Details

Introduction to Solid State Physics for Materials Engineers


Introduction to Solid State Physics for Materials Engineers


1. Aufl.

von: Emil Zolotoyabko

51,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 13.04.2021
ISBN/EAN: 9783527831593
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A concise, accessible, and up-to-date introduction to solid state physics</b></p> <p>Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented.</p> <p>The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book:</p> <ul> <li>Provides a big picture view of solid state physics</li> <li>Contains examples of basic concepts and applications</li> <li>Offers a highly accessible text that fosters real understanding</li> <li>Presents a wealth of helpful worked examples</li> </ul> <p>Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.</p>
<p>Preface xi</p> <p>Introduction xiii</p> <p><b>1 General Impact of Translational Symmetry in Crystals on Solid State Physics </b><b>1</b></p> <p>1.1 Crystal Symmetry in Real Space 3</p> <p>1.2 Symmetry and Physical Properties in Crystals 9</p> <p>1.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice 13</p> <p>1.A Symmetry Constraints on Rotation Axes 18</p> <p>1.B Twinning in Crystals 20</p> <p><b>2 Electron Waves in Crystals </b><b>23</b></p> <p>2.1 Electron Behavior in a Periodic Potential and Energy Gap Formation 23</p> <p>2.2 The Brillouin Zone 28</p> <p>2.3 Band Structure 31</p> <p>2.4 Graphene 35</p> <p>2.5 Fermi Surface 40</p> <p>2.A Cyclotron Resonance and Related Phenomena 43</p> <p><b>3 Elastic Wave Propagation in Periodic Media, Phonons, and Thermal Properties of Crystals </b><b>51</b></p> <p>3.1 Linear Chain of the Periodically Positioned Atoms 51</p> <p>3.2 Phonons and Heat Capacity 56</p> <p>3.3 Thermal Vibrations of Atoms in Crystals 59</p> <p>3.4 Crystal Melting 60</p> <p>3.5 X-ray and Neutron Interaction with Phonons 61</p> <p>3.5.1 Debye–Waller Factor 65</p> <p>3.6 Lattice Anharmonicity 67</p> <p>3.7 Velocities of Bulk AcousticWaves 69</p> <p>3.8 Surface AcousticWaves 72</p> <p>3.A Bose’s Derivation of the Planck Distribution Function 73</p> <p><b>4 Electrical Conductivity in Metals </b><b>75</b></p> <p>4.1 Classical Drude Theory 76</p> <p>4.2 Quantum–Mechanical Approach 77</p> <p>4.3 Phonon Contribution to Electrical Resistivity 80</p> <p>4.4 Defects’ Contributions to Metal Resistivity 82</p> <p>4.A Derivation of the Fermi-Dirac Distribution Function 84</p> <p><b>5 Electron Contribution to Thermal Properties of Crystals </b><b>87</b></p> <p>5.1 Electronic Specific Heat 87</p> <p>5.2 Electronic Heat Conductivity and theWiedemann–Franz Law 92</p> <p>5.3 Thermoelectric Phenomena 94</p> <p>5.4 Thermoelectric Materials 98</p> <p><b>6 Electrical Conductivity in Semiconductors </b><b>105</b></p> <p>6.1 Intrinsic (Undoped) Semiconductors 105</p> <p>6.2 Extrinsic (Doped) Semiconductors 110</p> <p>6.3 <i>p</i>–<i>n </i>Junction 111</p> <p>6.4 Semiconductor Transistors 117</p> <p>6.A Estimation of Exciton’s Radius and Binding Energy 120</p> <p><b>7 Work Function and Related Phenomena </b><b>123</b></p> <p>7.1 Work Function of Metals 123</p> <p>7.2 Photoelectric Effect 126</p> <p>7.2.1 Angle-Resolved Photoemission Spectroscopy (APRES) 126</p> <p>7.3 Thermionic Emission 128</p> <p>7.4 Metal-Semiconductor Junction 131</p> <p>7.A Image Charge Method 133</p> <p>7.B A Free Electron Cannot Absorb a Photon 134</p> <p><b>8 Light Interaction with Metals and Dielectrics </b><b>135</b></p> <p>8.1 Skin Effect in Metals 137</p> <p>8.2 Light Reflection from a Metal 138</p> <p>8.3 Plasma Frequency 140</p> <p>8.4 Introduction to Metamaterials 141</p> <p>8.5 Structural Colors 148</p> <p>8.A Acoustic Metamaterials 150</p> <p><b>9 Light Interaction with Semiconductors </b><b>155</b></p> <p>9.1 Solar Cells 155</p> <p>9.1.1 The Grätzel Cell 159</p> <p>9.1.2 Halide Perovskite Solar Cells 161</p> <p>9.2 Solid State Radiation Detectors 162</p> <p>9.2.1 Infrared Detectors 164</p> <p>9.3 Charge-Coupled Devices (CCDs) 167</p> <p>9.4 Light-Emitting Diodes (LEDs) 168</p> <p>9.5 Semiconductor Lasers 170</p> <p>9.6 Photonic Materials 173</p> <p><b>10 Cooperative Phenomena in Electron Systems: Superconductivity </b><b>177</b></p> <p>10.1 Phonon-Mediated Cooper Pairing Mechanism 178</p> <p>10.2 Direct Measurements of the Superconductor Energy Gap 182</p> <p>10.3 Josephson Effect 184</p> <p>10.4 Meissner Effect 185</p> <p>10.5 SQUID 188</p> <p>10.6 High-Temperature Superconductivity 189</p> <p>10.A Fourier Transform of the Coulomb Potential 192</p> <p>10.B The Josephson Effect Theory 193</p> <p>10.C Derivation of the CriticalMagnetic Field in Type I Superconductors 195</p> <p><b>11 Cooperative Phenomena in Electron Systems: Ferromagnetism </b><b>197</b></p> <p>11.1 Paramagnetism and Ferromagnetism 198</p> <p>11.2 The Ising Model 204</p> <p>11.3 Magnetic Structures 205</p> <p>11.4 Magnetic Domains 207</p> <p>11.5 Magnetic Materials 210</p> <p>11.6 Giant Magnetoresistance 211</p> <p>11.A The Elementary Magnetic Moment of an Electron Produced by its Orbital Movement 214</p> <p>11.B Pauli Paramagnetism 214</p> <p>11.C Magnetic DomainWalls 216</p> <p><b>12 Ferroelectricity as a Cooperative Phenomenon </b><b>219</b></p> <p>12.1 The Theory of Ferroelectric Phase Transition 223</p> <p>12.2 Ferroelectric Domains 227</p> <p>12.3 The Piezoelectric Effect and Its Application in Ferroelectric Devices 230</p> <p>12.4 Other Application Fields of Ferroelectrics 233</p> <p><b>13 Other Examples of Cooperative Phenomena in Electron Systems </b><b>237</b></p> <p>13.1 The Mott Metal–Insulator Transition 237</p> <p>13.2 Classical and Quantum Hall Effects 241</p> <p>13.3 Topological Insulators 247</p> <p>13.A Electron Energies and Orbit Radii in the Simplified Bohr Model of a Hydrogen-like Atom 250</p> <p>Further Reading 253</p> <p>List of Prominent Scientists Mentioned in the Book 255</p> <p>Index 265</p>
<p><i><b>Emil Zolotoyabko</b> is Professor Emeritus in the Department of Materials Science and Engineering at the Technion - Israel Institute of Technology. He was awarded the 2001 Henry Taub Prize for Academic Excellence and held the Abraham Tulin Academic Chair. Emil Zolotoyabko has authored more than 200 scientific publications, four books, and four chapters in books devoted to the development of new X-ray diffraction methods and their applications for studying the structure and dynamical characteristics of different materials systems.</i></p>
<p><b>A concise, accessible, and up-to-date introduction to solid state physics</b></p><p>Solid state physics is the foundation of many of today’s technologies, including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. <i>Introduction to Solid State Physics for Materials Engineers</i> offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented.</p><p>The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book:</p><ul><li>Provides a big picture view of solid state physics</li><li>Contains examples of basic concepts and applications</li><li>Offers a highly accessible text that fosters real understanding</li><li>Presents a wealth of helpful worked examples</li></ul><p>Written for students of materials science, engineering, chemistry and physics, <i>Introduction to Solid State Physics for Materials Engineers</i> is an important guide to help foster an understanding of solid state physics.</p>

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €