Details

Macrocyclic and Supramolecular Chemistry


Macrocyclic and Supramolecular Chemistry

How Izatt-Christensen Award Winners Shaped the Field
1. Aufl.

von: Reed M. Izatt

145,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.05.2016
ISBN/EAN: 9781119053873
Sprache: englisch
Anzahl Seiten: 504

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book commemorates the 25th anniversary of the International Izatt-Christensen Award in Macrocyclic and Supramolecular Chemistry. The award, one of the most prestigious of small awards in chemistry, recognizes excellence in the developing field of macrocyclic and supramolecular chemistry</p> <p><i>Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field</i> features chapters written by the award recipients who provide unique perspectives on the spectacular growth in these expanding and vibrant fields of chemistry over the past half century, and on the role of these awardees in shaping this growth. During this time there has been an upsurge of interest in the design, synthesis and characterization of increasingly more complex macrocyclic ligands and in the application of this knowledge to understanding molecular recognition processes in host-guest chemistry in ways that were scarcely envisioned decades earlier.<br /><br />In October 2016, <b>Professor Jean-Pierre Sauvage</b> and <b>Sir J. Fraser Stoddart</b> (author for chapter 22 "<i>Contractile and Extensile Molecular Systems: Towards Molecular Muscles" </i>by Jean -Pierre Sauvage, Vincent Duplan, and Frédéric Niess and 20 "<i>Serendipity"</i> by Paul R. McGonigal and J. Fraser Stoddart respectively) were awarded the Nobel Prize in Chemistry alongside fellow Wiley author <b>Bernard Feringa,</b> for the design and synthesis of molecular machines. </p>
<p>List of Contributors xv</p> <p>Preface xviii</p> <p>Acknowledgements xx</p> <p><b>1 The Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry: A 25?-Year History (1991–2016) 1</b><br /><i>Reed M. Izatt, Jerald S. Bradshaw, Steven R. Izatt, and Roger G. Harrison</i></p> <p>1.1 Introduction 1</p> <p>1.2 International Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry 2</p> <p>1.3 International Symposium on Macrocyclic and Supramolecular Chemistry 4</p> <p>1.4 Izatt–Christensen award sponsor: IBC Advanced Technologies, Inc. 6</p> <p>1.5 Summary 7</p> <p>References 8</p> <p><b>2 Supramolecular Chemistry with DNA 10</b><br /><i>Pongphak Chidchob and Hanadi Sleiman</i></p> <p>2.1 Introduction 10</p> <p>2.2 Motifs in structural DNA nanotechnology 10</p> <p>2.3 Dynamic assembly and molecular recognition with DNA 13</p> <p>2.4 Supramolecular assembly with hybrid DNA materials: increasing the letters of the alphabet 14</p> <p>2.5 Conclusion 33</p> <p>References 34</p> <p><b>3 Anion, Cation and Ion?-Pair Recognition by Macrocyclic and Interlocked Host Systems 38</b><br /><i>Paul D. Beer and Matthew J. Langton</i></p> <p>3.1 Introduction 38</p> <p>3.2 Electrochemical molecular recognition 38</p> <p>3.3 Anion recognition and sensing by macrocyclic and interlocked hosts 44</p> <p>3.4 Halogen?-bonding anion recognition 55</p> <p>3.5 Ion-pair recognition 59</p> <p>3.6 Metal?-directed self?-assembly 62</p> <p>3.7 Conclusions 67</p> <p>3.8 Acknowledgements 67</p> <p>References 67</p> <p><b>4 Perspectives in Molecular Tectonics 73</b><br /><i>Mir Wais Hosseini</i></p> <p>4.1 Preamble: dreams and pathway 73</p> <p>4.2 Introduction 75</p> <p>4.3 From tectons to networks 75</p> <p>4.4 Summary and outlook 87</p> <p>4.5 Acknowledgements 88</p> <p>References 88</p> <p><b>5 Three Tales of Supramolecular Analytical Chemistry 92</b><br /><i>Margaret K. Meadows and Eric V. Anslyn</i></p> <p>5.1 Introduction 92</p> <p>5.2 Citrate sensing 93</p> <p>5.3 Rapid analysis of enantiomeric excess 101</p> <p>5.4 Differential sensing 109</p> <p>5.5 Conclusion 123</p> <p>References 123</p> <p><b>6 Robust Host–Guest Chemistry of Cucurbit[n-uril: Fundamentals and Applications of the Synthetic Receptor Family 127</b><br /><i>Kimoon Kim, Dinesh Shetty, and Kyeng Min Park</i></p> <p>6.1 Personal pathway to the discovery of cucurbit[n-uril and early day developments 127</p> <p>6.2 Structures and physical properties of CB[n- 129</p> <p>6.3 General host–guest chemistry of CB[n- 129</p> <p>6.4 High?-affinity host–guest pairs 130</p> <p>6.5 Functionalized CBs 133</p> <p>6.6 Applications of high?-affinity CB[6- complexes 134</p> <p>6.7 Applications of high?-affinity CB[7- complexes 137</p> <p>6.8 Conclusions 140</p> <p>6.9 Acknowledgements 141</p> <p>References 141</p> <p><b>7 Molecular Recognition in Biomimetic Receptors 146</b><br /><i>Peter C. Knipe, Sam Thompson, and Andrew D. Hamilton</i></p> <p>7.1 Molecular recognition in biological systems 146</p> <p>7.2 Model systems to investigate fundamental forces 146</p> <p>7.3 Recognition of more complex systems – into the realm of peptides 149</p> <p>7.4 A general approach to peptide mimicry – targeting secondary structure 152</p> <p>7.5 Super?-secondary structures and beyond 156</p> <p>7.6 Outlook 159</p> <p>References 160</p> <p><b>8 A Lifetime Walk in the Realm of Cyclam 165</b><br /><i>Luigi Fabbrizzi</i></p> <p>8.1 Synthesis and development of cyclam and related macrocycles 165</p> <p>8.2 Macrocyclic effects and the importance of being 14?-membered 170</p> <p>8.3 Cyclam promotes the redox activity of the encircled metal ion 176</p> <p>8.4 Scorpionands: cyclam derivatives with an aggressive tail, biting a chelated metal from the top 180</p> <p>8.5 Azacyclams: cyclam?-like macrocycles with built?-in functionalization 187</p> <p>8.6 Conclusion 193</p> <p>8.7 Acknowledgements 195</p> <p>References 196</p> <p><b>9 Porosity in Metal–Organic Compounds 200</b><br /><i>Alexander Schoedel and Omar M. Yaghi</i></p> <p>9.1 Introduction 200</p> <p>9.2 Werner complexes 201</p> <p>9.3 Hofmann clathrates 201</p> <p>9.4 Coordination polymers 204</p> <p>9.5 Porosity in metal–organic frameworks 209</p> <p>9.6 The discovery of MOF?-5: the golden age of metal–organic frameworks 211</p> <p>9.7 The Cambridge Structural Database – an essential tool for MOF chemists 214</p> <p>9.8 Concluding remarks 215</p> <p>9.9 Acknowledgement 215</p> <p>References 215</p> <p><b>10 Cyclodextrin?-based Supramolecular Systems 220</b><br /><i>Akira Harada</i></p> <p>10.1 Introduction 220</p> <p>10.2 Cyclodextrin?-containing polymers 220</p> <p>10.3 CD?-organometallic complexes 222</p> <p>10.4 Complex formation of cyclodextrin with polymers 223</p> <p>10.5 Polymerization by CDs 225</p> <p>10.6 Supramolecular polymers 228</p> <p>10.7 Side?-chain recognition by CDs 230</p> <p>10.8 CD?-based molecular machines 230</p> <p>10.9 Macroscopic self?-assembly through molecular recognition 233</p> <p>10.10 Self?-healing by molecular recognition 235</p> <p>10.11 Stimuli?-responsive polymers 236</p> <p>10.12 Conclusion 238</p> <p>References 238</p> <p><b>11 Making the Tiniest Machines 241</b><br /><i>David A. Leigh</i></p> <p>11.1 Introduction 241</p> <p>11.2 Property effects using molecular shuttles 245</p> <p>11.3 Molecular motors and ratchet mechanisms 248</p> <p>11.4 Small molecules that can “walk” along molecular tracks 254</p> <p>11.5 Making molecules that make molecules 257</p> <p>11.6 Outlook 257</p> <p>11.7 Acknowledgements 259</p> <p>References 259</p> <p><b>12 Clipping an Angel’s Wings 261</b><br /><i>Roeland J.M. Nolte, Alan E. Rowan, and Johannes A.A.W. Elemans</i></p> <p>12.1 Introduction 261</p> <p>12.2 Molecular clips 263</p> <p>12.3 Molecular capsules 278</p> <p>12.4 Outlook 282</p> <p>12.5 Acknowledgements 282</p> <p>References 283</p> <p><b>13 From Lanthanide Shift Reagents to Molecular Knots: The Importance of Molecular and Mental Flexibility 288</b><br /><i>Jeremy K.M. Sanders</i></p> <p>13.1 Introduction: 1969–76 288</p> <p>13.2 Metalloporphyrins 289</p> <p>13.3 Macrocycles based on cholic acid 296</p> <p>13.4 Designed donor–acceptor catenanes 297</p> <p>13.5 Dynamic combinatorial chemistry 298</p> <p>13.6 Conclusions 304</p> <p>References 305</p> <p><b>14 Texaphyrins: Life, Death, and Attempts at Resurrection 309</b><br /><i>Jonathan L. Sessler</i></p> <p>14.1 Introduction 309</p> <p>14.2 Early days 309</p> <p>14.3 Starting Pharmacyclics, Inc. 311</p> <p>14.4 Early biological studies of texaphyrins 314</p> <p>14.5 Clinical studies of texaphyrins at Pharmacyclics, Inc. 316</p> <p>14.6 Changes in direction at Pharmacyclics, Inc. 316</p> <p>14.7 Current research efforts involving texaphyrin 317</p> <p>14.8 Texaphyrin?-platinum conjugates 318</p> <p>14.9 Acknowledgements 321</p> <p>References 321</p> <p><b>15 Macrocyclic Coordination Chemistry of Resorcin[4-arenes and Pyrogallol[4-arenes 325</b><br /><i>Harshita Kumari, Carol A. Deakyne, and Jerry L. Atwood</i></p> <p>15.1 Introduction 325</p> <p>15.2 History of hydrogen?-bonded pyrogallol[4-arene?- and resorcin[4-arene?-based nanocapsules 326</p> <p>15.3 Metal?-seamed pyrogallol[4-arene?- and resorcin[4-arene?-based complexes 327</p> <p>15.4 Concluding remarks 342</p> <p>References 342</p> <p><b>16 Dynamic Control of Recognition Processes in Host–Guest Systems and Polymer–Polymer Interactions 346</b><br /><i>Seiji Shinkai</i></p> <p>16.1 Introduction 346</p> <p>16.2 Dynamic control of crown ether functions by chemical and physical signals 347</p> <p>16.3 Stereochemical studies of calix[n-arene derivatives 351</p> <p>16.4 Ion and molecule recognition by functionalized calix[n-arenes and their application to super Na+?-sensors and novel [60-fullerene isolation methods 351</p> <p>16.5 Molecular design of novel sugar?-sensing systems using boronic acid–diol macrocyclization 352</p> <p>16.6 From molecular machines to allosteric effects 353</p> <p>16.7 From allosteric effects to aggregation?-induced emission (AIE) 354</p> <p>16.8 Extension of cooperative actions to polymeric and biological systems 356</p> <p>16.9 Summary 357</p> <p>16.10 Acknowledgements 357</p> <p>References 357</p> <p><b>17 Cation Binders, Amphiphiles, and Membrane Active Transporters</b> <b>360</b><br /><i>George W. Gokel, Saeedeh Negin, Joseph W. Meisel, Mohit B. Patel, Michael R. Gokel, and Ryan Cantwell</i></p> <p>17.1 Introduction 360</p> <p>17.2 Conceptual development of lariat ethers for transport 361</p> <p>17.3 Recognition of the ability of lariat ethers to form membranes 363</p> <p>17.4 Use of lariat ethers to demonstrate cation–π interactions 365</p> <p>17.5 Development of synthetic cation channels based on crown ethers 367</p> <p>17.6 Development of synthetic anion channels based on amphiphilic peptides 370</p> <p>17.7 Membrane active amphiphiles as biologically active and applicable compounds 371</p> <p>17.8 Conclusion 373</p> <p>References 373</p> <p><b>18 Supramolecular Technology 377</b><br /><i>David N. Reinhoudt</i></p> <p>18.1 Introduction 377</p> <p>18.2 Chemical sensing 378</p> <p>18.3 Membrane transport 379</p> <p>18.4 Nonlinear optical materials 380</p> <p>18.5 Supramolecular technology for nanofabrication 380</p> <p>References 382</p> <p><b>19 Synthesis of Macrocyclic Complexes Using Metal Ion Templates 383</b><br /><i>Daryle H. Busch</i></p> <p>19.1 Introduction 383</p> <p>19.2 Macrocycle synthesis 384</p> <p>References 386</p> <p><b>20 Serendipity 388</b><br /><i>Paul R. McGonigal and J. Fraser Stoddart</i></p> <p>20.1 Serendipity in scientific discovery 388</p> <p>20.2 Donor–acceptor charge transfer interactions 390</p> <p>20.3 Cyclodextrins (CDs) 400</p> <p>20.4 Conclusions and outlook 410</p> <p>References 411</p> <p><b>21 Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly 415</b><br /><i>Eiichi Kimura, Tohru Koike, and Shin Aoki</i></p> <p>21.1 Introduction 415</p> <p>21.2 Zinc enzyme models from ZnII macrocyclic polyamine complexes 415</p> <p>21.3 ZnII–cyclens for selective recognition of nucleobases (thymine and uracil) and manipulation of genes 427</p> <p>21.4 New supramolecular assemblies with ZnII–cyclen 434</p> <p>21.5 Acknowledgements 438</p> <p>References 438</p> <p><b>22 Contractile and Extensile Molecular Systems: Towards Molecular Muscles 444</b><br /><i>Jean?-Pierre Sauvage, Vincent Duplan, and Frédéric Niess</i></p> <p>22.1 Preamble: the Izatt–Christensen award and Jean?-Pierre Sauvage 444</p> <p>22.2 Introduction 446</p> <p>22.3 Interlocking ring compounds 447</p> <p>22.4 Non?-interlocking compounds 456</p> <p>22.5 Conclusion 458</p> <p>22.6 Acknowledgements 461</p> <p>References 461</p> <p>Index 465</p>
<p><b>Dr. Reed M. Izatt, Charles E. Maw Professor of Chemistry (Emeritus), Brigham Young University, U.S.A.</b><br />Reed M. Izatt received a BS degree in Chemistry from Utah State University (1951) and a PhD degree in Chemistry from Pennsylvania State University (1954). After post-doctoral work at Mellon Institute of Industrial Research, he embarked on an academic career at Brigham Young University retiring as Charles E. Maw Professor of Chemistry (1993). He is the author or co-author of over 550 publications.<br />Reed has edited several books, contributed numerous chapters in books, written many journal and review articles and presented plenary, invited, and regular lectures at universities worldwide; regional, national, and international chemistry conferences; and government laboratories.<br />Reed has been involved in research in macrocyclic chemistry since the late 1960s. Together with James Christensen, he organized the first Symposium on Macrocyclic Chemistry in Provo, Utah in 1977. This Symposium has thrived and was one of the major precursors of the present ISMSC.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €