>References 116</p> <p><b>5 Application of Metal–Organic Frameworks (MOFs) for CO2 Separation 123<br /></b><i>Mohanned Mohamedali, Hussameldin Ibrahim, and Amr Henni</i></p> <p>5.1 Introduction 123</p> <p>5.2 Factors Influencing the Applicability of MOFs for CO2 Capture 124</p> <p>5.2.1 Open Metal Sites 125</p> <p>5.2.2 Amine Grafting on MOFs 132</p> <p>5.2.3 Effects of Organic Ligand 138</p> <p>5.3 Current Trends in CO2 Separation Using MOFs 139</p> <p>5.3.1 Ionic Liquids/MOF Composites 139</p> <p>5.3.2 MOF Composites for CO2 Separation 143</p> <p>5.3.3 Water Stability of MOFs 144</p> <p>5.3.3.1 Effect of Water on MOFs with Open Metal Sites 146</p> <p>5.3.3.2 Effects of the Organic Ligand on Water Stability of MOFs 147</p> <p>5.4 Conclusion and Perspective 150</p> <p>References 151</p> <p><b>6 Current Status of Porous Metal–Organic Frameworks for Methane Storage 163<br /></b><i>Yabing He, Wei Zhou, and Banglin Chen</i></p> <p>6.1 Introduction 163</p> <p>6.2 Requirements for MOFs as ANG Adsorbents 165</p> <p>6.3 Brief History of MOF Materials for Methane Storage 167</p> <p>6.4 The Factors Influencing Methane Adsorption 168</p> <p>6.4.1 Surface Area 169</p> <p>6.4.2 Pore Size 170</p> <p>6.4.3 Adsorption Heat 170</p> <p>6.4.4 Open Metal Sites 170</p> <p>6.4.5 Ligand Functionalization 171</p> <p>6.5 Several Classes of MOFs for Methane Storage 171</p> <p>6.5.1 Dicopper Paddlewheel-Based MOFs 171</p> <p>6.5.2 Zn4O-Cluster Based MOFs 180</p> <p>6.5.3 Zr-Based MOFs 182</p> <p>6.5.4 Al-Based MOFs 186</p> <p>6.5.5 MAF Series 189</p> <p>6.5.6 Flexible MOFs for Methane Storage 190</p> <p>6.6 Conclusion and Outlook 192</p> <p>References 195</p> <p><b>7 MOFs for the Capture and Degradation of Chemical Warfare Agents 199<br /></b><i>Elisa Barea, Carmen R. Maldonado and Jorge A. R. Navarro</i></p> <p>7.1 Introduction to Chemical Warfare Agents (CWAs) 199</p> <p>7.2 Adsorption of CWAs 201</p> <p>7.3 Catalytic Degradation of CWAs 206</p> <p>7.3.1 Hydrolysis of Nerve Agents and Their Simulants 206</p> <p>7.3.2 Oxidation of Sulfur Mustard and Its Analogues 211</p> <p>7.3.3 Multiactive Catalysts for CWA Degradation 212</p> <p>7.4 MOF Advanced Materials for Protection against CWAs 214</p> <p>7.5 Summary and Future Prospects 218</p> <p>References 219</p> <p><b>8 Membranes Based on MOFs 223<br /></b><i>Pasquale F. Zito, Adele Brunetti, Alessio Caravella, Enrico Drioli and Giuseppe Barbieri</i></p> <p>8.1 Introduction 223</p> <p>8.2 Characteristics of MOFs 224</p> <p>8.3 MOF-Based Membranes for Gas Separation 225</p> <p>8.3.1 MOF in Mixed Matrix Membranes 226</p> <p>8.3.1.1 MOF-based MMMs: Experimental Results 228</p> <p>8.3.2 MOF Thin-Film Membranes 232</p> <p>8.3.2.1 Stability of Thin-Film MOF Membranes 242</p> <p>8.3.3 Modeling the Permeation through MOF-based MMMs 244</p> <p>Acknowledgments 246</p> <p>References 246</p> <p><b>9 Composites of Metal–Organic Frameworks (MOFs): Synthesis and Applications in Separation and</b> Catalysis 251<br /><i>Devjyoti Nath, Mohanned Mohamedali, Amr Henni and Hussameldin Ibrahim</i></p> <p>9.1 Introduction 251</p> <p>9.2 Synthesis of MOF Composites 252</p> <p>9.2.1 MOF–Carbon Composites 252</p> <p>9.2.1.1 MOF–CNT Composites 252</p> <p>9.2.1.2 MOF–AC Composites 255</p> <p>9.2.1.3 MOF–GO Composites 255</p> <p>9.2.2 MOF Thin Films 256</p> <p>9.2.3 MOF–Metal Nanoparticle Composites 262</p> <p>9.2.3.1 Solution Infiltration Method 263</p> <p>9.2.3.2 Gas Infiltration Method 266</p> <p>9.2.3.3 Solid Grinding Method 266</p> <p>9.2.3.4 Template-Assisted Synthesis Method 266</p> <p>9.2.4 MOF–Metal Oxide Composites 266</p> <p>9.2.5 MOF–Silica Composites 272</p> <p>9.3 Applications of MOF Composites in Catalysis and Separation 274</p> <p>9.3.1 MOF Composites for Catalytic Application 274</p> <p>9.3.2 MOF Composites for Gas Adsorption and Storage Applications 276</p> <p>9.3.3 MOF Composites for Liquid Separation Applications 285</p> <p>9.4 Conclusions 286</p> <p>References 286</p> <p><b>10 Tuning of Metal–Organic Frameworks by Pre- and Post-synthetic Functionalization for Catalysis and</b> <b>Separations 297<br /></b><i>Christopher F. Cogswell, Zelong Xie, and Sunho Choi</i></p> <p>10.1 Introduction 297</p> <p>10.1.1 Terminology for Functionalization on MOFs 297</p> <p>10.1.2 General Design Parameters for Separations and Catalysis 299</p> <p>10.2 Pre-synthetic Functionalization 303</p> <p>10.2.1 Explanation of this Technique 303</p> <p>10.2.2 Separations Applications 304</p> <p>10.2.3 Catalytic Applications 307</p> <p>10.3 Type 1 or Physical Impregnation 309</p> <p>10.3.1 Explanation of this Technique 309</p> <p>10.3.2 Separations Applications 310</p> <p>10.3.3 Catalytic Applications 312</p> <p>10.4 Type 2 or Covalent Attachment 313</p> <p>10.4.1 Explanation of this Technique 313</p> <p>10.4.2 Separations Applications 314</p> <p>10.4.3 Catalytic Applications 316</p> <p>10.5 Type 3 or In Situ Reaction 318</p> <p>10.5.1 Explanation of this Technique 318</p> <p>10.5.2 Separations Applications 319</p> <p>10.5.3 Catalytic Applications 321</p> <p>10.6 Type 4 or Ligand Replacement 321</p> <p>10.7 Type 5 or Metal Addition 322</p> <p>10.7.1 Explanation of this Technique 322</p> <p>10.7.2 Separations Applications 325</p> <p>10.7.3 Catalytic Applications 325</p> <p>10.8 Conclusions 326</p> <p>References 327</p> <p><b>11 Role of Defects in Catalysis 341<br /></b><i>Zhenlan Fang and Qiang Ju</i></p> <p>11.1 Introduction 341</p> <p>11.2 Definition of MOF Defect 342</p> <p>11.3 Classification of MOF Defects 343</p> <p>11.3.1 Defects Classified by Defect Dimensions 343</p> <p>11.3.2 Defects Classified by Distribution, Size, and State 343</p> <p>11.3.3 Defects Classified by Location 343</p> <p>11.4 Formation of MOF Defects 343</p> <p>11.4.1 Inherent Defects of MOFs 343</p> <p>11.4.1.1 Inherent Surface Defect 344</p> <p>11.4.1.2 Inherent Internal Defect 344</p> <p>11.4.1.3 Post-crystallization Cleavage 345</p> <p>11.4.2 Intentionally Implanted Defects via Defect Engineering 346</p> <p>11.4.2.1 Defects Introduced during De Novo Synthesis 347</p> <p>11.4.2.2 Defects Formed by Post-synthetic Treatment 351</p> <p>11.5 Characterization of Defects 352</p> <p>11.5.1 Experimental Methods for Analyzing Defects 352</p> <p>11.5.1.1 Assessing Presence of Defects 352</p> <p>11.5.1.2 Imaging Defects 355</p> <p>11.5.1.3 Probing Chemical and Physical Environment of Defects 357</p> <p>11.5.1.4 Distinguish between Isolated Local and Correlated Defects 358</p> <p>11.5.2 Theoretical Methods 359</p> <p>11.6 The Role of Defect in Catalysis 363</p> <p>11.6.1 External Surface Linker Vacancy 363</p> <p>11.6.2 Inherent Linker Vacancy of Framework Interior 366</p> <p>11.6.3 Intentionally Implanted Defects 367</p> <p>11.6.3.1 Implanted Linker Vacancy by TML Strategy 367</p> <p>11.6.3.2 Implanted Linker Vacancy by LML Strategy 368</p> <p>11.6.3.3 Implanted Linker Vacancy by Post-synthetic Treatment 369</p> <p>11.6.3.4 Implanted Linker Vacancy by Fast Precipitation 370</p> <p>11.6.3.5 Implanted Linker Vacancy by MOF Partial Decomposition 370</p> <p>11.7 Conclusions and Perspectives 372</p> <p>Acknowledgment 372</p> <p>References 372</p> <p><b>12 MOFs as Heterogeneous Catalysts in Liquid Phase Reactions 379<br /></b><i>Maksym Opanasenko, Petr Nachtigall, and Jiří Čejka</i></p> <p>12.1 Introduction 379</p> <p>12.2 Synthesis of Different Classes of Organic Compounds over MOFs 380</p> <p>12.2.1 Alcohols 380</p> <p>12.2.2 Carbonyl and Hydroxy Carbonyl Compounds 383</p> <p>12.2.3 Carboxylic Acid Derivatives 385</p> <p>12.2.4 Acetals and Ethers 389</p> <p>12.2.5 Terpenoids 390</p> <p>12.3 Specific Aspects of Catalysis by MOFs 392</p> <p>12.3.1 Concept of Concerted Effect of MOF’s Active Sites: Friedländer Reaction 392</p> <p>12.3.2 Dynamically Formed Defects as Active Sites: Knoevenagel Condensation 394</p> <p>12.4 Concluding Remarks and Future Prospects 395</p> <p>References 396</p> <p><b>13 Encapsulated Metallic Nanoparticles in Metal–Organic Frameworks: Toward Their Use in Catalysis</b> <b>399<br /></b><i>Karen Leus, Himanshu Sekhar Jena, and Pascal Van Der Voort</i></p> <p>13.1 Introduction 399</p> <p>13.1.1 Impregnation Methods 400</p> <p>13.1.1.1 Liquid Phase Impregnation 400</p> <p>13.1.1.2 Solid Phase Impregnation 401</p> <p>13.1.1.3 Gas Phase Impregnation 401</p> <p>13.1.2 Assembly Methods 402</p> <p>13.2 Nanoparticles in MOFs for Gas and Liquid Phase Oxidation Catalysis 405</p> <p>13.3 Nanoparticles in MOFs in Hydrogenation Reactions 411</p> <p>13.4 Nanoparticles in MOFs in Dehydrogenation Reactions 424</p> <p>13.5 Nanoparticles in MOFs in C─C Cross-Coupling Reactions 430</p> <p>13.6 The Use of Nanoparticles in MOFs in Tandem Reactions 433</p> <p>13.7 Conclusions and Outlook 437</p> <p>References 438</p> <p><b>14 MOFs as Supports of Enzymes in Biocatalysis 447<br /></b><i>Sérgio M. F. Vilela and Patricia Horcajada</i></p> <p>14.1 Introduction 447</p> <p>14.2 MOFs as Biomimetic Catalysts 449</p> <p>14.3 Enzyme Immobilization Strategies 454</p> <p>14.3.1 Surface Immobilization 455</p> <p>14.3.2 Diffusion into the MOF Porosity 456</p> <p>14.3.3 In Situ Encapsulation/Entrapment 457</p> <p>14.4 Biocatalytic Reactions Using Enzyme–MOFs 459</p> <p>14.4.1 Esterification and Transesterification 463</p> <p>14.4.2 Hydrolysis 464</p> <p>14.4.3 Oxidation 466</p> <p>14.4.4 Synthesis of Warfarin 468</p> <p>14.4.5 Other Applications Based on the Catalytic Properties of Enzyme–MOFs 468</p> <p>14.5 Conclusions and Perspectives 469</p> <p>Acknowledgments 470</p> <p>References 471</p> <p><b>15 MOFs as Photocatalysts 477<br /></b><i>Sergio Navalón and Hermenegildo García</i></p> <p>15.1 Introduction 477</p> <p>15.2 Properties of MOFs 482</p> <p>15.3 Photophysical Pathways 483</p> <p>15.4 Photocatalytic H2 Evolution 490</p> <p>15.5 Photocatalytic CO2 Reduction 493</p> <p>15.6 Photooxidation Reactions 494</p> <p>15.7 Photocatalysis for Pollutant Degradation 496</p> <p>15.8 Summary and Future Prospects 497</p> <p>Acknowledgements 498</p> <p>References 498</p> <p>Index 503</p>
<p><b><i>Hermenegildo García</i></b><i> is full Professor at the Instituto de Tecnologica Quimica of the Technical University of Valencia and Honorary Adjunct Professor at the Center of Excellence in Advanced Materials Research of King Abdulaziz University. He was a postdoctoral researcher at the University of Reading with Andrew Gilbert and had several sabbatical leaves in the group of J. C. Scaiano in Ottawa. His research centers on heterogeneous catalysis with porous catalysts and nanoparticles. He is Doctor Honoris Causa from the University of Bucharest and the recipient of the 2011 Janssen-Cilag award and the 2008 Alpha Gold award.</i> <p><b><i>Sergio Navalón</i></b><i> is Associate Professor at the Department of Chemistry of the Technical University of Valencia (UPV). He graduated in Chemical Engineering in 2003 and obtained his PhD in 2010 at the UPV. His research focuses on the development of heterogeneous (photo)catalysts based on carbons, porous materials and nanoparticles. He has co-authored over fifty publications and two book chapters.</i>
<p>Focusing on applications in separation, adsorption and catalysis, this handbook underlines the importance of this hot and exciting topic. It provides an excellent insight into the synthesis and modification of MOFs, their synthesis on an industrial scale, their use as CO<sub>2</sub> and chemical warfare adsorbers, and the role of defects in catalysis. In addition, the authors treat such new aspects as biocatalysis and applications in photocatalysis and optoelectronic devices.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €