Details

Lead-free Solders


Lead-free Solders

Materials Reliability for Electronics
Wiley Series in Materials for Electronic & Optoelectronic Applications, Band 40 1. Aufl.

von: K. Subramanian

147,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.03.2012
ISBN/EAN: 9781119966210
Sprache: englisch
Anzahl Seiten: 520

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Providing a viable alternative to lead-based solders is a major research thrust for the electrical and electronics industries - whilst mechanically compliant lead-based solders have been widely used in the electronic interconnects, the risks to human health and to the environment are too great to allow continued widescale usage. <i>Lead-free Solders: Materials Reliability for Electronics</i> chronicles the search for reliable drop-in lead-free alternatives and covers: <ul> <li>Phase diagrams and alloy development </li> <li>Effect of minor alloying additions </li> <li>Composite approaches including nanoscale reinforcements </li> <li>Mechanical issues affecting reliability </li> <li>Reliability under impact loading </li> <li>Thermomechanical fatigue </li> <li>Chemical issues affecting reliability </li> <li>Whisker growth </li> <li>Electromigration </li> <li>Thermomigration </li> </ul> <p>Presenting a comprehensive understanding of the current state of lead-free electronic interconnects research, this book approaches the ongoing research from fundamental, applied and manufacturing perspectives to provide a balanced view of the progress made and the requirements which still have to be met.</p>
Series Preface xv <p>Preface xvii</p> <p>List of Contributors xix</p> <p><b>Thematic Area I: Introduction 1</b></p> <p><b>1 Reliability of Lead-Free Electronic Solder Interconnects: Roles of Material and Service Parameters 3</b><br /> <i>K. N. Subramanian</i></p> <p>1.1 Material Design for Reliable Lead-Free Electronic Solders Joints 3</p> <p>1.2 Imposed Fields and the Solder Joint Responses that Affect Their Reliability 5</p> <p>1.3 Mechanical Integrity 5</p> <p>1.4 Thermomechanical Fatigue (TMF) 6</p> <p>1.5 Whisker Growth 7</p> <p>1.6 Electromigration (EM) 7</p> <p>1.7 Thermomigration (TM) 8</p> <p>1.8 Other Potential Issues 8</p> <p><b>Thematic Area II: Phase Diagrams and Alloying Concepts 11</b></p> <p><b>2 Phase Diagrams and Their Applications in Pb-Free Soldering 13</b><br /> <i>Sinn-wen Chen, Wojciech Gierlotka, Hsin-jay Wu, and Shih-kang Lin</i></p> <p>2.1 Introduction 14</p> <p>2.2 Phase Diagrams of Pb-Free Solder Systems 14</p> <p>2.3 Example of Applications 23</p> <p>2.4 Conclusions 39</p> <p><b>3 Phase Diagrams and Alloy Development 45</b><br /> <i>Alan Dinsdale, Andy Watson, Ales Kroupa, Jan Vrestal, Adela Zemanova, and Pavel Broz</i></p> <p>3.1 Introduction 45</p> <p>3.2 Computational Thermodynamics as a Research Tool 48</p> <p>3.3 Thermodynamic Databases – the Underlying Basis of the Modelling of Phase Diagrams and Thermodynamic Properties, Databases for Lead-Free Solders 51</p> <p>3.4 Application of the SOLDERS Database to Alloy Development 57</p> <p>3.5 Conclusions 68</p> <p><b>4 Interaction of Sn-based Solders with Ni(P) Substrates: Phase Equilibria and Thermochemistry 71</b><br /> <i>Clemens Schmetterer, Rajesh Ganesan, and Herbert Ipser</i></p> <p>4.1 Introduction 72</p> <p>4.2 Binary Phase Equilibria 73</p> <p>4.3 Ternary Phase Equilibria Ni-P-Sn 85</p> <p>4.4 Thermochemical Data 94</p> <p>4.5 Relevance of the Results and Conclusion 111</p> <p><b>Thematic Area III: Microalloying to Improve Reliability 119</b></p> <p><b>5 'Effects of Minor Alloying Additions on the Properties and Reliability of Pb-Free Solders and Joints' 121</b><br /> <i>Sung K. Kang</i></p> <p>5.1 Introduction 122</p> <p>5.2 Controlling Ag3Sn Plate Formation 125</p> <p>5.3 Controlling the Undercooling of Sn Solidification 132</p> <p>5.4 Controlling Interfacial Reactions 136</p> <p>5.5 Modifying the Microstructure of SAC 145</p> <p>5.6 Improving Mechanical Properties 149</p> <p>5.7 Enhancing Electromigration Resistance 151</p> <p>5.8 Summary 153</p> <p><b>6 Development and Characterization of Nano-composite Solder 161</b><br /> <i>Johan Liu, Si Chen, and Lilei Ye</i></p> <p>6.1 Introduction 162</p> <p>6.2 Nano-composite Solder Fabrication Process 162</p> <p>6.3 Microstructure 166</p> <p>6.4 Physical Properties 167</p> <p>6.5 Mechanical Properties 169</p> <p>6.6 Challenges and Solutions 171</p> <p>6.7 Summary 174</p> <p><b>Thematic Area IV: Chemical Issues Affecting Reliability 179</b></p> <p><b>7 Chemical Changes for Lead-Free Soldering and Their Effect on Reliability 181</b><br /> <i>Laura J. Turbini</i></p> <p>7.1 Introduction 181</p> <p>7.2 Soldering Fluxes and Pastes 181</p> <p>7.3 Cleaning 185</p> <p>7.4 Laminates 185</p> <p>7.5 Halogen-Free Laminates 186</p> <p>7.6 Conductive Anodic Filament (CAF) Formation 189</p> <p>7.7 Summary 193</p> <p><b>Thematic Area V: Mechanical Issues Affecting Reliability 195</b></p> <p><b>8 Influence of Microstructure on Creep and High Strain Rate Fracture of Sn-Ag-Based Solder Joints 197</b><br /> <i>P. Kumar, Z. Huang, I. Dutta, G. Subbarayan, and R. Mahajan</i></p> <p>8.1 Introduction 198</p> <p>8.2 Coarsening Kinetics: Quantitative Analysis of Microstructural Evolution 199</p> <p>8.3 Creep Behavior of Sn-Ag-Based Solders and the Effect of Aging 206</p> <p>8.4 Role of Microstructure on High Strain Rate Fracture 219</p> <p>8.5 Summary and Conclusions 227</p> <p><b>9 Microstructure and Thermomechanical Behavior Pb-Free Solders 233</b><br /> <i>D.R. Frear</i></p> <p>9.1 Introduction 233</p> <p>9.2 Sn-Pb Solder 234</p> <p>9.3 Pb-Free Solders 237</p> <p>9.4 Summary 248</p> <p><b>10 Electromechanical Coupling in Sn-Rich Solder Interconnects 251</b><br /> <i>Q.S. Zhu, H.Y. Liu, L. Zhang, Q.L. Zeng, Z.G. Wang, and J.K. Shang</i></p> <p>10.1 Introduction 252</p> <p>10.2 Experimental 253</p> <p>10.3 Results 255</p> <p>10.4 Discussion 264</p> <p>10.5 Conclusions 269</p> <p><b>11 Effect of Temperature-Dependent Deformation Characteristics on Thermomechanical Fatigue Reliability of Eutectic Sn-Ag Solder Joints 273</b><br /> <i>Andre Lee, Deep Choudhuri, and K.N. Subramanian</i></p> <p>11.1 Introduction 274</p> <p>11.2 Experimental Details 275</p> <p>11.3 Results and Discussion 276</p> <p>11.4 Summary and Conclusions 294</p> <p><b>Thematic Area VI: Whisker Growth Issues Affecting Reliability 297</b></p> <p><b>12 Sn Whiskers: Causes, Mechanisms and Mitigation Strategies 299</b><br /> <i>Nitin Jadhav and Eric Chason</i></p> <p>12.1 Introduction 299</p> <p>12.2 Features of Whisker Formation 303</p> <p>12.3 Understanding the Relationship between IMC Growth, Stress and Whisker Formation 308</p> <p>12.4 Summary Picture of Whisker Formation 314</p> <p>12.5 Strategies to Mitigate Whisker Formation 316</p> <p>12.6 Conclusion 318</p> <p><b>13 Tin Whiskers 323</b><br /> <i>Katsuaki Suganuma</i></p> <p>13.1 Low Melting Point Metals and Whisker Formation 323</p> <p>13.2 Room-Temperature Tin Whiskers on Copper Substrate 325</p> <p>13.3 Thermal-Cycling Whiskers on 42 Alloy/Ceramics 326</p> <p>13.4 Oxidation/Corrosion Whiskers 329</p> <p>13.5 Mechanical-Compression Whiskers in Connectors 330</p> <p>13.6 Electromigration Whiskers 331</p> <p>13.7 Whisker Mitigation 332</p> <p>13.8 Future Work 334</p> <p><b>Thematic Area VII: Electromigration Issues Affecting Reliability 337</b></p> <p><b>14 Electromigration Reliability of Pb-Free Solder Joints 339</b><br /> <i>Seung-Hyun Chae, Yiwei Wang, and Paul S. Ho</i></p> <p>14.1 Introduction 339</p> <p>14.2 Failure Mechanisms of Solder Joints by Forced Atomic Migration 342</p> <p>14.3 IMC Growth 351</p> <p>14.4 Effect of Sn Grain Structure on EM Reliability 363</p> <p>14.5 Summary 366</p> <p><b>15 Electromigration in Pb-Free Solder Joints in Electronic Packaging 375</b><br /> <i>Chih Chen, Shih-Wei Liang, Yuan-Wei Chang, Hsiang-Yao Hsiao, Jung Kyu Han, and K.N. Tu</i></p> <p>15.1 Introduction 376</p> <p>15.2 Unique Features for EM in Flip-Chip Pb-Free Solder Joints 376</p> <p>15.3 Changes of Physical Properties of Solder Bumps During EM 386</p> <p>15.4 Challenges for Understanding EM in Pb-Free Solder Microbumps 393</p> <p>15.5 Thermomigration of Cu and Ni in Pb-Free Solder Microbumps 394</p> <p>15.6 Summary 394</p> <p><b>16 Effects of Electromigration on Electronic Solder Joints 401</b><br /> <i>Sinn-wen Chen, Chih-ming Chen, Chao-hong Wang, and Chia-ming Hsu</i></p> <p>16.1 Introduction 401</p> <p>16.2 Effects of Electromigration on Solders 402</p> <p>16.3 Effects of Electromigration on Interfacial Reactions 408</p> <p>16.4 Modeling Description of Effects of Electromigration on IMC Growth 414</p> <p>16.5 Conclusions 418</p> <p><b>Thematic Area VIII: Thermomigration Issues Affecting Reliability 423</b></p> <p><b>17 Thermomigration in SnPb and Pb-Free Flip-Chip Solder Joints 425</b><br /> <i>Tian Tian, K.N. Tu, Hsiao-Yun Chen, Hsiang-Yao Hsiao, and Chih Chen</i></p> <p>17.1 Introduction 425</p> <p>17.2 Thermomigration in SnPb Flip-Chip Solder Joints 427</p> <p>17.3 Thermomigration in Pb-Free Flip-Chip Solder Joints 432</p> <p>17.4 Driving Force of Thermomigration 435</p> <p>17.5 Coupling between Thermomigration and Creep 439</p> <p>17.6 Coupling between Thermomigration and Electromigration: Thermoelectric Effect on Electromigration 441</p> <p>17.7 Summary 441</p> <p><b>Thematic Area IX: Miniaturization Issues Affecting Reliability 443</b></p> <p><b>18 Influence of Miniaturization on Mechanical Reliability of Lead-Free Solder Interconnects 445</b><br /> <i>Golta Khatibi, Herbert Ipser, Martin Lederer, and Brigitte Weiss</i></p> <p>18.1 Introduction 445</p> <p>18.2 Effect of Miniaturization on Static Properties of Solder Joints (Tensile and Shear) 448</p> <p>18.3 Creep and Relaxation of Solder Joints 475</p> <p>18.4 Summary and Conclusions 478</p> <p>References 482</p> <p>Index 487</p>
<b>K. N. Subramanian</b> is Professor of Materials Science and Engineering at Michigan State University. He has been a full-time faculty member at MSU for over 45 years. For the last 15 years he has devoted all his research efforts to lead-free electronic solders.
Providing a viable alternative to lead-based solders is a major research thrust for the electrical and electronics industries - whilst mechanically compliant lead-based solders have been widely used in the electronic interconnects, the risks to human health and to the environment are too great to allow continued widescale usage. <i>Lead-free Solders: Materials Reliability for Electronics</i> chronicles the search for reliable drop-in lead-free alternatives and covers: <ul> <li>Phase diagrams and alloy development</li> <li>Effect of minor alloying additions</li> <li>Composite approaches including nanoscale reinforcements</li> <li>Mechanical issues affecting reliability</li> <li>Reliability under impact loading</li> <li>Thermomechanical fatigue</li> <li>Chemical issues affecting reliability</li> <li>Whisker growth</li> <li>Electromigration</li> <li>Thermomigration</li> </ul> <p>Presenting a comprehensive understanding of the current state of lead-free electronic interconnects research, this book approaches the ongoing research from fundamental, applied and manufacturing perspectives to provide a balanced view of the progress made and the requirements which still have to be met.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €