Details

Materials for Biomedical Engineering


Materials for Biomedical Engineering

Fundamentals and Applications
1. Aufl.

von: Mohamed N. Rahaman, Roger F. Brown

134,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.11.2021
ISBN/EAN: 9781119551096
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>MATERIALS FOR BIOMEDICAL ENGINEERING</b> <p><b>A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials </b> <p>Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. <i>Materials for Biomedical Engineering: Fundamentals and Applications</i> provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. <p>Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. <ul><li>Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations</li> <li>Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications</li> <li>Features a thorough overview of the history, properties, and applications of biomaterials</li> <li>Includes numerous homework, review, and examination problems, full references, and further reading suggestions</li></ul> <p><i>Materials for Biomedical Engineering: Fundamentals and Applications</i> is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.
<p>Preface xix</p> <p>About the Companion Website xxi</p> <p><b>Part I General Introduction </b><b>1</b></p> <p><b>1 Biomaterials – An Introductory Overview </b><b>3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Definition and Meaning of Common Terms 3</p> <p>1.3 Biomaterials Design and Selection 8</p> <p>1.3.1 Evolving Trend in Biomaterials Design 8</p> <p>1.3.2 Factors in Biomaterials Design and Selection 9</p> <p>1.4 Properties of Materials 11</p> <p>1.4.1 Intrinsic Properties of Metals 11</p> <p>1.4.2 Intrinsic Properties of Ceramics 11</p> <p>1.4.3 Intrinsic Properties of Polymers 12</p> <p>1.4.4 Properties of Composites 12</p> <p>1.4.5 Representation of Properties 13</p> <p>1.5 Case Study in Materials Design and Selection: The Hip Implant 13</p> <p>1.6 Brief History of the Evolution of Biomaterials 17</p> <p>1.7 Biomaterials – An Interdisciplinary Field 19</p> <p>1.8 Concluding Remarks 19</p> <p><b>Part II Materials Science of Biomaterials </b><b>21</b></p> <p><b>2 Atomic Structure and Bonding </b><b>23</b></p> <p>2.1 Introduction 23</p> <p>2.2 Interatomic Forces and Bonding Energies 23</p> <p>2.3 Types of Bonds between Atoms and Molecules 26</p> <p>2.4 Primary Bonds 27</p> <p>2.4.1 Ionic Bonding 29</p> <p>2.4.2 Covalent Bonding 30</p> <p>2.4.3 Metallic Bonding 33</p> <p>2.5 Secondary Bonds 34</p> <p>2.5.1 Van der Waals Bonding 34</p> <p>2.5.2 Hydrogen Bonding 35</p> <p>2.6 Atomic Bonding and Structure in Proteins 36</p> <p>2.6.1 Primary Structure 36</p> <p>2.6.2 Secondary Structure 37</p> <p>2.6.3 Tertiary Structure 38</p> <p>2.6.4 Quaternary Structure 43</p> <p>2.7 Concluding Remarks 44</p> <p><b>3 Structure of Solids </b><b>47</b></p> <p>3.1 Introduction 47</p> <p>3.2 Packing of Atoms in Crystals 47</p> <p>3.2.1 Unit Cells and Crystal Systems 49</p> <p>3.3 Structure of Solids Used as Biomaterials 51</p> <p>3.3.1 Crystal Structure of Metals 51</p> <p>3.3.2 Crystal Structure of Ceramics 52</p> <p>3.3.3 Structure of Inorganic Glasses 54</p> <p>3.3.4 Structure of Carbon Materials 55</p> <p>3.3.5 Structure of Polymers 57</p> <p>3.4 Defects in Crystalline Solids 58</p> <p>3.4.1 Point Defects 59</p> <p>3.4.2 Line Defects: Dislocations 59</p> <p>3.4.3 Planar Defects: Surfaces and Grain Boundaries 62</p> <p>3.5 Microstructure of Biomaterials 62</p> <p>3.5.1 Microstructure of Dense Biomaterials 63</p> <p>3.5.2 Microstructure of Porous Biomaterials 64</p> <p>3.6 Special Topic: Lattice Planes and Directions 65</p> <p>3.7 Concluding Remarks 67</p> <p><b>4 Bulk Properties of Materials </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.2 Mechanical Properties of Materials 69</p> <p>4.2.1 Mechanical Stress and Strain 70</p> <p>4.2.2 Elastic Modulus 72</p> <p>4.2.3 Mechanical Response of Materials 74</p> <p>4.2.4 Stress–Strain Behavior of Metals, Ceramics, and Polymers 78</p> <p>4.2.5 Fracture of Materials 79</p> <p>4.2.6 Toughness and Fracture Toughness 82</p> <p>4.2.7 Fatigue 82</p> <p>4.2.8 Hardness 83</p> <p>4.3 Effect of Microstructure on Mechanical Properties 84</p> <p>4.3.1 Effect of Porosity 84</p> <p>4.3.2 Effect of Grain Size 85</p> <p>4.4 Designing with Ductile and Brittle Materials 85</p> <p>4.4.1 Designing with Metals 85</p> <p>4.4.2 Designing with Ceramics 85</p> <p>4.4.3 Designing with Polymers 87</p> <p>4.5 Electrical Properties 87</p> <p>4.5.1 Electrical Conductivity of Materials 87</p> <p>4.5.2 Electrical Conductivity of Conducting Polymers 88</p> <p>4.6 Magnetic Properties 88</p> <p>4.6.1 Origins of Magnetic Response in Materials 88</p> <p>4.6.2 Meaning and Definition of Relevant Magnetic Properties 89</p> <p>4.6.3 Diamagnetic and Paramagnetic Materials 89</p> <p>4.6.4 Ferromagnetic Materials 90</p> <p>4.6.5 Ferrimagnetic Materials 91</p> <p>4.6.6 Magnetization Curves and Hysteresis 91</p> <p>4.6.7 Hyperthermia Treatment of Tumors using Magnetic Nanoparticles 91</p> <p>4.7 Thermal Properties 92</p> <p>4.7.1 Thermal Conductivity 92</p> <p>4.7.2 Thermal Expansion Coefficient 93</p> <p>4.8 Optical Properties 94</p> <p>4.9 Concluding Remarks 95</p> <p><b>5 Surface Properties of Materials </b><b>99</b></p> <p>5.1 Introduction 99</p> <p>5.2 Surface Energy 100</p> <p>5.2.1 Determination of Surface Energy of Materials 101</p> <p>5.2.2 Measurement of Contact Angle 102</p> <p>5.2.3 Effect of Surface Energy 104</p> <p>5.3 Surface Chemistry 104</p> <p>5.3.1 Characterization of Surface Chemistry 105</p> <p>5.4 Surface Charge 108</p> <p>5.4.1 Surface Charging Mechanisms 108</p> <p>5.4.2 Measurement of Surface Charge and Potential 109</p> <p>5.4.3 Effect of Surface Charge 110</p> <p>5.5 Surface Topography 110</p> <p>5.5.1 Surface Roughness Parameters 112</p> <p>5.5.2 Characterization of Surface Topography 112</p> <p>5.5.3 Effect of Surface Topography on Cell and Tissue Response 115</p> <p>5.6 Concluding Remarks 116</p> <p><b>Part III Classes of Materials Used as Biomaterials </b><b>119</b></p> <p><b>6 Metallic Biomaterials </b><b>121</b></p> <p>6.1 Introduction 121</p> <p>6.2 Crystal Structure of Metals 121</p> <p>6.3 Polymorphic Transformation 122</p> <p>6.3.1 Formation of Nuclei of Critical Size 123</p> <p>6.3.2 Rate of Phase Transformation 123</p> <p>6.3.3 Diffusive Transformations 124</p> <p>6.3.4 Displacive Transformations 125</p> <p>6.3.5 Time-Temperature-Transformation (TTT) Diagrams 125</p> <p>6.4 Alloys 126</p> <p>6.5 Shape (Morphology) of Phases 126</p> <p>6.6 Phase Diagrams 127</p> <p>6.7 Production of Metals 129</p> <p>6.7.1 Wrought Metal Products 129</p> <p>6.7.2 Cast Metal Products 130</p> <p>6.7.3 Alternative Production Methods 130</p> <p>6.8 Mechanisms for Strengthening Metals 131</p> <p>6.8.1 Solid Solution Hardening 131</p> <p>6.8.2 Precipitation and Dispersion Hardening 131</p> <p>6.8.3 Work Hardening 131</p> <p>6.8.4 Grain Size Refinement 132</p> <p>6.9 Metals Used as Biomaterials 133</p> <p>6.9.1 Stainless Steels 133</p> <p>6.9.2 Titanium and Titanium Alloys 134</p> <p>6.9.3 Cobalt-Based Alloys 137</p> <p>6.9.4 Nickel-Titanium Metals and Alloys 141</p> <p>6.9.5 Tantalum 143</p> <p>6.9.6 Zirconium Alloys 144</p> <p>6.9.7 Noble Metals 144</p> <p>6.10 Degradable Metals 145</p> <p>6.10.1 Designing Degradable Metals 145</p> <p>6.10.2 Degradable Magnesium Alloys 146</p> <p>6.11 Concluding Remarks 149</p> <p><b>7 Ceramic Biomaterials </b><b>153</b></p> <p>7.1 Introduction 153</p> <p>7.2 Design and Processing of Ceramics 154</p> <p>7.2.1 Design Principles for Mechanically Reliable Ceramics 154</p> <p>7.2.2 Principles of Processing Ceramics 155</p> <p>7.3 Chemically Unreactive Ceramics 157</p> <p>7.3.1 Alumina (Al<sub>2</sub>O<sub>3</sub>) 157</p> <p>7.3.2 Zirconia (ZrO<sub>2</sub>) 158</p> <p>7.3.3 Alumina–Zirconia (Al<sub>2</sub>O<sub>3</sub>–ZrO<sub>2</sub>) Composites 160</p> <p>7.3.4 Silicon Nitride (Si<sub>3</sub>N<sub>4</sub>) 161</p> <p>7.4 Calcium Phosphates 162</p> <p>7.4.1 Solubility of Calcium Phosphates 163</p> <p>7.4.2 Degradation of Calcium Phosphates 164</p> <p>7.4.3 Hydroxyapatite 164</p> <p>7.4.4 Beta-Tricalcium Phosphate (β-TCP) 165</p> <p>7.4.5 Biphasic Calcium Phosphate (BCP) 165</p> <p>7.4.6 Other Calcium Phosphates 166</p> <p>7.4.7 Mechanical Properties of Calcium Phosphates 167</p> <p>7.5 Calcium Phosphate Cement (CPC) 167</p> <p>7.5.1 CPC Chemistry 168</p> <p>7.5.2 CPC Setting (Hardening) Mechanism 168</p> <p>7.5.3 Microstructure of CPCs 168</p> <p>7.5.4 Properties of CPCs 169</p> <p>7.6 Calcium Sulfate 170</p> <p>7.7 Glasses 170</p> <p>7.7.1 Glass Transition Temperature (T<sub>g</sub>) 171</p> <p>7.7.2 Glass Viscosity 171</p> <p>7.7.3 Production of Glasses 172</p> <p>7.8 Chemically Unreactive Glasses 172</p> <p>7.9 Bioactive Glasses 173</p> <p>7.9.1 Bioactive Glass Composition 173</p> <p>7.9.2 Mechanism of Conversion to Hydroxyapatite 174</p> <p>7.9.3 Reactivity of Bioactive Glasses 175</p> <p>7.9.4 Mechanical Properties of Bioactive Glasses 176</p> <p>7.9.5 Release of Ions from Bioactive Glasses 177</p> <p>7.9.6 Applications of Bioactive Glasses 178</p> <p>7.10 Glass-Ceramics 179</p> <p>7.10.1 Production of Glass-Ceramics 179</p> <p>7.10.2 Bioactive Glass-Ceramics 180</p> <p>7.10.3 Chemically Unreactive Glass-Ceramics 181</p> <p>7.10.4 Lithium Disilicate Glass-Ceramics 181</p> <p>7.11 Concluding Remarks 183</p> <p><b>8 Synthetic Polymers I: Nondegradable Polymers </b><b>187</b></p> <p>8.1 Introduction 187</p> <p>8.2 Polymer Science Fundamentals 188</p> <p>8.2.1 Copolymers 188</p> <p>8.2.2 Linear and Crosslinked Molecules 189</p> <p>8.2.3 Molecular Symmetry and Stereoregularity 189</p> <p>8.2.4 Molecular Weight 190</p> <p>8.2.5 Molecular Conformation 192</p> <p>8.2.6 Glass Transition Temperature (T<sub>g</sub>) 193</p> <p>8.2.7 Semicrystalline Polymers 194</p> <p>8.2.8 Molecular Orientation in Amorphous and Semicrystalline Polymers 197</p> <p>8.3 Production of Polymers 198</p> <p>8.3.1 Polymer Synthesis 198</p> <p>8.3.2 Production Methods 199</p> <p>8.4 Mechanical Properties of Polymers 199</p> <p>8.4.1 Effect of Temperature 199</p> <p>8.4.2 Effect of Crystallinity 200</p> <p>8.4.3 Effect of Molecular Weight 200</p> <p>8.4.4 Effect of Molecular Orientation 200</p> <p>8.5 Thermoplastic Polymers 201</p> <p>8.5.1 Polyolefins 201</p> <p>8.5.2 Fluorinated Hydrocarbon Polymers 203</p> <p>8.5.3 Vinyl Polymers 204</p> <p>8.5.4 Acrylic Polymers 204</p> <p>8.5.5 Polyaryletherketones 205</p> <p>8.5.6 Polycarbonate, Polyethersulfone, and Polysulfone 206</p> <p>8.5.7 Polyesters 206</p> <p>8.5.8 Polyamides 206</p> <p>8.6 Elastomeric Polymers 207</p> <p>8.6.1 Polydimethylsiloxane (PDMS) 208</p> <p>8.7 Special Topic: Polyurethanes 209</p> <p>8.7.1 Production of Polyurethanes 209</p> <p>8.7.2 Structure–Property Relations in Polyurethanes 210</p> <p>8.7.3 Chemical Stability of Polyurethanes in vivo 211</p> <p>8.7.4 Biomedical Applications of Polyurethanes 212</p> <p>8.8 Water-soluble Polymers 212</p> <p>8.9 Concluding Remarks 213</p> <p><b>9 Synthetic Polymers II: Degradable Polymers </b><b>217</b></p> <p>9.1 Introduction 217</p> <p>9.2 Degradation of Polymers 217</p> <p>9.3 Erosion of Degradable Polymers 218</p> <p>9.4 Characterization of Degradation and Erosion 219</p> <p>9.5 Factors Controlling Polymer Degradation 219</p> <p>9.5.1 Chemical Structure 219</p> <p>9.5.2 pH 220</p> <p>9.5.3 Copolymerization 221</p> <p>9.5.4 Crystallinity 222</p> <p>9.5.5 Molecular Weight 222</p> <p>9.5.6 Water Uptake 223</p> <p>9.6 Factors Controlling Polymer Erosion 223</p> <p>9.6.1 Bulk Erosion 224</p> <p>9.6.2 Surface Erosion 224</p> <p>9.7 Design Criteria for Degradable Polymers 225</p> <p>9.8 Types of Degradable Polymers Relevant to Biomaterials 226</p> <p>9.8.1 Poly(α-hydroxy Esters) 226</p> <p>9.8.2 Polycaprolactone 230</p> <p>9.8.3 Polyanhydrides 231</p> <p>9.8.4 Poly(Ortho Esters) 233</p> <p>9.8.5 Polydioxanone 234</p> <p>9.8.6 Polyhydroxyalkanoates 235</p> <p>9.8.7 Poly(Propylene Fumarate) 236</p> <p>9.8.8 Polyacetals and Polyketals 237</p> <p>9.8.9 Poly(polyol sebacate) 238</p> <p>9.8.10 Polycarbonates 240</p> <p>9.9 Concluding Remarks 241</p> <p><b>10 Natural Polymers </b><b>245</b></p> <p>10.1 Introduction 245</p> <p>10.2 General Properties and Characteristics of Natural Polymers 246</p> <p>10.3 Protein-Based Natural Polymers 246</p> <p>10.3.1 Collagen 247</p> <p>10.3.2 Gelatin 255</p> <p>10.3.3 Silk 256</p> <p>10.3.4 Elastin 259</p> <p>10.3.5 Fibrin 260</p> <p>10.3.6 Laminin 261</p> <p>10.4 Polysaccharide-Based Polymers 262</p> <p>10.4.1 Hyaluronic Acid 263</p> <p>10.4.2 Sulfated Polysaccharides 265</p> <p>10.4.3 Alginates 267</p> <p>10.4.4 Chitosan 269</p> <p>10.4.5 Agarose 271</p> <p>10.4.6 Cellulose 272</p> <p>10.4.7 Bacterial (Microbial) Cellulose 274</p> <p>10.5 Concluding Remarks 275</p> <p><b>11 Hydrogels </b><b>279</b></p> <p>11.1 Introduction 279</p> <p>11.2 Characteristics of Hydrogels 279</p> <p>11.3 Types of Hydrogels 281</p> <p>11.4 Creation of Hydrogels 281</p> <p>11.4.1 Chemical Hydrogels 281</p> <p>11.4.2 Physical Hydrogels 282</p> <p>11.5 Characterization of Sol to Gel Transition 284</p> <p>11.6 Swelling Behavior of Hydrogels 285</p> <p>11.6.1 Theory of Swelling 285</p> <p>11.6.2 Determination of Swelling Parameters 288</p> <p>11.7 Mechanical Properties of Hydrogels 289</p> <p>11.8 Transport Properties of Hydrogels 289</p> <p>11.9 Surface Properties of Hydrogels 290</p> <p>11.10 Environmentally Responsive Hydrogels 291</p> <p>11.10.1 pH Responsive Hydrogels 291</p> <p>11.10.2 Temperature Responsive Hydrogels 293</p> <p>11.11 Synthetic Hydrogels 294</p> <p>11.11.1 Polyethylene Glycol and Polyethylene Oxide 294</p> <p>11.11.2 Polyvinyl Alcohol 297</p> <p>11.11.3 Polyhydroxyethyl Methacrylate 298</p> <p>11.11.4 Polyacrylic Acid and Polymethacrylic Acid 298</p> <p>11.11.5 Poly(N-isopropyl acrylamide) 298</p> <p>11.12 Natural Hydrogels 299</p> <p>11.13 Applications of Hydrogels 301</p> <p>11.13.1 Drug Delivery 301</p> <p>11.13.2 Cell Encapsulation and Immunoisolation 302</p> <p>11.13.3 Scaffolds for Tissue Engineering 302</p> <p>11.14 Concluding Remarks 303</p> <p><b>12 Composite Biomaterials </b><b>307</b></p> <p>12.1 Introduction 307</p> <p>12.2 Types of Composites 307</p> <p>12.3 Mechanical Properties of Composites 307</p> <p>12.3.1 Mechanical Properties of Fiber Composites 308</p> <p>12.3.2 Mechanical Properties of Particulate Composites 309</p> <p>12.4 Biomedical Applications of Composites 311</p> <p>12.5 Concluding Remarks 313</p> <p><b>13 Surface Modification and Biological Functionalization of Biomaterials </b><b>315</b></p> <p>13.1 Introduction 315</p> <p>13.2 Surface Modification 315</p> <p>13.3 Surface Modification Methods 316</p> <p>13.4 Plasma Processes 317</p> <p>13.4.1 Plasma Treatment Principles 317</p> <p>13.4.2 Advantages and Drawbacks of Plasma Treatment 318</p> <p>13.4.3 Applications of Plasma Treatment 318</p> <p>13.5 Chemical Vapor Deposition 319</p> <p>13.5.1 Chemical Vapor Deposition of Inorganic Films 319</p> <p>13.5.2 Chemical Vapor Deposition of Polymer Films 319</p> <p>13.6 Physical Techniques for Surface Modification 322</p> <p>13.7 Parylene Coating 322</p> <p>13.8 Radiation Grafting 323</p> <p>13.9 Chemical Reactions 323</p> <p>13.10 Solution Processing of Coatings 324</p> <p>13.10.1 Silanization 324</p> <p>13.10.2 Langmuir–Blodgett Films 325</p> <p>13.10.3 Self-Assembled Monolayers 328</p> <p>13.10.4 Layer-by-Layer Deposition 329</p> <p>13.11 Biological Functionalization of Biomaterials 330</p> <p>13.11.1 Immobilization Methods 331</p> <p>13.11.2 Physical Immobilization 331</p> <p>13.11.3 Chemical Immobilization 332</p> <p>13.11.4 Heparin Modification of Biomaterials 334</p> <p>13.12 Concluding Remarks 337</p> <p><b>Part IV Degradation of Biomaterials in the Physiological Environment </b><b>339</b></p> <p><b>14 Degradation of Metallic and Ceramic Biomaterials </b><b>341</b></p> <p>14.1 Introduction 341</p> <p>14.2 Corrosion of Metals 342</p> <p>14.2.1 Principles of Metal Corrosion 342</p> <p>14.2.2 Rate of Corrosion 345</p> <p>14.2.3 Pourbaix Diagrams 346</p> <p>14.2.4 Types of Electrochemical Corrosion 347</p> <p>14.3 Corrosion of Metal Implants in the Physiological Environment 349</p> <p>14.3.1 Minimizing Metal Implant Corrosion in vivo 351</p> <p>14.4 Degradation of Ceramics 351</p> <p>14.4.1 Degradation by Dissolution and Disintegration 351</p> <p>14.4.2 Cell-Mediated Degradation 352</p> <p>14.5 Concluding Remarks 353</p> <p><b>15 Degradation of Polymeric Biomaterials </b><b>355</b></p> <p>15.1 Introduction 355</p> <p>15.2 Hydrolytic Degradation 356</p> <p>15.2.1 Hydrolytic Degradation Pathways 356</p> <p>15.2.2 Role of the Physiological Environment 357</p> <p>15.2.3 Effect of Local pH Changes 357</p> <p>15.2.4 Effect of Inorganic Ions 358</p> <p>15.2.5 Effect of Bacteria 358</p> <p>15.3 Enzyme-Catalyzed Hydrolysis 358</p> <p>15.3.1 Principles of Enzyme-Catalyzed Hydrolysis 359</p> <p>15.3.2 Role of Enzymes in Hydrolytic Degradation in vitro 360</p> <p>15.3.3 Role of Enzymes in Hydrolytic Degradation in vivo 362</p> <p>15.4 Oxidative Degradation 362</p> <p>15.4.1 Principles of Oxidative Degradation 363</p> <p>15.4.2 Production of Radicals and Reactive Species in vivo 363</p> <p>15.4.3 Role of Radicals and Reactive Species in Degradation 366</p> <p>15.4.4 Oxidative Degradation of Polymeric Biomaterials 367</p> <p>15.5 Other Types of Degradation 369</p> <p>15.5.1 Stress Cracking 369</p> <p>15.5.2 Metal Ion-Induced Oxidative Degradation 370</p> <p>15.5.3 Oxidative Degradation Induced by the External Environment 370</p> <p>15.6 Concluding Remarks 371</p> <p><b>Part V Biocompatibility Phenomena </b><b>373</b></p> <p><b>16 Biocompatibility Fundamentals </b><b>375</b></p> <p>16.1 Introduction 375</p> <p>16.2 Biocompatibility Phenomena with Implanted Devices 375</p> <p>16.2.1 Consequences of Failed Biocompatibility 376</p> <p>16.2.2 Basic Pattern of Biocompatibility Processes 377</p> <p>16.3 Protein and Cell Interactions with Biomaterial Surfaces 378</p> <p>16.3.1 Protein Adsorption onto Biomaterials 378</p> <p>16.3.2 Cell–Biomaterial Interactions 378</p> <p>16.4 Cells and Organelles 380</p> <p>16.4.1 Plasma Membrane 380</p> <p>16.4.2 Cell Nucleus 382</p> <p>16.4.3 Ribosomes, Endoplasmic Reticulum, and the Golgi Apparatus 384</p> <p>16.4.4 Mitochondria 386</p> <p>16.4.5 Cytoskeleton 386</p> <p>16.4.6 Cell Contacts and Membrane Receptors 388</p> <p>16.5 Extracellular Matrix and Tissues 389</p> <p>16.5.1 Components of the Extracellular Matrix 389</p> <p>16.5.2 Attachment Factors 389</p> <p>16.5.3 Cell Adhesion Molecules 390</p> <p>16.5.4 Molecular and Physical Factors in Cell Attachment 391</p> <p>16.5.5 Tissue Types and Origins 391</p> <p>16.6 Plasma and Blood Cells 393</p> <p>16.6.1 Erythrocytes 393</p> <p>16.6.2 Leukocytes 395</p> <p>16.7 Platelet Adhesion to Biomaterial Surfaces 396</p> <p>16.8 Platelets and the Coagulation Process 396</p> <p>16.9 Cell Types and Their Roles in Biocompatibility Phenomena 398</p> <p>16.10 Concluding Remarks 399</p> <p><b>17 Mechanical Factors in Biocompatibility Phenomena </b><b>401</b></p> <p>17.1 Introduction 401</p> <p>17.2 Stages and Mechanisms of Mechanotransduction 401</p> <p>17.2.1 Force Transduction Pathways 401</p> <p>17.2.2 Signal Transduction Pathways and Other Mechanisms 403</p> <p>17.2.3 Mechanisms of Cellular Response 404</p> <p>17.3 Mechanical Stress-Induced Biocompatibility Phenomena 407</p> <p>17.3.1 Implantable Devices in Bone Healing 407</p> <p>17.3.2 Implantable Devices in the Cardiovascular System 408</p> <p>17.3.3 Soft Tissue Healing 410</p> <p>17.3.4 Stem Cells in Tissue Engineering 411</p> <p>17.4 Outcomes of Transduction of Extracellular Stresses and Responses 414</p> <p>17.5 Concluding Remarks 414</p> <p><b>18 Inflammatory Reactions to Biomaterials </b><b>417</b></p> <p>18.1 Introduction 417</p> <p>18.2 Implant Interaction with Plasma Proteins 418</p> <p>18.3 Formation of Provisional Matrix 418</p> <p>18.4 Acute Inflammation and Neutrophils 419</p> <p>18.4.1 Neutrophil Activation and Extravasation 419</p> <p>18.4.2 Formation of Reactive Oxygen Species 421</p> <p>18.4.3 Phagocytosis by Neutrophils 421</p> <p>18.4.4 Neutrophil Extracellular Traps (NETs) 421</p> <p>18.4.5 Neutrophil Apoptosis 423</p> <p>18.5 Chronic Inflammation and Macrophages 423</p> <p>18.5.1 Macrophage Differentiation and Recruitment to Implant Surfaces 423</p> <p>18.5.2 Phagocytosis by M1 Macrophages 424</p> <p>18.5.3 Generation of Oxidative Radicals by M1 Macrophages 425</p> <p>18.5.4 Anti-inflammatory Activities of M2 Macrophages 425</p> <p>18.6 Granulation Tissue 426</p> <p>18.7 Foreign Body Response 427</p> <p>18.8 Fibrosis and Fibrous Encapsulation 429</p> <p>18.9 Resolution of Inflammation 430</p> <p>18.10 Inflammation and Biocompatibility 431</p> <p>18.11 Concluding Remarks 433</p> <p><b>19 Immune Responses to Biomaterials </b><b>437</b></p> <p>19.1 Introduction 437</p> <p>19.2 Adaptive Immune System 437</p> <p>19.2.1 Lymphocyte Origins of Two Types of Adaptive Immune Defense 438</p> <p>19.2.2 Antibody Characteristics and Classes 438</p> <p>19.2.3 Major Histocompatibility Complex and Self-Tolerance 439</p> <p>19.2.4 B Cell Activation and Release of Antibodies 440</p> <p>19.2.5 T Cell Development and Cell-Mediated Immunity 440</p> <p>19.3 The Complement System 443</p> <p>19.4 Adaptive Immune Responses to Biomaterials 443</p> <p>19.4.1 Hypersensitivity Responses 444</p> <p>19.4.2 Immune Responses to Protein-Based Biomaterials and Complexes 445</p> <p>19.5 Designing Biomaterials to Modulate Immune Responses 446</p> <p>19.6 Concluding Remarks 447</p> <p><b>20 Implant-Associated Infections </b><b>449</b></p> <p>20.1 Introduction 449</p> <p>20.2 Bacteria Associated with Implant Infections 450</p> <p>20.3 Biofilms and their Characteristics 450</p> <p>20.4 Sequence of Biofilm Formation on Implant Surfaces 451</p> <p>20.4.1 Passive Reversible Adhesion of Bacteria to Implant Surface 452</p> <p>20.4.2 Specific Irreversible Attachment of Bacteria to Implant Surface 452</p> <p>20.4.3 Microcolony Expansion and Formation of Biofilm Matrix 452</p> <p>20.4.4 Biofilm Maturation and Tower Formation 453</p> <p>20.4.5 Dispersal and Return to Planktonic State 453</p> <p>20.5 Effect of Biomaterial Characteristics on Bacterial Adhesion 453</p> <p>20.6 Biofilm Shielding of Infection from Host Defenses and Antibiotics 454</p> <p>20.7 Effects of Biofilm on Host Tissues and Biomaterial Interactions 454</p> <p>20.8 Strategies for Controlling Implant Infections 456</p> <p>20.8.1 Orthopedic Implants Designed for Rapid Tissue Integration 456</p> <p>20.8.2 Surface Nanotopography 457</p> <p>20.8.3 Silver Nanoparticles 458</p> <p>20.8.4 Anti-biofilm Polysaccharides 458</p> <p>20.8.5 Bacteriophage Therapy 458</p> <p>20.8.6 Mechanical Disruption 459</p> <p>20.9 Concluding Remarks 460</p> <p><b>21 Response to Surface Topography and Particulate Materials </b><b>463</b></p> <p>21.1 Introduction 463</p> <p>21.2 Effect of Biomaterial Surface Topography on Cell Response 464</p> <p>21.2.1 Microscale Surface Topography in Osseointegration 466</p> <p>21.2.2 Microscale and Nanoscale Patterned Surfaces in Macrophage Differentiation 469</p> <p>21.2.3 Microscale Patterned Surfaces in Neural Regeneration 470</p> <p>21.3 Biomaterial Surface Topography for Antimicrobial Activity 471</p> <p>21.3.1 Microscale Topography with Antimicrobial Activity 471</p> <p>21.3.2 Nanoscale Topography with Antimicrobial Activity 477</p> <p>21.4 Microparticle-Induced Host Responses 482</p> <p>21.4.1 Mechanisms of Microparticle Endocytosis 482</p> <p>21.4.2 Response to Microparticles 483</p> <p>21.4.3 Microparticle Distribution in the Organs 487</p> <p>21.4.4 The Inflammasome and Microparticle-Induced Inflammation 488</p> <p>21.4.5 Wear Debris-Induced Osteolysis 488</p> <p>21.5 Nanoparticle-Induced Host Responses 489</p> <p>21.5.1 Mechanisms of Nanoparticle Endocytosis 489</p> <p>21.5.2 Response to Nanoparticles 489</p> <p>21.5.3 Cytotoxicity Effects of Nanoparticles 492</p> <p>21.6 Concluding Remarks 496</p> <p><b>22 Tests of Biocompatibility of Prospective Implant Materials </b><b>499</b></p> <p>22.1 Introduction 499</p> <p>22.2 Biocompatibility Standards and Regulations 499</p> <p>22.2.1 ISO 10993 499</p> <p>22.2.2 FDA Guidelines and Requirements 500</p> <p>22.3 In vitro Biocompatibility Test Procedures 500</p> <p>22.3.1 Cytotoxicity Tests 500</p> <p>22.3.2 Genotoxicity Tests 502</p> <p>22.3.3 Hemocompatibility Tests 504</p> <p>22.4 In vivo Biocompatibility Test Procedures 507</p> <p>22.4.1 Implantation Tests 507</p> <p>22.4.2 Thrombogenicity Tests 509</p> <p>22.4.3 Irritation and Sensitization Tests 510</p> <p>22.4.4 Systemic Toxicity Tests 511</p> <p>22.5 Clinical Trials of Biomaterials 511</p> <p>22.6 FDA Review and Approval 512</p> <p>22.7 Case Study: The Proplast Temporomandibular Joint 512</p> <p>22.8 Concluding Remarks 513</p> <p><b>Part VI Applications of Biomaterials </b><b>515</b></p> <p><b>23 Biomaterials for Hard Tissue Repair </b><b>517</b></p> <p>23.1 Introduction 517</p> <p>23.2 Healing of Bone Fracture 518</p> <p>23.2.1 Mechanism of Fracture Healing 518</p> <p>23.2.2 Internal Fracture Fixation Devices 520</p> <p>23.3 Healing of Bone Defects 521</p> <p>23.3.1 Bone Defects 521</p> <p>23.3.2 Bone Grafts 521</p> <p>23.3.3 Bone Graft Substitutes 523</p> <p>23.3.4 Healing of Nonstructural Bone Defects 527</p> <p>23.3.5 Healing of Structural Bone Defects 532</p> <p>23.4 Total Joint Replacement 535</p> <p>23.4.1 Total Hip Arthroplasty 535</p> <p>23.4.2 Total Knee Arthroplasty 536</p> <p>23.5 Spinal Fusion 536</p> <p>23.5.1 Biomaterials for Spinal Fusion 538</p> <p>23.6 Dental Implants and Restorations 539</p> <p>23.6.1 Dental Implants 539</p> <p>23.6.2 Direct Dental Restorations 539</p> <p>23.6.3 Indirect Dental Restorations 540</p> <p>23.7 Concluding Remarks 543</p> <p><b>24 Biomaterials for Soft Tissue Repair </b><b>547</b></p> <p>24.1 Introduction 547</p> <p>24.2 Surgical Sutures and Adhesives 548</p> <p>24.2.1 Sutures 548</p> <p>24.2.2 Soft Tissue Adhesives 549</p> <p>24.3 The Cardiovascular System 550</p> <p>24.3.1 The Heart 550</p> <p>24.3.2 The Circulatory System 551</p> <p>24.4 Vascular Grafts 551</p> <p>24.4.1 Desirable Properties and Characteristics of Synthetic Vascular Grafts 552</p> <p>24.4.2 Synthetic Vascular Graft Materials 552</p> <p>24.4.3 Patency of Vascular Grafts 552</p> <p>24.5 Balloon Angioplasty 555</p> <p>24.6 Intravascular Stents 556</p> <p>24.6.1 Bare-Metal Stents 556</p> <p>24.6.2 Drug-Eluting Stents 557</p> <p>24.6.3 Degradable Stents 557</p> <p>24.7 Prosthetic Heart Valves 558</p> <p>24.7.1 Mechanical Valves 558</p> <p>24.7.2 Bioprosthetic Valves 559</p> <p>24.8 Ophthalmologic Applications 560</p> <p>24.8.1 Contact Lenses 561</p> <p>24.8.2 Intraocular Lenses 563</p> <p>24.9 Skin Wound Healing 566</p> <p>24.9.1 Skin Wound Healing Fundamentals 567</p> <p>24.9.2 Complicating Factors in Skin Wound Healing 569</p> <p>24.9.3 Biomaterials-Based Therapies 569</p> <p>24.9.4 Nanoparticle-Based Therapies 574</p> <p>24.10 Concluding Remarks 576</p> <p><b>25 Biomaterials for Tissue Engineering and Regenerative Medicine </b><b>581</b></p> <p>25.1 Introduction 581</p> <p>25.2 Principles of Tissue Engineering and Regenerative Medicine 582</p> <p>25.2.1 Cells for Tissue Engineering 584</p> <p>25.2.2 Biomolecules and Nutrients for in vitro Cell Culture 587</p> <p>25.2.3 Growth Factors for Tissue Engineering 587</p> <p>25.2.4 Cell Therapy 588</p> <p>25.2.5 Gene Therapy 589</p> <p>25.3 Biomaterials and Scaffolds for Tissue Engineering 589</p> <p>25.3.1 Properties of Scaffolds for Tissue Engineering 589</p> <p>25.3.2 Biomaterials for Tissue Engineering Scaffolds 591</p> <p>25.3.3 Porous Solids 591</p> <p>25.3.4 Hydrogels 594</p> <p>25.3.5 Extracellular Matrix (ECM) Scaffolds 594</p> <p>25.4 Creation of Scaffolds for Tissue Engineering 595</p> <p>25.4.1 Creation of Scaffolds in the Form of Porous Solids 596</p> <p>25.4.2 Electrospinning 601</p> <p>25.4.3 Additive Manufacturing (3D Printing) Techniques 603</p> <p>25.4.4 Formation of Hydrogel Scaffolds 608</p> <p>25.4.5 Preparation of Extracellular Matrix (ECM) Scaffolds 608</p> <p>25.5 Three-dimensional Bioprinting 609</p> <p>25.5.1 Inkjet-Based Bioprinting 609</p> <p>25.5.2 Microextrusion-Based Bioprinting 611</p> <p>25.6 Tissue Engineering Techniques for the Regeneration of Functional Tissues and Organs 614</p> <p>25.6.1 Bone Tissue Engineering 614</p> <p>25.6.2 Articular Cartilage Tissue Engineering 615</p> <p>25.6.3 Tissue Engineering of Articular Joints 618</p> <p>25.6.4 Tissue Engineering of Tendons and Ligaments 621</p> <p>25.6.5 Skin Tissue Engineering 624</p> <p>25.6.6 Bladder Tissue Engineering 626</p> <p>25.7 Concluding Remarks 629</p> <p><b>26 Biomaterials for Drug Delivery </b><b>633</b></p> <p>26.1 Introduction 633</p> <p>26.2 Controlled Drug Release 634</p> <p>26.2.1 Drug Delivery Systems 636</p> <p>26.2.2 Mechanisms of Drug Release 636</p> <p>26.3 Designing Biomaterials for Drug Delivery Systems 638</p> <p>26.4 Microparticle-based Delivery Systems 638</p> <p>26.4.1 Preparation of Polymer Microsphere Delivery Systems 639</p> <p>26.4.2 Applications of Microparticle Delivery Systems 640</p> <p>26.5 Hydrogel-based Delivery Systems 640</p> <p>26.5.1 Environmentally Responsive Drug Delivery Systems 641</p> <p>26.5.2 Drug Delivery Systems Responsive to External Physical Stimuli 644</p> <p>26.6 Nanoparticle-based Delivery Systems 648</p> <p>26.6.1 Distribution and Fate of Nanoparticle-based Drug Delivery Systems 649</p> <p>26.6.2 Targeting of Nanoparticles to Cells 650</p> <p>26.6.3 Polymer-based Nanoparticle Systems 653</p> <p>26.6.4 Lipid-based Nanoparticle Systems 655</p> <p>26.6.5 Polymer Conjugates 663</p> <p>26.6.6 Dendrimers 666</p> <p>26.6.7 Inorganic Nanoparticles 667</p> <p>26.7 Delivery of Ribonucleic Acid (RNA) 668</p> <p>26.7.1 Chemical Modification of siRNA 670</p> <p>26.7.2 Biomaterials for siRNA Delivery 671</p> <p>26.8 Biological Drug Delivery Systems 675</p> <p>26.8.1 Exosomes for Therapeutic Biomolecule Delivery 675</p> <p>26.9 Concluding Remarks 676</p> <p>Index 681</p>
<p><b>Mohamed N. Rahaman,</b> Professor Emeritus of Materials Science and Engineering, Missouri University of Science and Technology, USA. Dr. Rahaman is a Fellow of the American Ceramic Society, the author of five textbooks, the author and co-author of over 280 reviewed journal articles and conference proceedings, and the co-inventor on three US patents in the area of medical devices.</p> <p><b> Roger F. Brown,</b> Professor Emeritus of Biological Sciences, Missouri University of Science and Technology, USA. Dr Brown is the author and co-author of over 60 reviewed journal articles and conference proceedings, and is a co-inventor on one US patent pertaining to the use of bioactive borate glass microfibers for soft tissue repair.
<p><b>A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials </b></p> <p>Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. <i>Materials for Biomedical Engineering: Fundamentals and Applications</i> provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. <p>Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. <ul><li>Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations</li> <li>Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications</li> <li>Features a thorough overview of the history, properties, and applications of biomaterials</li> <li>Includes numerous homework, review, and examination problems, full references, and further reading suggestions</li></ul> <p><i>Materials for Biomedical Engineering: Fundamentals and Applications</i> is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €