Details

Introduction to Reticular Chemistry


Introduction to Reticular Chemistry

Metal-Organic Frameworks and Covalent Organic Frameworks
1. Aufl.

von: Omar M. Yaghi, Markus J. Kalmutzki, Christian S. Diercks

133,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.03.2019
ISBN/EAN: 9783527821105
Sprache: englisch
Anzahl Seiten: 552

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials <br> <br> Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications <br> <br> Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: <br> <br> -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials <br> -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption <br> -Offers all graphic material on a companion website <br> -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. <br> <br> Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs. <br>
<p>About the Companion Website xvii</p> <p>Foreword xix</p> <p>Acknowledgment xxi</p> <p>Introduction xxiii</p> <p>Abbreviations xxvii</p> <p><b>Part I Metal-Organic Frameworks </b><b>1</b></p> <p><b>1 Emergence of Metal-Organic Frameworks </b><b>3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Early Examples of Coordination Solids 3</p> <p>1.3 Werner Complexes 4</p> <p>1.4 Hofmann Clathrates 6</p> <p>1.5 Coordination Networks 8</p> <p>1.6 Coordination Networks with Charged Linkers 15</p> <p>1.7 Introduction of Secondary Building Units and Permanent Porosity 16</p> <p>1.8 Extending MOF Chemistry to 3D Structures 17</p> <p>1.8.1 Targeted Synthesis of MOF-5 18</p> <p>1.8.2 Structure of MOF-5 19</p> <p>1.8.3 Stability of Framework Structures 20</p> <p>1.8.4 Activation of MOF-5 20</p> <p>1.8.5 Permanent Porosity of MOF-5 21</p> <p>1.8.6 Architectural Stability of MOF-5 22</p> <p>1.9 Summary 23</p> <p>References 24</p> <p><b>2 Determination and Design of Porosity </b><b>29</b></p> <p>2.1 Introduction 29</p> <p>2.2 Porosity in Crystalline Solids 29</p> <p>2.3 Theory of Gas Adsorption 31</p> <p>2.3.1 Terms and Definitions 31</p> <p>2.3.2 Physisorption and Chemisorption 31</p> <p>2.3.3 Gas Adsorption Isotherms 33</p> <p>2.3.4 Models Describing Gas Adsorption in Porous Solids 35</p> <p>2.3.4.1 Langmuir Model 37</p> <p>2.3.4.2 Brunauer–Emmett–Teller (BET) Model 38</p> <p>2.3.5 Gravimetric Versus Volumetric Uptake 40</p> <p>2.4 Porosity in Metal-Organic Frameworks 40</p> <p>2.4.1 Deliberate Design of Pore Metrics 40</p> <p>2.4.2 Ultrahigh Surface Area 46</p> <p>2.5 Summary 52</p> <p>References 52</p> <p><b>3 Building Units of MOFs </b><b>57</b></p> <p>3.1 Introduction 57</p> <p>3.2 Organic Linkers 57</p> <p>3.2.1 Synthetic Methods for Linker Design 59</p> <p>3.2.2 Linker Geometries 62</p> <p>3.2.2.1 Two Points of Extension 62</p> <p>3.2.2.2 Three Points of Extension 64</p> <p>3.2.2.3 Four Points of Extension 64</p> <p>3.2.2.4 Five Points of Extension 69</p> <p>3.2.2.5 Six Points of Extension 69</p> <p>3.2.2.6 Eight Points of Extension 69</p> <p>3.3 Secondary Building Units 71</p> <p>3.4 Synthetic Routes to Crystalline MOFs 74</p> <p>3.4.1 Synthesis of MOFs from Divalent Metals 74</p> <p>3.4.2 Synthesis of MOFs from Trivalent Metals 76</p> <p>3.4.2.1 Trivalent Group 3 Elements 76</p> <p>3.4.2.2 Trivalent Transition Metals 76</p> <p>3.4.3 Synthesis of MOFs from Tetravalent Metals 77</p> <p>3.5 Activation of MOFs 77</p> <p>3.6 Summary 79</p> <p>References 80</p> <p><b>4 Binary Metal-Organic Frameworks </b><b>83</b></p> <p>4.1 Introduction 83</p> <p>4.2 MOFs Built from 3-, 4-, and 6-Connected SBUs 83</p> <p>4.2.1 3-Connected (3-c) SBUs 83</p> <p>4.2.2 4-Connected (4-c) SBUs 84</p> <p>4.2.3 6-Connected (6-c) SBUs 90</p> <p>4.3 MOFs Built from 7-, 8-, 10-, and 12-Connected SBUs 97</p> <p>4.3.1 7-Connected (7-c) SBUs 97</p> <p>4.3.2 8-Connected (8-c) SBUs 98</p> <p>4.3.3 10-Connected (10-c) SBUs 103</p> <p>4.3.4 12-Connected (12-c) SBUs 105</p> <p>4.4 MOFs Built from Infinite Rod SBUs 112</p> <p>4.5 Summary 114</p> <p>References 114</p> <p><b>5 Complexity and Heterogeneity in MOFs </b><b>121</b></p> <p>5.1 Introduction 121</p> <p>5.2 Complexity in Frameworks 123</p> <p>5.2.1 Mixed-Metal MOFs 123</p> <p>5.2.1.1 Linker De-symmetrization 123</p> <p>5.2.1.2 Linkers with Chemically Distinct Binding Groups 123</p> <p>5.2.2 Mixed-Linker MOFs 126</p> <p>5.2.3 The TBU Approach 132</p> <p>5.2.3.1 Linking TBUs Through Additional SBUs 133</p> <p>5.2.3.2 Linking TBUs Through Organic Linkers 134</p> <p>5.3 Heterogeneity in Frameworks 135</p> <p>5.3.1 Multi-Linker MTV-MOFs 136</p> <p>5.3.2 Multi-Metal MTV-MOFs 136</p> <p>5.3.3 Disordered Vacancies 139</p> <p>5.4 Summary 141</p> <p>References 141</p> <p><b>6 Functionalization of MOFs 145</b></p> <p>6.1 Introduction 145</p> <p>6.2 In situ Functionalization 146</p> <p>6.2.1 Trapping of Molecules 146</p> <p>6.2.2 Embedding of Nanoparticles in MOF Matrices 147</p> <p>6.3 Pre-Synthetic Functionalization 149</p> <p>6.4 Post-Synthetic Modification 149</p> <p>6.4.1 Functionalization Involving Weak Interactions 150</p> <p>6.4.1.1 Encapsulation of Guests 150</p> <p>6.4.1.2 Coordinative Functionalization of Open Metal Site 151</p> <p>6.4.1.3 Coordinative Functionalization of the Linker 151</p> <p>6.4.2 PSM Involving Strong Interactions 153</p> <p>6.4.2.1 Coordinative Functionalization of the SBUs by AIM 154</p> <p>6.4.2.2 Post-Synthetic Ligand Exchange 154</p> <p>6.4.2.3 Coordinative Alignment 156</p> <p>6.4.2.4 Post-Synthetic Linker Exchange 156</p> <p>6.4.2.5 Post-Synthetic Linker Installation 160</p> <p>6.4.2.6 Introduction of Ordered Defects 163</p> <p>6.4.2.7 Post-Synthetic Metal Ion Exchange 164</p> <p>6.4.3 PSM Involving Covalent Interactions 165</p> <p>6.4.3.1 Covalent PSM of Amino-Functionalized MOFs 166</p> <p>6.4.3.2 Click Chemistry and Other Cycloadditions 168</p> <p>6.4.4 Covalent PSM on Bridging Hydroxyl Groups 171</p> <p>6.5 Analytical Methods 171</p> <p>6.6 Summary 172</p> <p>References 173</p> <p><b>Part II Covalent Organic Frameworks </b><b>177</b></p> <p><b>7 Historical Perspective on the Discovery of Covalent Organic Frameworks </b><b>179</b></p> <p>7.1 Introduction 179</p> <p>7.2 Lewis’ Concepts and the Covalent Bond 180</p> <p>7.3 Development of Synthetic Organic Chemistry 182</p> <p>7.4 Supramolecular Chemistry 183</p> <p>7.5 Dynamic Covalent Chemistry 187</p> <p>7.6 Covalent Organic Frameworks 189</p> <p>7.7 Summary 192</p> <p>References 193</p> <p><b>8 Linkages in Covalent Organic Frameworks 197</b></p> <p>8.1 Introduction 197</p> <p>8.2 B–O Bond Forming Reactions 197</p> <p>8.2.1 Mechanism of Boroxine, Boronate Ester, and Spiroborate Formation 197</p> <p>8.2.2 Borosilicate COFs 198</p> <p>8.2.3 Spiroborate COFs 200</p> <p>8.3 Linkages Based on Schiff-Base Reactions 201</p> <p>8.3.1 Imine Linkage 201</p> <p>8.3.1.1 2D Imine COFs 201</p> <p>8.3.1.2 3D Imine COFs 203</p> <p>8.3.1.3 Stabilization of Imine COFs Through Hydrogen Bonding 205</p> <p>8.3.1.4 Resonance Stabilization of Imine COFs 206</p> <p>8.3.2 Hydrazone COFs 207</p> <p>8.3.3 Squaraine COFs 209</p> <p>8.3.4 β-Ketoenamine COFs 210</p> <p>8.3.5 Phenazine COFs 211</p> <p>8.3.6 Benzoxazole COFs 212</p> <p>8.4 Imide Linkage 213</p> <p>8.4.1 2D Imide COFs 214</p> <p>8.4.2 3D Imide COFs 215</p> <p>8.5 Triazine Linkage 216</p> <p>8.6 Borazine Linkage 217</p> <p>8.7 Acrylonitrile Linkage 218</p> <p>8.8 Summary 220</p> <p>References 221</p> <p><b>9 Reticular Design of Covalent Organic Frameworks 225</b></p> <p>9.1 Introduction 225</p> <p>9.2 Linkers in COFs 227</p> <p>9.3 2D COFs 227</p> <p>9.3.1 <b>hcb </b>Topology COFs 229</p> <p>9.3.2 <b>sql </b>Topology COFs 231</p> <p>9.3.3 <b>kgm </b>Topology COFs 233</p> <p>9.3.4 Formation of <b>hxl </b>Topology COFs 235</p> <p>9.3.5 <b>kgd </b>Topology COFs 236</p> <p>9.4 3D COFs 238</p> <p>9.4.1 <b>dia </b>Topology COFs 238</p> <p>9.4.2 <b>ctn </b>and <b>bor </b>Topology COFs 239</p> <p>9.4.3 COFs with <b>pts </b>Topology 240</p> <p>9.5 Summary 241</p> <p>References 242</p> <p><b>10 Functionalization of COFs </b><b>245</b></p> <p>10.1 Introduction 245</p> <p>10.2 In situ Modification 245</p> <p>10.2.1 Embedding Nanoparticles in COFs 246</p> <p>10.3 Pre-Synthetic Modification 247</p> <p>10.3.1 Pre-Synthetic Metalation 248</p> <p>10.3.2 Pre-Synthetic Covalent Functionalization 249</p> <p>10.4 Post-Synthetic Modification 250</p> <p>10.4.1 Post-Synthetic Trapping of Guests 250</p> <p>10.4.1.1 Trapping of Functional Small Molecules 250</p> <p>10.4.1.2 Post-Synthetic Trapping of Biomacromolecules and Drug Molecules 251</p> <p>10.4.1.3 Post-Synthetic Trapping of Metal Nanoparticles 251</p> <p>10.4.1.4 Post-Synthetic Trapping of Fullerenes 253</p> <p>10.4.2 Post-Synthetic Metalation 253</p> <p>10.4.2.1 Post-Synthetic Metalation of the Linkage 253</p> <p>10.4.2.2 Post-Synthetic Metalation of the Linker 255</p> <p>10.4.3 Post-Synthetic Covalent Functionalization 256</p> <p>10.4.3.1 Post-Synthetic Click Reactions 256</p> <p>10.4.3.2 Post-Synthetic Succinic Anhydride Ring Opening 259</p> <p>10.4.3.3 Post-Synthetic Nitro Reduction and Aminolysis 260</p> <p>10.4.3.4 Post-Synthetic Linker Exchange 261</p> <p>10.4.3.5 Post-Synthetic Linkage Conversion 262</p> <p>10.5 Summary 263</p> <p>References 264</p> <p><b>11 Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks </b><b>267</b></p> <p>11.1 Introduction 267</p> <p>11.2 Top–Down Approach 268</p> <p>11.2.1 Sonication 268</p> <p>11.2.2 Grinding 269</p> <p>11.2.3 Chemical Exfoliation 269</p> <p>11.3 Bottom–Up Approach 271</p> <p>11.3.1 Mechanism of Crystallization of Boronate Ester COFs 271</p> <p>11.3.1.1 Solution Growth on Substrates 273</p> <p>11.3.1.2 Seeded Growth of Colloidal Nanocrystals 274</p> <p>11.3.1.3 Thin Film Growth in Flow 276</p> <p>11.3.1.4 Thin Film Formation by Vapor-Assisted Conversion 277</p> <p>11.3.2 Mechanism of Imine COF Formation 277</p> <p>11.3.2.1 Nanoparticles of Imine COFs 278</p> <p>11.3.2.2 Thin Films of Imine COFs at the Liquid–Liquid Interface 280</p> <p>11.4 Monolayer Formation of Boroxine and Imine COFs Under Ultrahigh Vacuum 281</p> <p>11.5 Summary 281</p> <p>References 282</p> <p><b>Part III Applications of Metal-Organic Frameworks </b><b>285</b></p> <p><b>12 The Applications of Reticular Framework Materials </b><b>287</b></p> <p>References 288</p> <p><b>13 The Basics of Gas Sorption and Separation in MOFs </b><b>295</b></p> <p>13.1 Gas Adsorption 295</p> <p>13.1.1 Excess and Total Uptake 295</p> <p>13.1.2 Volumetric Versus Gravimetric Uptake 297</p> <p>13.1.3 Working Capacity 297</p> <p>13.1.4 System-Based Capacity 298</p> <p>13.2 Gas Separation 299</p> <p>13.2.1 Thermodynamic Separation 299</p> <p>13.2.1.1 Calculation of Q<sub>st</sub> Using a Virial-Type Equation 300</p> <p>13.2.1.2 Calculation of Q<sub>st</sub> Using the Langmuir–Freundlich Equation 300</p> <p>13.2.2 Kinetic Separation 301</p> <p>13.2.2.1 Diffusion Mechanisms 301</p> <p>13.2.2.2 Influence of the Pore Shape 303</p> <p>13.2.2.3 Separation by Size Exclusion 304</p> <p>13.2.2.4 Separation Based on the Gate-Opening Effect 304</p> <p>13.2.3 Selectivity 305</p> <p>13.2.3.1 Calculation of the Selectivity from Single-Component Isotherms 306</p> <p>13.2.3.2 Calculation of the Selectivity by Ideal Adsorbed Solution Theory 307</p> <p>13.2.3.3 Experimental Methods 308</p> <p>13.3 Stability of Porous Frameworks Under Application Conditions 309</p> <p>13.4 Summary 310</p> <p>References 310</p> <p><b>14 CO<sub>2 </sub>Capture and Sequestration </b><b>313</b></p> <p>14.1 Introduction 313</p> <p>14.2<i> In Situ </i>Characterization 315</p> <p>14.2.1 X-ray and Neutron Diffraction 315</p> <p>14.2.1.1 Characterization of Breathing MOFs 316</p> <p>14.2.1.2 Characterization of Interactions with Lewis Bases 317</p> <p>14.2.1.3 Characterization of Interactions with Open Metal Sites 317</p> <p>14.2.2 Infrared Spectroscopy 318</p> <p>14.2.3 Solid-State NMR Spectroscopy 320</p> <p>14.3 MOFs for Post-combustion CO<sub>2</sub> Capture 321</p> <p>14.3.1 Influence of Open Metal Sites 321</p> <p>14.3.2 Influence of Heteroatoms 322</p> <p>14.3.2.1 Organic Diamines Appended to Open Metal Sites 322</p> <p>14.3.2.2 Covalently Bound Amines 323</p> <p>14.3.3 Interactions Originating from the SBU 323</p> <p>14.3.4 Influence of Hydrophobicity 325</p> <p>14.4 MOFs for Pre-combustion CO<sub>2</sub> Capture 326</p> <p>14.5 Regeneration and CO<sub>2</sub> Release 327</p> <p>14.5.1 Temperature Swing Adsorption 328</p> <p>14.5.2 Vacuum and Pressure Swing Adsorption 328</p> <p>14.6 Important MOFs for CO<sub>2</sub> Capture 329</p> <p>14.7 Summary 332</p> <p>References 332</p> <p><b>15 Hydrogen and Methane Storage in MOFs </b><b>339</b></p> <p>15.1 Introduction 339</p> <p>15.2 Hydrogen Storage in MOFs 340</p> <p>15.2.1 Design of MOFs for Hydrogen Storage 341</p> <p>15.2.1.1 Increasing the Accessible Surface Area 342</p> <p>15.2.1.2 Increasing the Isosteric Heat of Adsorption 344</p> <p>15.2.1.3 Use of Lightweight Elements 348</p> <p>15.2.2 Important MOFs for Hydrogen Storage 349</p> <p>15.3 Methane Storage in MOFs 349</p> <p>15.3.1 Optimizing MOFs for Methane Storage 352</p> <p>15.3.1.1 Optimization of the Pore Shape and Metrics 353</p> <p>15.3.1.2 Introduction of Polar Adsorption Sites 357</p> <p>15.3.2 Important MOFs for Methane Storage 359</p> <p>15.4 Summary 359</p> <p>References 359</p> <p><b>16 Liquid- and Gas-Phase Separation in MOFs </b><b>365</b></p> <p>16.1 Introduction 365</p> <p>16.2 Separation of Hydrocarbons 366</p> <p>16.2.1 C<sub>1</sub>–C<sub>5</sub> Separation 367</p> <p>16.2.2 Separation of Light Olefins and Paraffins 370</p> <p>16.2.2.1 Thermodynamic Separation of Olefin/Paraffin Mixtures 371</p> <p>16.2.2.2 Kinetic Separation of Olefin/Paraffin Mixtures 372</p> <p>16.2.2.3 Separation of Olefin/Paraffin Mixtures Utilizing the Gate-Opening Effect 375</p> <p>16.2.2.4 Separation of Olefin/Paraffin Mixtures by Molecular Sieving 375</p> <p>16.2.3 Separation of Aromatic C<sub>8</sub> Isomers 376</p> <p>16.2.4 Mixed-Matrix Membranes 379</p> <p>16.3 Separation in Liquids 382</p> <p>16.3.1 Adsorption of Bioactive Molecules fromWater 382</p> <p>16.3.1.1 Toxicity of MOFs 382</p> <p>16.3.1.2 Selective Adsorption of Drug Molecules fromWater 383</p> <p>16.3.1.3 Selective Adsorption of Biomolecules fromWater 385</p> <p>16.3.2 Adsorptive Purification of Fuels 385</p> <p>16.3.2.1 Aromatic <i>N</i>-Heterocyclic Compounds 385</p> <p>16.3.2.2 Adsorptive Removal of Aromatic N-Heterocycles 385</p> <p>16.4 Summary 386</p> <p>References 387</p> <p><b>17 Water Sorption Applications of MOFs </b><b>395</b></p> <p>17.1 Introduction 395</p> <p>17.2 Hydrolytic Stability of MOFs 395</p> <p>17.2.1 Experimental Assessment of the Hydrolytic Stability 396</p> <p>17.2.2 Degradation Mechanisms 396</p> <p>17.2.3 Thermodynamic Stability 398</p> <p>17.2.3.1 Strength of the Metal–Linker Bond 398</p> <p>17.2.3.2 Reactivity of Metals TowardWater 399</p> <p>17.2.4 Kinetic Inertness 400</p> <p>17.2.4.1 Steric Shielding 401</p> <p>17.2.4.2 Hydrophobicity 403</p> <p>17.2.4.3 Electronic Configuration of the Metal Center 403</p> <p>17.3 Water Adsorption in MOFs 404</p> <p>17.3.1 Water Adsorption Isotherms 404</p> <p>17.3.2 Mechanisms ofWater Adsorption in MOFs 405</p> <p>17.3.2.1 Chemisorption on Open Metal Sites 405</p> <p>17.3.2.2 Reversible Cluster Formation 407</p> <p>17.3.2.3 Capillary Condensation 409</p> <p>17.4 Tuning the Adsorption Properties of MOFs by Introduction of Functional Groups 411</p> <p>17.5 Adsorption-Driven Heat Pumps 412</p> <p>17.5.1 Working Principles of Adsorption-Driven Heat Pumps 412</p> <p>17.5.2 Thermodynamics of Adsorption-Driven Heat Pumps 413</p> <p>17.6 Water Harvesting from Air 415</p> <p>17.6.1 Physical Background onWater Harvesting 416</p> <p>17.6.2 Down-selection of MOFs forWater Harvesting 418</p> <p>17.7 Design of MOFs with TailoredWater Adsorption Properties 420</p> <p>17.7.1 Influence of the Linker Design 420</p> <p>17.7.2 Influence of the SBU 420</p> <p>17.7.3 Influence of the Pore Size and Dimensionality of the Pore System 421</p> <p>17.7.4 Influence of Defects 421</p> <p>17.8 Summary 422</p> <p>References 423</p> <p><b>Part IV Special Topics </b><b>429</b></p> <p><b>18 Topology </b><b>431</b></p> <p>18.1 Introduction 431</p> <p>18.2 Graphs, Symmetry, and Topology 431</p> <p>18.2.1 Graphs and Nets 431</p> <p>18.2.2 Deconstruction of Crystal Structures into Their Underlying Nets 433</p> <p>18.2.3 Embeddings of Net Topologies 435</p> <p>18.2.4 The Influence of Local Symmetry 435</p> <p>18.2.5 Vertex Symbols 436</p> <p>18.2.6 Tilings and Face Symbols 437</p> <p>18.3 Nomenclature 439</p> <p>18.3.1 Augmented Nets 439</p> <p>18.3.2 Binary Nets 440</p> <p>18.3.3 Dual Nets 441</p> <p>18.3.4 Interpenetrated/Catenated Nets 441</p> <p>18.3.5 Cross-Linked Nets 442</p> <p>18.3.6 Weaving and Interlocking Nets 443</p> <p>18.4 The Reticular Chemistry Structure Resource (RCSR) Database 444</p> <p>18.5 Important 3-Periodic Nets 445</p> <p>18.6 Important 2-Periodic Nets 447</p> <p>18.7 Important 0-Periodic Nets/Polyhedra 449</p> <p>18.8 Summary 451</p> <p>References 451</p> <p><b>19 Metal-Organic Polyhedra and Covalent Organic Polyhedra </b><b>453</b></p> <p>19.1 Introduction 453</p> <p>19.2 General Considerations for the Design of MOPs and COPs 453</p> <p>19.3 MOPs and COPs Based on the Tetrahedron 454</p> <p>19.4 MOPs and COPs Based on the Octahedron 456</p> <p>19.5 MOPs and COPs Based on Cubes and Heterocubes 457</p> <p>19.6 MOPs Based on the Cuboctahedron 459</p> <p>19.7 Summary 461</p> <p>References 461</p> <p><b>20 Zeolitic Imidazolate Frameworks </b><b>463</b></p> <p>20.1 Introduction 463</p> <p>20.2 Zeolitic Framework Structures 465</p> <p>20.2.1 Zeolite-Like Metal-Organic Frameworks (Z-MOFs) 465</p> <p>20.2.2 Zeolitic Imidazolate Frameworks (ZIFs) 467</p> <p>20.3 Synthesis of ZIFs 468</p> <p>20.4 Prominent ZIF Structures 469</p> <p>20.5 Design of ZIFs 471</p> <p>20.5.1 The Steric Index 𝛿 as a Design Tool 472</p> <p>20.5.1.1 Principle I: Control over the Maximum Pore Opening 473</p> <p>20.5.1.2 Principle II: Control over the Maximum Cage Size 473</p> <p>20.5.1.3 Principle III: Control over the Structural Tunability 474</p> <p>20.5.2 Functionalization of ZIFs 475</p> <p>20.6 Summary 476</p> <p>References 477</p> <p><b>21 Dynamic Frameworks </b><b>481</b></p> <p>21.1 Introduction 481</p> <p>21.2 Flexibility in Synchronized Dynamics 482</p> <p>21.2.1 Synchronized Global Dynamics 482</p> <p>21.2.1.1 Breathing in MOFs Built from Rod SBUs 483</p> <p>21.2.1.2 Breathing in MOFs Built from Discrete SBUs 484</p> <p>21.2.1.3 Flexibility Through Distorted Organic Linkers 487</p> <p>21.2.2 Synchronized Local Dynamics 487</p> <p>21.3 Independent Dynamics in Frameworks 490</p> <p>21.3.1 Independent Local Dynamics 490</p> <p>21.3.2 Independent Global Dynamics 492</p> <p>21.4 Summary 494</p> <p>References 494</p> <p>Index 497</p>
Omar M. Yaghi is the James and Neeltje Tretter Chair Professor of Chemistry at University of California, Berkeley, and a Senior Faculty Scientist at Lawrence Berkeley National Laboratory, USA. <br> <br> Markus J. Kalmutzki is a principal scientist at Parr Instrument GmbH in Frankfurt, Germany. Before he was a DFG-postdoctoral fellow in the group of Omar M. Yaghi at the Universtity of California, Berkeley. <br> <br> Christian S. Diercks is currently pursuing his Ph.D. in the group of Omar M. Yaghi at the University of California, Berkeley. <br>

Diese Produkte könnten Sie auch interessieren:

Lanthanide and Actinide Chemistry
Lanthanide and Actinide Chemistry
von: Simon Cotton
PDF ebook
50,99 €
Mass Spectrometry of Inorganic and Organometallic Compounds
Mass Spectrometry of Inorganic and Organometallic Compounds
von: William Henderson, J. Scott McIndoe
PDF ebook
59,99 €
Neurodegenerative Diseases and Metal Ions, Volume 1
Neurodegenerative Diseases and Metal Ions, Volume 1
von: Astrid Sigel, Helmut Sigel, Roland K. O. Sigel
PDF ebook
228,99 €