Details

Laser Inter-Satellite Links Technology


Laser Inter-Satellite Links Technology


1. Aufl.

von: Jianjun Zhang, Jing Li

103,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.12.2022
ISBN/EAN: 9781119910732
Sprache: englisch
Anzahl Seiten: 208

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<B>LASER INTER-SATELLITE LINKS TECHNOLOGY</b> <p><b>State of the art resource covering key technologies and related theories of inter-satellite links</b> <p><i>Laser Inter-Satellite Links Technology</i> explores satellite networking as a growing topic in the field of communication technology, introducing the definition, types, and working frequency bands of inter-satellite links, discussing the number of orbital elements of the spacecraft motion state under two-body motion and their conversion relationship, and establishing the basic demand model for inter-satellite link network, chain topology model, and transmission protocol model. <p>The book focuses on the analysis and introduction of the principles and error sources of microwave and laser inter-satellite ranging, including the basic composition, workflow, and constraints of the laser inter-satellite link, and related design principles of the inter-satellite laser transmitter and receivers. Later chapters also discuss theories and methods of acquisition, alignment, and tracking, the impact of alignment errors on performance, and inter-satellite link modulation and its implementation. <p>Specific sample topics covered in <i>Laser Inter-Satellite Links Technology</i> include: <ul><li> Pulse position modulation (PPM), differential pulse position modulation (DPPM), digital pulse interval modulation (DPIM), and double-head pulse interval modulation (DH-PIM)</li> <li> Basic demand model of inter-satellite link network application, including basic configuration of constellations and inter-satellite transmission networks</li> <li> Inter-satellite ranging accuracy, principles of microwave inter-satellite ranging, and analysis of microwave ranging error sources</li> <li> Effect of tracking error on the beam distribution at the receiving end and influence of tracking and pointing error on communication error rate</li></ul> <p><i>Laser Inter-Satellite Links Technology </i>serves a completely comprehensive resource on the subject and is a must-have reference for experts and scholars in aerospace, along with graduates and senior undergraduates in related programs of study.
<p>Author Biography xi</p> <p>Preface xiii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Connotation of Inter-Satellite Link 1</p> <p>1.2 Types of Inter-Satellite Links 5</p> <p>1.3 Band Selection of Inter-Satellite Link 7</p> <p>1.3.1 Selection of Link Band 7</p> <p>1.3.2 Selection of Working Frequency 8</p> <p>1.4 Microwave Inter-Satellite Link 10</p> <p>1.4.1 Frequency Selection 10</p> <p>1.4.2 Microwave Inter-Satellite Link Data Transmission System 12</p> <p>1.5 Laser Inter-Satellite Link 14</p> <p>1.5.1 Technical Characteristics of Laser Inter-Satellite Link 14</p> <p>1.5.2 Future Requirements for Laser Inter-Satellite Links 15</p> <p>1.5.3 Development Trend of Laser Inter-Satellite Links 16</p> <p>1.5.3.1 The Development of Laser Communication Technology from Technical Verification to Engineering Application Stage 16</p> <p>1.5.3.2 The Communication Rate Develops from Low Code Rate to High Code Rate 16</p> <p>1.5.3.3 Deep Space Will Become an Important Place for Laser Communication Applications 17</p> <p>1.5.3.4 Combined Use of Laser Communication and Laser Ranging 18</p> <p>1.5.3.5 Integration and Miniaturization of Laser Communication Terminals 18</p> <p>1.5.3.6 Networking of Laser Inter-Satellite Links 19</p> <p>References 19</p> <p><b>2 Development History of Laser Inter-Satellite Link 21</b></p> <p>2.1 Development Stage of Laser Inter-Satellite Link 21</p> <p>2.2 Development Status of Laser Inter-Satellite Link Technology in Various Countries 22</p> <p>2.2.1 United States 22</p> <p>2.2.1.1 Lunar Laser Communication Demonstration 26</p> <p>2.2.1.2 Relay Laser Communication Demonstration (LCRD) (GEO-Ground) 27</p> <p>2.2.1.3 Integrated Laser Communication Terminal (ILLUMA-T) 30</p> <p>2.2.1.4 Deep Space Optical Communication (DSOC) Project Terminal Reaches Level 6 Technology Maturity 30</p> <p>2.2.1.5 Ultra-Light and Small Communication Terminal (OSCD) 33</p> <p>2.2.2 Europe 33</p> <p>2.2.2.1 Semiconductor Laser Inter-Satellite Link Experiment 33</p> <p>2.2.2.2 European Data Relay Satellite System Project (EDRS) 34</p> <p>2.2.2.3 Micro Laser Communication Terminal (OPTEL-μ) 35</p> <p>2.2.3 Japan 36</p> <p>2.2.3.1 Japanese Data Relay Satellite 37</p> <p>2.2.3.2 High-Speed Communication of Advanced Laser Instruments 38</p> <p>2.2.3.3 Miniaturized Laser Communication Terminal (SOTA) 39</p> <p>2.3 Experience and Inspiration 39</p> <p>2.3.1 Strengthen the Research on New Laser Inter-Satellite Links and Enhance the Innovation of Technology Research and Development 40</p> <p>2.3.2 Strengthen the On-Orbit Verification of New Technologies and Improve the Engineering Level of New Technologies 40</p> <p>2.3.3 Simplify the Product Spectrum and Promote the Construction of Product Pipelines 40</p> <p>2.3.4 Respond to Commercial Product Demand and Reduce Product Cost 41</p> <p>2.3.5 The Key Development Direction of Low-Orbit Laser Inter-Satellite Link Engineering Demonstration Work 41</p> <p>References 41</p> <p><b>3 Spacecraft Orbits and Application 45</b></p> <p>3.1 Overview 45</p> <p>3.2 Kepler’s Laws 46</p> <p>3.2.1 Kepler’s First Law 46</p> <p>3.2.2 Kepler’s Second Law 47</p> <p>3.2.3 Kepler’s Third Law 47</p> <p>3.3 Two-Body Motion and Orbital Parameters 47</p> <p>3.3.1 Two-Body Movement 47</p> <p>3.3.2 Track Parameters 49</p> <p>3.4 Near-Earth Space Orbits and Applications 53</p> <p>3.4.1 Track Type 54</p> <p>3.4.2 Sub-Satellite Point Trajectory 54</p> <p>3.4.3 Several Commonly Used Tracks 55</p> <p>3.4.3.1 Sun-Synchronous Orbit 55</p> <p>3.4.3.2 Return to the Track 56</p> <p>3.4.3.3 Geosynchronous Orbit 57</p> <p>3.4.3.4 Freeze the Track 58</p> <p>3.4.4 Overlay 59</p> <p>3.4.4.1 Coverage Area 59</p> <p>3.4.4.2 Minimum Observation Angle 60</p> <p>References 61</p> <p><b>4 Basic Model of Constellation Inter-Satellite Link Networking 63</b></p> <p>4.1 Application Requirements of Satellite Navigation Inter-Satellite Links 63</p> <p>4.1.1 Constellation Precise Orbit Determination and Time Synchronization 64</p> <p>4.1.2 Data Communication 64</p> <p>4.1.3 Autonomous Operation 65</p> <p>4.1.4 Extended Service 65</p> <p>4.2 Basic Requirement Model of Inter-Satellite Link Network Application 66</p> <p>4.2.1 Basic Configuration of Constellations 66</p> <p>4.2.2 Inter-Satellite Transmission Network Based on STDMA 67</p> <p>4.2.3 Antenna Solution 71</p> <p>4.2.4 Inter-Satellite Link Application Mode 72</p> <p>4.3 Inter-Satellite Link Network Chain Topology Model 74</p> <p>4.3.1 Analysis of Topological Attribute of Inter-Satellite Links 74</p> <p>4.3.2 Inter-Satellite Visibility Analysis 74</p> <p>4.3.3 Inter-Satellite Link Topology Cost 77</p> <p>4.3.3.1 Path Loss 78</p> <p>4.3.3.2 Transmission Loss 79</p> <p>4.3.3.3 Protocol Overhead 82</p> <p>4.4 Inter-Satellite Link Network Protocol Model 83</p> <p>4.4.1 Inter-Satellite Network Protocol Model 83</p> <p>4.4.2 Transport Layer Protocol 84</p> <p>References 85</p> <p><b>5 Principles of Laser Inter-Satellite Ranging 87</b></p> <p>5.1 Principle of Inter-Satellite Ranging 87</p> <p>5.2 Inter-Satellite Ranging Accuracy 88</p> <p>5.3 Principle of Microwave Inter-Satellite Ranging 89</p> <p>5.3.1 Principle of Pseudo-Range Two-Way Ranging 89</p> <p>5.3.2 Analysis of Error Sources in Microwave Ranging 91</p> <p>5.3.2.1 Antenna Phase Center Error 91</p> <p>5.3.2.2 Device Circuit Delay Error 93</p> <p>5.3.2.3 Multipath Effect Error 93</p> <p>5.3.2.4 Ionospheric Delay Error 93</p> <p>5.3.2.5 Relativistic Effect Error 94</p> <p>5.4 Principle of Laser Inter-Satellite Ranging 95</p> <p>5.4.1 Principle of Laser Pulse Ranging 95</p> <p>5.4.2 Analysis of Error Sources in Laser Ranging 96</p> <p>References 97</p> <p><b>6 Composition of Laser Inter-Satellite Link 99</b></p> <p>6.1 Basic Structure of Laser Inter-Satellite Link 99</p> <p>6.1.1 Optical Transmitting Subsystem 99</p> <p>6.1.2 Light Receiving Subsystem 100</p> <p>6.1.3 Align, Capture, Track Subsystem (PAT) 101</p> <p>6.2 Workflow of Laser Inter-Satellite Link 101</p> <p>6.3 Constraints 103</p> <p>6.3.1 Satellite Orbit 103</p> <p>6.3.2 Satellite Attitude 104</p> <p>6.3.3 Uncertain Angle of Pre-Cover 105</p> <p>6.3.4 Satellite Vibration Problem 106</p> <p>6.3.5 Dynamic Coupling Problem 107</p> <p>6.3.6 Influence of Background Stray Light 107</p> <p>6.4 Transmitter Design 110</p> <p>6.4.1 Choice of Laser 110</p> <p>6.4.2 Wavelength Selection 111</p> <p>6.4.3 Selection of the Diameter of the Transmitting Antenna 112</p> <p>6.4.4 Calculation of Transmitting Antenna Gain 112</p> <p>6.5 Receiver Design 113</p> <p>6.5.1 Selection of Receiver Detector 113</p> <p>6.5.2 Selection of Receiving Antenna Aperture 114</p> <p>6.5.3 Calculation of Receiving Antenna Gain 114</p> <p>6.5.4 Calculation of Received Power 115</p> <p>References 115</p> <p><b>7 Inter-Satellite Laser Capture, Aiming, and Tracking System 117</b></p> <p>7.1 Introduction 117</p> <p>7.2 Acquisition 119</p> <p>7.2.1 Capture Scheme 120</p> <p>7.2.1.1 Stare-Scan 120</p> <p>7.2.1.2 Scan-Scan 121</p> <p>7.2.2 Capture Path 122</p> <p>7.3 Pointing 123</p> <p>7.4 Tracking 124</p> <p>7.4.1 Analysis of Tracking System Beacon Beam Divergence 124</p> <p>7.4.2 The Role of the Tracking System in the APT System 126</p> <p>7.5 APT System Terminal Structure 128</p> <p>7.5.1 Coarse Sight Subsystem Design 129</p> <p>7.5.1.1 Coarse Sight Subsystem Composition 129</p> <p>7.5.1.2 Coarse Aiming Control Subsystem Design 132</p> <p>7.5.2 Design of Precision Sighting Subsystem 133</p> <p>7.5.2.1 The Composition of the Precision Aiming Subsystem 133</p> <p>7.5.2.2 Design of Precision Aiming Control System 135</p> <p>References 136</p> <p><b>8 Inter-Satellite Laser Link Tracking Error 139</b></p> <p>8.1 Definition of Alignment Error 139</p> <p>8.2 Alignment Error Model and Factor Analysis 140</p> <p>8.2.1 Mathematical Modeling of Alignment Errors 140</p> <p>8.2.2 Factors Causing Alignment Errors 143</p> <p>8.2.3 Influence of Tracking Error on Beam Distribution at Receiver 144</p> <p>8.2.3.1 The Effect of Tracking Error on the Beam Intensity at the Receiving End 145</p> <p>8.2.3.2 Influence of Tracking Error on Beam Power at Receiver 146</p> <p>8.2.4 Influence of Tracking and Pointing Error on Communication Error Rate 147</p> <p>8.3 Analysis of Tracking and Pointing Error Sources of Inter-Satellite Laser Communication System 149</p> <p>8.3.1 Satellite Platform Vibration 151</p> <p>8.3.2 Detector Noise 152</p> <p>8.3.2.1 Characteristics and Types of Detector Noise 152</p> <p>8.3.2.2 Effect of Detector Noise on System Performance 155</p> <p>8.4 Satellite Platform Vibration Suppression Scheme 157</p> <p>8.4.1 Satellite Platform Vibration Suppression Scheme 157</p> <p>8.4.1.1 Passive Vibration Isolation 157</p> <p>8.4.1.2 Active Control 158</p> <p>8.4.2 Feedforward Vibration Suppression Algorithm 159</p> <p>8.4.2.1 Influence of Satellite Platform Vibration on Precision Aiming Control System 159</p> <p>8.4.2.2 Analysis of Feedforward Vibration Suppression Algorithm 161</p> <p>References 165</p> <p><b>9 Inter-Satellite Link Laser Modulation Mode 167</b></p> <p>9.1 Block Diagram of Inter-Satellite Link Optical Communication System 167</p> <p>9.2 Typical Incoherent Optical Modulation (IM/DD) 168</p> <p>9.2.1 On-Off Key Control 169</p> <p>9.2.2 Pulse Position Modulation 169</p> <p>9.2.3 Differential Pulse Position Modulation 169</p> <p>9.2.4 Digital Pulse Interval Modulation 171</p> <p>9.2.5 Double Head Pulse Interval Modulation 171</p> <p>9.3 Coherent Optical Communication Modulator and Modulation Principle 172</p> <p>9.3.1 Optical Modulator 173</p> <p>9.3.2 Coherent Optical Communication Modulation Format 174</p> <p>9.3.2.1 Binary Phase Shift Keying 174</p> <p>9.3.2.2 Quaternary Phase Shift Keying 175</p> <p>9.3.2.3 8psk 176</p> <p>9.3.2.4 8qam 178</p> <p>9.4 Comparison of Communication Performance of Laser Modulation Schemes 179</p> <p>9.4.1 Average Transmit Power 179</p> <p>9.4.1.1 OOK 179</p> <p>9.4.1.2 PPM 179</p> <p>9.4.1.3 DPPM 179</p> <p>9.4.1.4 DPIM 180</p> <p>9.4.1.5 DH-PIM 180</p> <p>9.4.1.6 Coherent PSK 180</p> <p>9.4.2 Transmission Bandwidth 180</p> <p>9.4.2.1 PPM 180</p> <p>9.4.2.2 DPPM 181</p> <p>9.4.2.3 DPIM 181</p> <p>9.4.2.4 DH-PIM 181</p> <p>9.4.2.5 Coherent PSK 181</p> <p>9.4.3 Bit Error Rate 181</p> <p>9.4.3.1 OOK 182</p> <p>9.4.3.2 PPM 182</p> <p>9.4.3.3 DPPM 182</p> <p>9.4.3.4 DPIM 183</p> <p>9.4.3.5 DH-PIM 183</p> <p>9.4.3.6 BPSK 183</p> <p>9.4.4 Summary 183</p> <p>References 184</p> <p>Index 187</p>
<p><b>Jianjun Zhang, PhD,</b> is a Professor at Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology. He has published more than 50 SCI/EI search papers in international journals and conferences, authorized more than 20 invention patents at home and abroad, and published 3 monographs. <p><b>Jing Li, PhD,</b> is an Associate Professor at the School of Automation, Beijing Institute of Technology. She has presided over more than 10 projects at leading institutions.
<p><b>State of the art resource covering key technologies and related theories of inter-satellite links</b> <p><i>Laser Inter-Satellite Links Technology</i> explores satellite networking as a growing topic in the field of communication technology, introducing the definition, types, and working frequency bands of inter-satellite links, discussing the number of orbital elements of the spacecraft motion state under two-body motion and their conversion relationship, and establishing the basic demand model for inter-satellite link network, chain topology model, and transmission protocol model. <p>The book focuses on the analysis and introduction of the principles and error sources of microwave and laser inter-satellite ranging, including the basic composition, workflow, and constraints of the laser inter-satellite link, and related design principles of the inter-satellite laser transmitter and receivers. Later chapters also discuss theories and methods of acquisition, alignment, and tracking, the impact of alignment errors on performance, and inter-satellite link modulation and its implementation. <p>Specific sample topics covered in <i>Laser Inter-Satellite Links Technology</i> include: <ul><li> Pulse position modulation (PPM), differential pulse position modulation (DPPM), digital pulse interval modulation (DPIM), and double-head pulse interval modulation (DH-PIM)</li> <li> Basic demand model of inter-satellite link network application, including basic configuration of constellations and inter-satellite transmission networks</li> <li> Inter-satellite ranging accuracy, principles of microwave inter-satellite ranging, and analysis of microwave ranging error sources</li> <li> Effect of tracking error on the beam distribution at the receiving end and influence of tracking and pointing error on communication error rate</li></ul> <p><i>Laser Inter-Satellite Links Technology </i>serves a completely comprehensive resource on the subject and is a must-have reference for experts and scholars in aerospace, along with graduates and senior undergraduates in related programs of study.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €