Details

March's Advanced Organic Chemistry


March's Advanced Organic Chemistry

Reactions, Mechanisms, and Structure
8. Aufl.

von: Michael B. Smith

134,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.12.2019
ISBN/EAN: 9781119371786
Sprache: englisch
Anzahl Seiten: 2144

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The completely revised and updated, definitive resource for students and professionals in organic chemistry</b></p> <p>The revised and updated 8th edition of <i>March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure</i> explains the theories of organic chemistry with examples and reactions. This book is the most comprehensive resource about organic chemistry available. Readers are guided on the planning and execution of multi-step synthetic reactions, with detailed descriptions of all the reactions</p> <p>The opening chapters of <i>March's Advanced Organic Chemistry, 8<sup>th</sup> Edition</i> deal with the structure of organic compounds and discuss important organic chemistry bonds, fundamental principles of conformation, and stereochemistry of organic molecules, and reactive intermediates in organic chemistry. Further coverage concerns general principles of mechanism in organic chemistry, including acids and bases, photochemistry, sonochemistry and microwave irradiation. The relationship between structure and reactivity is also covered. The final chapters cover the nature and scope of organic reactions and their mechanisms. <br /><br />This edition:</p> <ul> <li>Provides revised examples and citations that reflect advances in areas of organic chemistry published between 2011 and 2017</li> <li>Includes appendices on the literature of organic chemistry and the classification of reactions according to the compounds prepared</li> <li>Instructs the reader on preparing and conducting multi-step synthetic reactions, and provides complete descriptions of each reaction </li> </ul> <p>The 8th edition of <i>March's Advanced Organic Chemistry</i> proves once again that it is a must-have desktop reference and textbook for every student and professional working in organic chemistry or related fields.</p>
<p>New Reaction Sections Correlation: 7th Edition → 8th Edition xv</p> <p>Preface xxi</p> <p>Common Abbreviations xxv</p> <p>Biographical Statement xxxi</p> <p>New Features of the 8<sup>th</sup> Edition xxxiii</p> <p><b>Part I Introduction 1</b></p> <p><b>1. Localized Chemical Bonding 3</b></p> <p>1.A. Covalent Bonding 3</p> <p>1.B. Multiple Valence 7</p> <p>1.C. Hybridization 7</p> <p>1.D. Multiple Bonds 9</p> <p>1.E. Photoelectron Spectroscopy 12</p> <p>1.F. Electronic Structures of Molecules 15</p> <p>1.G. Electronegativity 17</p> <p>1.H. Dipole Moment 19</p> <p>1.I. Inductive and Field Effects 20</p> <p>1.J. Bond Distances 23</p> <p>1.K. Bond Angles 27</p> <p>1.L. Bond Energies 29</p> <p><b>2. Delocalized Chemical Bonding 33</b></p> <p>2.A. Molecular Orbitals 34</p> <p>2.B. Bond Energies and Distances in Compounds Containing Delocalized Bonds 37</p> <p>2.C. Molecules that have Delocalized Bonds 39</p> <p>2.D. Cross Conjugation 44</p> <p>2.E. The Rules of Resonance 46</p> <p>2.F. The Resonance Effect 48</p> <p>2.G. Steric Inhibition of Resonance and the Influences of Strain 48</p> <p>2.H. <i>p</i>π–<i>d</i>π Bonding: Ylids 52</p> <p>2.I. Aromaticity 54</p> <p>2.I.i. Six-Membered Rings 58</p> <p>2.I.ii. Five-, Seven-, and Eight-Membered Rings 62</p> <p>2.I.iii. Other Systems Containing Aromatic Sextets 67</p> <p>2.J. Alternant and Nonalternant Hydrocarbons 68</p> <p>2.K. Aromatic Systems with Electron Numbers Other Than Six 70</p> <p>2.K.i. Systems of Two Electrons 72</p> <p>2.K.ii. Systems of Four Electrons: Antiaromaticity 73</p> <p>2.K.iii. Systems of Eight Electrons 76</p> <p>2.K.iv. Systems of Ten Electrons 77</p> <p>2.K.v. Systems of More than Ten Electrons: 4<i>n </i>+ 2 Electrons 80</p> <p>2.K.vi. Systems of More Than Ten Electrons: 4<i>n </i>Electrons 85</p> <p>2.L. Other Aromatic Compounds 89</p> <p>2.M. Hyperconjugation 92</p> <p>2.N. Tautomerism 96</p> <p>2.N.i. Keto–Enol Tautomerism 97</p> <p>2.N.ii. Other Proton-Shift Tautomerism 100</p> <p><b>3. Bonding Weaker Than Covalent 105</b></p> <p>3.A. Hydrogen Bonding 105</p> <p>3.B. π–π Interactions 113</p> <p>3.C. Addition Compounds 114</p> <p>3.C.i. Electron Donor–Acceptor (EDA) Complexes 114</p> <p>3.C.ii. Crown Ether Complexes and Cryptates 117</p> <p>3.C.iii. Inclusion Compounds 122</p> <p>3.C.iv. Cyclodextrins 125</p> <p>3.D. Catenanes and Rotaxanes 127</p> <p>3.E. Cucurbit[<i>n</i>]Uril-Based Gyroscane 131</p> <p><b>4. Stereochemistry and Conformation 133</b></p> <p>4.A. Optical Activity and Chirality 133</p> <p>4.B. Dependence of Rotation on Conditions of Measurement 135</p> <p>4.C. What Kinds of Molecules Display Optical Activity? 136</p> <p>4.D. The Fischer Projection 147</p> <p>4.E. Absolute Configuration 148</p> <p>4.E.i. The Cahn-Ingold-Prelog System 150</p> <p>4.E.ii. Methods of Determining Configuration 152</p> <p>4.F. The Cause of Optical Activity 156</p> <p>4.G. Molecules with More Than One Stereogenic Center 157</p> <p>4.H. Asymmetric Synthesis 161</p> <p>4.I. Methods of Resolution 166</p> <p>4.J. Optical Purity 173</p> <p>4.K. <i>Cis</i>–<i>Trans </i>Isomerism 175</p> <p>4.K.i. <i>Cis</i>–<i>Trans </i>Isomerism Resulting from Double Bonds 175</p> <p>4.K.ii. <i>Cis</i>–<i>Trans </i>Isomerism of Monocyclic Compounds 179</p> <p>4.K.iii. <i>Cis</i>–<i>Trans </i>Isomerism of Fused and Bridged Ring Systems 180</p> <p>4.L. <i>Out</i>–<i>In </i>Isomerism 181</p> <p>4.M. Enantiotopic and Diastereotopic Atoms, Groups, and Faces 183</p> <p>4.N. Stereospecific and Stereoselective Syntheses 186</p> <p>4.O. Conformational Analysis 187</p> <p>4.O.i. Conformation in Open-Chain Systems 188</p> <p>4.O.ii. Conformation in Six-Membered Rings 194</p> <p>4.O.iii. Conformation in Six-Membered Rings Containing Heteroatoms 199</p> <p>4.O.iv. Conformation in Other Rings 202</p> <p>4.P. Molecular Mechanics 204</p> <p>4.Q. Strain 206</p> <p>4.Q.i. Strain in Small Rings 207</p> <p>4.Q.ii. Strain in Other Rings 213</p> <p>4.Q.iii. Unsaturated Rings 215</p> <p>4.Q.iv. Strain Due to Unavoidable Crowding 218</p> <p><b>5. Carbocations, Carbanions, Free Radicals, Carbenes, and Nitrenes 223</b></p> <p>5.A. Carbocations 224</p> <p>5.A.i. Nomenclature 224</p> <p>5.A.ii. Stability and Structure of Carbocations 224</p> <p>5.A.iii. The Generation and Fate of Carbocations 234</p> <p>5.B. Carbanions 237</p> <p>5.B.i. Stability and Structure 237</p> <p>5.B.ii. The Structure of Organometallic Compounds 244</p> <p>5.B.iii. The Generation and Fate of Carbanions 249</p> <p>5.C. Free Radicals 250</p> <p>5.C.i. Stability and Structure 250</p> <p>5.C.ii. The Generation and Fate of Free Radicals 261</p> <p>5.C.iii. Radical Ions 265</p> <p>5.D. Carbenes 266</p> <p>5.D.i. Stability and Structure 266</p> <p>5.D.ii. The Generation and Fate of Carbenes 269</p> <p>5.D.iii. <i>N</i>-Heterocyclic Carbenes (NHCs) 274</p> <p>5.E. Nitrenes 276</p> <p><b>6. Mechanisms and Methods of Determining Them 279</b></p> <p>6.A. Types of Mechanism 279</p> <p>6.B. Types of Reaction 280</p> <p>6.C. Thermodynamic Requirements for Reaction 283</p> <p>6.D. Kinetic Requirements for Reaction 284</p> <p>6.E. The Baldwin Rules for Ring Closure 288</p> <p>6.F. Kinetic and Thermodynamic Control 290</p> <p>6.G. The Hammond Postulate 291</p> <p>6.H. Microscopic Reversibility 291</p> <p>6.I. Marcus Theory 292</p> <p>6.J. Methods of Determining Mechanisms 293</p> <p>6.J.i. Identification of Products 293</p> <p>6.J.ii. Determination of the Presence of an Intermediate 294</p> <p>6.J.iii. The Study of Catalysis 295</p> <p>6.J.iv. Isotopic Labeling 296</p> <p>6.J.v. Stereochemical Evidence 296</p> <p>6.J.vi. Kinetic Evidence 297</p> <p>6.J.vii. Isotope Effects 304</p> <p>6.K. Catalyst Development 308</p> <p><b>7. Irradiation Processes and Techniques that Influence Reactions in Organic Chemistry 313</b></p> <p>7.A. Photochemistry 314</p> <p>7.A.i. Excited States and the Ground State 314</p> <p>7.A.ii. Singlet and Triplet States: “Forbidden” Transitions 316</p> <p>7.A.iii. Types of Excitation 317</p> <p>7.A.iv. Nomenclature and Properties of Excited States 318</p> <p>7.A.v. Photolytic Cleavage 319</p> <p>7.A.vi. The Fate of the Excited Molecule: Physical Processes 320</p> <p>7.A.vii. The Fate of the Excited Molecule: Chemical Processes 325</p> <p>7.A.viii. The Determination of Photochemical Mechanisms 330</p> <p>7.B. Sonochemistry 331</p> <p>7.C. Microwave Chemistry 334</p> <p>7.D. Flow Chemistry 336</p> <p>7.E. Mechanochemistry 338</p> <p><b>8. Acids and Bases 339</b></p> <p>8.A. Brønsted Theory 339</p> <p>8.A.i. Brønsted Acids 340</p> <p>8.A.ii. Brønsted Bases 347</p> <p>8.B. The Mechanism of Proton Transfer Reactions 350</p> <p>8.C. Measurements of Solvent Acidity 352</p> <p>8.D. Acid and Base Catalysis 355</p> <p>8.E. Lewis Acids and Bases 357</p> <p>8.E.i. Hard–Soft Acids–Bases 359</p> <p>8.F. The Effects of Structure on the Strengths of Acids and Bases 361</p> <p>8.G. The Effects of the Medium on Acid and Base Strength 370</p> <p><b>9. Effects of Structure and Medium on Reactivity 375</b></p> <p>9.A. Resonance and Field Effects 375</p> <p>9.B. Steric Effects 377</p> <p>9.C. Quantitative Treatments of the Effect of Structure on Reactivity 380</p> <p>9.D. Effect of Medium on Reactivity and Rate 390</p> <p>9.E. High Pressure 390</p> <p>9.F. Water and Other Nonorganic Solvents 391</p> <p>9.G. Ionic Liquid Solvents 393</p> <p>9.H. Solventless Reactions 395</p> <p><b>Part II Introduction 397</b></p> <p><b>10. Aliphatic Substitution, Nucleophilic and Organometallic 403</b></p> <p>10.A. Mechanisms 404</p> <p>10.A.i. The S<sub>N</sub>2 Mechanism 404</p> <p>10.A.ii. The S<sub>N</sub>1 Mechanism 410</p> <p>10.A.iii. Ion Pairs in the S<sub>N</sub>1 Mechanism 414</p> <p>10.A.iv. Mixed S<sub>N</sub>1 and S<sub>N</sub>2 Mechanisms 418</p> <p>10.B. SET Mechanisms 420</p> <p>10.C. The Neighboring-Group Mechanism 422</p> <p>10.C.i. Neighboring-Group Participation by π and σ Bonds: Nonclassical Carbocations 425</p> <p>10.D. The S<sub>N</sub>i Mechanism 440</p> <p>10.E. Nucleophilic Substitution at an Allylic Carbon: Allylic Rearrangements 441</p> <p>10.F. Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism 445</p> <p>10.G. Reactivity 449</p> <p>10.G.i. The Effect of Substrate Structure 449</p> <p>10.G.ii. The Effect of the Attacking Nucleophile 457</p> <p>10.G.iii. The Effect of the Leaving Group 464</p> <p>10.G.iv. The Effect of the Reaction Medium 469</p> <p>10.G.v. Phase-Transfer Catalysis 474</p> <p>10.G.vi. Influencing Reactivity by External Means 477</p> <p>10.G.vii. Ambident (Bidentant) Nucleophiles: Regioselectivity 478</p> <p>10.G.viii. Ambident Substrates 481</p> <p>10.H. Reactions 483</p> <p>10.H.i. Oxygen Nucleophiles 483</p> <p>10.H.ii. Sulfur Nucleophiles 506</p> <p>10.H.iii. Nitrogen Nucleophiles 512</p> <p>10.H.iv. Halogen Nucleophiles 534</p> <p>10.H.v. Carbon Nucleophiles 545</p> <p><b>11. Aromatic Substitution, Electrophilic 607</b></p> <p>11.A. Mechanisms 607</p> <p>11.A.i. The Arenium Ion Mechanism 608</p> <p>11.A.ii. The S<sub>E</sub>1 Mechanism 613</p> <p>11.B. Orientation and Reactivity 614</p> <p>11.B.i. Orientation and Reactivity in Monosubstituted Benzene Rings 614</p> <p>11.B.ii. The <i>Ortho</i>/<i>Para </i>Ratio 618</p> <p>11.B.iii. Ipso Attack 620</p> <p>11.B.iv. Orientation in Benzene Rings with More Than One Substituent 621</p> <p>11.B.v. Orientation in Other Ring Systems 622</p> <p>11.C. Quantitative Treatments of Reactivity in the Substrate 624</p> <p>11.D. A Quantitative Treatment of Reactivity of the Electrophile: The Selectivity Relationship 626</p> <p>11.E. The Effect of the Leaving Group 628</p> <p>11.F. Reactions 629</p> <p>11.F.i. Hydrogen as the Leaving Group in Simple Substitution Reactions 629</p> <p>11.F.ii. Hydrogen as the Leaving Group in Rearrangement Reactions 675</p> <p>11.F.iii. Other Leaving Groups 680</p> <p><b>12. Aliphatic, Alkenyl, and Alkynyl Substitution: Electrophilic and Organometallic 687</b></p> <p>12.A. Mechanisms 687</p> <p>12.A.i. Bimolecular Mechanisms. S<sub>E</sub>2 and S<sub>E</sub>i 688</p> <p>12.A.ii. The SE1 Mechanism 691</p> <p>12.A.iii. Electrophilic Substitution Accompanied by Double-Bond Shifts 694</p> <p>12.A.iv. Other Mechanisms 695</p> <p>12.B. Reactivity 695</p> <p>12.C. Reactions 697</p> <p>12.C.i. Hydrogen as Leaving Group 697</p> <p>12.C.ii. Metals as Leaving Groups 733</p> <p>12.C.iii. Halogen as Leaving Group 746</p> <p>12.C.iv. Carbon Leaving Groups 751</p> <p>12.C.v. Electrophilic Substitution At Nitrogen 760</p> <p><b>13. Aromatic Substitution: Nucleophilic and Organometallic 767</b></p> <p>13.A. Mechanisms 768</p> <p>13.A.i. The S<sub>N</sub>Ar Mechanism 768</p> <p>13.A.ii. The S<sub>N</sub>1 Mechanism 771</p> <p>13.A.iii. The Benzyne Mechanism 772</p> <p>13.A.iv. The S<sub>RN</sub>1 Mechanism 774</p> <p>13.A.v. Other Mechanisms 776</p> <p>13.B. Reactivity 776</p> <p>13.B.i. The Effect of Substrate Structure 776</p> <p>13.B.ii. The Effect of the Leaving Group 778</p> <p>13.B.iii. The Effect of the Attacking Nucleophile 779</p> <p>13.C. Reactions 779</p> <p>13.C.i. All Leaving Groups Except Hydrogen and N<sub>2</sub>+ 779</p> <p>13.C.ii. Hydrogen as Leaving Group 823</p> <p>13.C.iii. Nitrogen as Leaving Group 824</p> <p>13.C.iv. Rearrangements 834</p> <p><b>14. Radical Reactions 839</b></p> <p>14.A. Mechanisms 839</p> <p>14.A.i. Radical Mechanisms in General 839</p> <p>14.A.ii. Free-Radical Substitution Mechanisms 844</p> <p>14.A.iii. Mechanisms at an Aromatic Substrate 845</p> <p>14.A.iv. Neighboring-Group Assistance in Free-Radical Reactions 847</p> <p>14.B. Reactivity 848</p> <p>14.B.i. Reactivity for Aliphatic Substrates 848</p> <p>14.B.ii. Reactivity at a Bridgehead 853</p> <p>14.B.iii. Reactivity in Aromatic Substrates 854</p> <p>14.B.iv. Reactivity in the Attacking Radical 855</p> <p>14.B.v. The Effect of Solvent on Reactivity 856</p> <p>14.C. Reactions 856</p> <p>14.C.i. Hydrogen as Leaving Group 856</p> <p>14.C.ii. Metals as Leaving Groups 880</p> <p>14.C.iii. Halogen as Leaving Group 883</p> <p>14.C.iv. Sulfur as Leaving Group 883</p> <p>14.C.v. Carbon as Leaving Group 885</p> <p><b>15. Addition to Carbon–Carbon Multiple Bonds 891</b></p> <p>15.A. Mechanisms 892</p> <p>15.A.i. Electrophilic Addition 892</p> <p>15.A.ii. Nucleophilic Addition 895</p> <p>15.A.iii. Free-Radical Addition 896</p> <p>15.A.iv. Cyclic Mechanisms 898</p> <p>15.A.v. Addition to Conjugated Systems 898</p> <p>15.B. Orientation and Reactivity 899</p> <p>15.B.i. Reactivity 899</p> <p>15.B.ii. Orientation 902</p> <p>15.B.iii. Stereochemical Orientation 904</p> <p>15.B.iv. Addition to Cyclopropane Rings 906</p> <p>15.C. Reactions 908</p> <p>15.C.i. Isomerization of Double and Triple Bonds 908</p> <p>15.C.ii. Reactions in Which Hydrogen Adds to One Side 910</p> <p>15.C.iii. Reactions in Which Hydrogen Adds to Neither Side 992</p> <p>15.C.iv. Cycloaddition Reactions 1027</p> <p><b>16. Addition to Carbon–Heteroatom Multiple Bonds 1087</b></p> <p>16.A. Mechanism and Reactivity 1087</p> <p>16.A.i. Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism 1089</p> <p>16.B. Reactions 1094</p> <p>16.B.i. Reactions in Which Hydrogen or a Metallic Ion Adds to the Heteroatom 1095</p> <p>16.B.ii. Acyl Substitution Reactions 1218</p> <p>16.B.iii. Reactions in Which Carbon Adds to the Heteroatom 1257</p> <p>16.B.iv. Addition to Isocyanides 1264</p> <p>16.B.v. Nucleophilic Substitution at a Sulfonyl Sulfur Atom 1266</p> <p><b>17. Elimination Reactions 1273</b></p> <p>17.A. Mechanisms and Orientation 1273</p> <p>17.A.i. The E2 Mechanism 1274</p> <p>17.A.ii. The E1 Mechanism 1280</p> <p>17.A.iii. The E1cB Mechanism 1281</p> <p>17.A.iv. The E1-E2-E1cB Spectrum 1286</p> <p>17.A.v. The E2C Mechanism 1287</p> <p>17.B. Regiochemistry of the Double Bond 1288</p> <p>17.C. Stereochemistry of the Double Bond 1290</p> <p>17.D. Reactivity 1291</p> <p>17.D.i. Effect of Substrate Structure 1291</p> <p>17.D.ii. Effect of the Attacking Base 1293</p> <p>17.D.iii. Effect of the Leaving Group 1294</p> <p>17.D.iv. Effect of the Medium 1294</p> <p>17.E. Mechanisms and Orientation in Pyrolytic Eliminations 1295</p> <p>17.E.i. Mechanisms 1295</p> <p>17.E.ii. Orientation in Pyrolytic Eliminations 1298</p> <p>17.E.iii. 1,4 Conjugate Eliminations 1298</p> <p>17.F. Reactions 1299</p> <p>17.F.i. Reactions in Which C C and C≡C Bonds are Formed 1299</p> <p>17.F.ii. Fragmentations 1321</p> <p>17.F.iii. Reactions in Which C≡N or C N Bonds are Formed 1325</p> <p>17.F.iv. Reactions in Which C O Bonds are Formed 1328</p> <p>17.F.v. Reactions in Which N N Bonds are Formed 1329</p> <p>17.F.vi. Extrusion Reactions 1329</p> <p><b>18. Rearrangements 1335</b></p> <p>18.A. Mechanisms 1336</p> <p>18.A.i. Nucleophilic Rearrangements 1336</p> <p>18.A.ii. The Actual Nature of the Migration 1337</p> <p>18.A.iii. Migratory Aptitudes 1340</p> <p>18.A.iv. Memory Effects 1343</p> <p>18.B. Longer Nucleophilic Rearrangements 1344</p> <p>18.C. Free-Radical Rearrangements 1345</p> <p>18.D. Carbene Rearrangements 1349</p> <p>18.E. Electrophilic Rearrangements 1349</p> <p>18.F. Reactions 1350</p> <p>18.F.i. 1,2-Rearrangements 1350</p> <p>18.F.ii. Non 1,2-Rearrangements 1389</p> <p><b>19. Oxidations and Reductions 1439</b></p> <p>19.A. Mechanisms 1440</p> <p>19.B. Reactions 1442</p> <p>19.B.i. Oxidations 1442</p> <p>19.B.ii. Reductions 1510</p> <p>Appendix A: The Literature of Organic Chemistry 1607</p> <p>Appendix B: Classification of Reactions by Type of Compounds Synthesized 1645</p> <p><b>Indexes</b></p> <p>Author Index 1669</p> <p>Subject Index 1917</p>
<p><b>MICHAEL B. SMITH, P<small>H</small>D,</b> is Professor Emeritus in the Department of Chemistry at the University of Connecticut. He is a coauthor of the fifth through seventh editions of <i>March's Advanced Organic Chemistry</i> and the author of Volumes 6 - 13 of the <i>Compendium of Organic Synthetic Methods</i>, as well as several other monographs and textbooks.
<p><b>THE COMPLETELY REVISED AND UPDATED, DEFINITIVE RESOURCE FOR STUDENTS AND PROFESSIONALS IN ORGANIC CHEMISTRY</b> <p>The revised and updated eighth edition of <i>March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure</i> explains the theories of organic chemistry with examples and reactions. This book is the most comprehensive resource about organic chemistry available. Readers are guided on the planning and execution of multi-step synthetic reactions, with detailed descriptions of all the reactions. <p>The opening chapters of <i>March's Advanced Organic Chemistry, Eighth Edition </i> deal with the structure of organic compounds and discuss important organic chemistry bonds, fundamental principles of conformation, and stereochemistry of organic molecules, and reactive intermediates in organic chemistry. Further coverage concerns general principles of mechanism in organic chemistry, including acids and bases, photochemistry, sonochemistry and microwave irradiation. The relationship between structure and reactivity is also covered. The final chapters cover the nature and scope of organic reactions and their mechanisms. <p>This edition: <ul> <li>Provides revised examples and citations that reflect advances in areas of organic chemistry published between 2011 and 2017</li> <li>Includes appendices on the literature of organic chemistry and the classification of reactions according to the compounds prepared</li> <li>Instructs the reader on preparing and conducting multi-step synthetic reactions, and provides complete descriptions of each reaction</li> </ul> <p>The eighth edition of <i>March's Advanced Organic Chemistry</i> proves once again that it is a must-have desktop reference and textbook for every student and professional working in organic chemistry or related fields.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
40,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €