Details

Magnetic Nanoparticles


Magnetic Nanoparticles

Synthesis, Characterization, and Applications
1. Aufl.

von: Abdollah Hajalilou, Mahmoud Tavakoli, Elahe Parvini

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 29.09.2022
ISBN/EAN: 9783527840786
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<B>Magnetic Nanoparticles</B> <p><b>Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine</b> <p>In <i>Magnetic Nanoparticles: Synthesis, Characterization, and Applications</i>, a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight characterization techniques and the characteristics of nanostructured magnetic materials, like superconducting quantum interference device (SQUID) magnetometry. <p>Advanced applications of magnetic nanoparticles in energy research, engineering, and medicine are also discussed, and explicit derivations and explanations in non-technical language help readers from diverse backgrounds understand the concepts contained within. <p>Readers will also find: <ul><li> A thorough introduction to magnetic materials, including the theory and fundamentals of magnetization</li> <li> In-depth explorations of the types and characteristics of soft and hard magnetic materials</li> <li> Comprehensive discussions of the synthesis of nanostructured magnetic materials, including the importance of various preparation methods</li> <li> Expansive treatments of the surface modification of magnetic nanoparticles, including the technical resources employed in the process</li></ul> <p>Perfect for materials scientists, applied physicists, and measurement and control engineers, <i>Magnetic Nanoparticles: Synthesis, Characterization, and Applications</i> will also earn a place in the libraries of inorganic chemists.
1 Introduction to Magnetic Materials<br> 1.1 Theory and Fundamentals of Magnetization<br> 1.2 Types of Magnetism<br> 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials<br> <br> 2 Types and Characteristics of Magnetic Materials<br> 2.1 Introduction<br> 2.2 Soft and Hard Magnetic Materials<br> 2.3 Hysteresis Loop <br> 2.4 Magnetic Characteristic Measurements<br> 2.5 Magnetic Losses<br> <br> 3 Insights into the Synthesis of Nanostructured Magnetic Materials<br> 3.1 Introduction<br> 3.2 The Synthesis Process of Magnetic Nanoparticles<br> 3.3 The Importance of the Synthesis and/or Preparation Methods<br> 3.4 Dependency of Particle Size and Shape on the Synthesis Route<br> 3.5 Questions Related to the Selected Synthesis Route<br> 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size <br> 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape <br> 3.8 Introduction to Wet-Chemical Synthesis Route<br> 3.9 Introduction to Solid-state Routes to Synthesize Magnetic Nanoparticles<br> 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes <br> <br> 4 Surface Modification of Magnetic Nanoparticles <br> 4.1 Introduction<br> 4.2 Employed Technical Resources for Surface Modification<br> 4.3 Surface Modification of Magnetic Nanoparticles with Surfactant<br> 4.4 Current Trends for Surface Modification of Nanomaterials<br> 4.5 Summary<br> <br> 5 Insight into a Superconducting Quantum Interference Device (SQUID) <br> 5.1 Introduction to SQUID<br> 5.2 Superconducting Materials Used in SQUID<br> 5.3 What is the Basic Principle in SQUID VSM Magnetometer?<br> 5.4 Superconductivity<br> 5.5 Josephson Tunneling (JT) Phenomenon<br> 5.6 Utilizations and Applications of SQUID<br> 5.7 Advantages and Disadvantages of SQUID Compared to other Techniques in Characterization of Magnetic Nanomaterials<br> <br> 6 The principle of SQUID Magnetometry and its Contribution in MNPs Evaluation <br> 6.1 Introduction<br> 6.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study<br> 6.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other<br> 6.4 Types of Information Obtained from the ZFC and FC Curves <br> 6.5 SQUID Magnetometry: Magnetic Measurements<br> <br> 7 Type of Interactions in Magnetic Nanoparticles<br> 7.1 Introduction<br> 7.2 Magnetic Dipole-Dipole Interaction between Magnetic Nanoparticles<br> 7.3 Exchange Interaction<br> 7.4 Dipolar Interactions <br> 7.5 Spin-orbit Interaction<br> <br> 8 Insight into Susceptibility Measurements in Nanostructured Magnetic Materials<br> 8.1 Introduction <br> 8.2 Information Obtained from Susceptibility Measurements<br> 8.3 Insight into interaction between magnetic nanoparticles and used models<br> 8.4 AC Susceptibility Measurement Evaluation<br> <br> 9 Induced Effects in Nanostructured Magnetic Materials<br> 9.1 Introduction<br> 9.2 The Spin-Canted Effect<br> 9.3 Spin-glass-like Behavior in Magnetic Nanoparticles<br> 9.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles <br> 9.5 Finite Size Effects on Magnetic Properties<br> 9.6 Surface Effect in Nanosized Particles<br> 9.7 Memory Effect<br> <br> 10 Insight into Superparamagnetism in Magnetic Nanoparticles<br> 10.1 Introduction<br> 10.2 Superparamagnetism<br> 10.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H)<br> 10.4 SPM detection based on ZFC and FC magnetization curves<br> <br> 11 Mössbauer Spectroscopy<br> 11.1 Introduction to Mössbauer Spectroscopy <br> 11.2 Observed Effects in Mössbauer<br> 11.3 Hyperfine Interactions<br> 11.4 Mössbauer Spectroscopy Applied to Magnetism<br> <br> 12 Applications of Magnetic Nanoparticles<br> 12.1 Introduction<br> 12.2 Magnetic Nanoparticles Application in Engineering Fields<br> 12.3 Magnetic Nanoparticles Application in Energy<br> 12.4 Magnetic Nanoparticles Application in Medical Sciences<br> 12.5 Other General Applications of Magnetic Nanoparticles<br>
<p><i><b>Abdollah Hajalilou, PhD</b>, is a Senior Research Fellow in the Department of Electrical and Computer Engineering at the University of Coimbra, Portugal. His research is focused on the synthesis and characterization of magnetic nanoparticles for various applications, including, but not limited to, biomedical science, bioelectronic, and energy storage devices.</i> <p><i><b>Mahmoud Tavakoli, PhD,</b> is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Coimbra, Portugal. He is also Director of the Soft & Printed Materials Laboratory.</i> <p><i><b>Elahe Parvini, PhD</b>, is a researcher who focuses on thermodynamic and computational features of nanostructured materials, e.g., magnetic nanoparticles, which are applicable in various areas such as medical science, energy storage, flexible electronics, etc. in collaboration with different groups at the University of Tabriz, Iran, from which she also received her PhD in Physical Chemistry.</i>
<p><b>Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine</b> <p>In <i>Magnetic Nanoparticles: Synthesis, Characterization, and Applications</i>, a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight characterization techniques and the characteristics of nanostructured magnetic materials, like superconducting quantum interference device (SQUID) magnetometry. <p>Advanced applications of magnetic nanoparticles in energy research, engineering, and medicine are also discussed, and explicit derivations and explanations in non-technical language help readers from diverse backgrounds understand the concepts contained within. <p>Readers will also find: <ul><li> A thorough introduction to magnetic materials, including the theory and fundamentals of magnetization</li> <li> In-depth explorations of the types and characteristics of soft and hard magnetic materials</li> <li> Comprehensive discussions of the synthesis of nanostructured magnetic materials, including the importance of various preparation methods</li> <li> Expansive treatments of the surface modification of magnetic nanoparticles, including the technical resources employed in the process</li></ul> <p>Perfect for materials scientists, applied physicists, and measurement and control engineers, <i>Magnetic Nanoparticles: Synthesis, Characterization, and Applications</i> will also earn a place in the libraries of inorganic chemists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €