Details

Introduction To Modern Planar Transmission Lines


Introduction To Modern Planar Transmission Lines

Physical, Analytical, and Circuit Models Approach
IEEE Press 1. Aufl.

von: Anand K. Verma

126,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.05.2021
ISBN/EAN: 9781119632450
Sprache: englisch
Anzahl Seiten: 944

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>P</b><b>rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models</b></p> <p>Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments.</p> <p><i>Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach</i> begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models.</p> <ul> <li>Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions</li> <li>Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA</li> <li>Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study</li> </ul> <i>Introduction to Modern Planar Transmission Lines</i> is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.
<p><b>Chapter -1: Overview of Transmission Lines (Historial Perspective, Overview of Present Book) </b></p> <p>1.1 Overview of the classical transmission lines</p> <p>1.1.1 Telegraph line</p> <p>1.1.2 Development of theoretical concepts in EM-Theory</p> <p>1.1.3 Development of the transmission line equations</p> <p>1.1.4 Waveguides as propagation medium</p> <p>1.2. Planar transmission lines</p> <p>1.2.1 Development of planar transmission lines</p> <p>1.2.2 Analytical methods applied to planar transmission lines</p> <p>1.3 Overview of present book</p> <p>1.3.1 The organization of chapters in this book</p> <p>1.3.2 Key features, intended audience, and some suggestions</p> <p><b>Chapter -2: Waves on Transmission Lines- I (Basic Equations, Multisection transmission lines) </b></p> <p>2.1 Uniform transmission lines</p> <p>2.1.1 Wave motion</p> <p>2.1.2 Circuit model of transmission line</p> <p>2.1.3 Kelvin - Heaviside transmission line equations in time domain</p> <p>2.1.4 Kelvin - Heaviside transmission line equations in frequency domain</p> <p>2.1.5 Characteristic of lossy transmission line</p> <p>2.1.6 Wave equation with source</p> <p>2.1.7 Solution of voltage and current -wave equation</p> <p>2.1.8 Application of Thevenin’s theorem to transmission line</p> <p>2.1.9 Power relation on transmission line</p> <p>2.2 Multi-section transmission lines and source excitation</p> <p>2.2.1 Multisection transmission lines</p> <p>2.2.2 Location of sources</p> <p>2.3 Non-uniform transmission lines</p> <p>2.3.1 Wave equation for non-uniform Transmission line</p> <p>2.3.2 Lossless exponential transmission line</p> <p>References</p> <p><b>Chapter -3: Waves on Transmission Lines- II (Network parameters, Wave velocities, Loaded lines)</b></p> <p>3.1 Matrix description of microwave network</p> <p>3.1.1 [Z] parameters</p> <p>3.1.2 Admittance matrix</p> <p>3.1.3 Transmission [ABCD] parameters</p> <p>3.1.4 Scattering [S] parameters</p> <p>3.2 Conversion and extraction of parameters</p> <p>3.2.1 Relation between matrix parameters</p> <p>3.2.2 De-Embedding of true S-parameters</p> <p>3.2.3 Extraction of propagation characteristics</p> <p>3.3 Wave velocity on transmission line</p> <p>3.3.1 Phase velocity</p> <p>3.3.2 Group velocity</p> <p>3.4 Linear dispersive transmission lines</p> <p>3.4.1 Wave equation of dispersive transmission lines</p> <p>3.4.2 Circuit models of dispersive transmission lines</p> <p>References</p> <p><b>Chapter -4: Waves in Material Medium- I (Waves in isotropic and anisotropic media, Polarization of waves) </b></p> <p>4.1 Basic electrical quantities and parameters</p> <p>4.1.1 Flux field and force field</p> <p>4.1.2 Constitutive relations</p> <p>4.1.3 Category of materials</p> <p>4.2 Electrical property of medium</p> <p>4.2.1 Linear and non-linear medium</p> <p>4.2.2 Homogeneous and nonhomogeneous medium</p> <p>4.2.3 Isotropic and anisotropic medium</p> <p>4.2.4 Non-dispersive and dispersive medium</p> <p>4.2.5 Non-lossy and lossy medium</p> <p>4.2.6 Static conductivity of materials</p> <p>4.3 Circuit model of medium</p> <p>4.3.1 RC circuit model of lossy dielectric medium</p> <p>4.3.2 Circuit model of lossy magnetic medium</p> <p>4.4 Maxwell equations and power relation</p> <p>4.4.1 Maxwell’s equations</p> <p>4.4.2 Power and energy relation from Maxwell equations</p> <p>4.5 EM-waves in unbounded isotropic Medium</p> <p>4.5.1 EM-wave equation</p> <p>4.5.2 1D wave equation</p> <p>4.5.3 Uniform plane waves in linear lossless homogeneous isotropic medium</p> <p>4.5.4 Vector algebraic form of Maxwell equations</p> <p>4.5.5 Uniform plane waves in lossy conducting medium</p> <p>4.6 Polarization of EM-waves</p> <p>4.6.1 Linear polarization</p> <p>4.6.2 Circular polarization</p> <p>4.6.3 Elliptical polarization</p> <p>4.6.4 Jones matrix description of polarization states</p> <p>4.7 EM-waves propagation in unbounded anisotropic medium</p> <p>4.7.1 Wave propagation in uniaxial medium</p> <p>4.7.2 Wave propagation in uniaxial gyroelectric medium</p> <p>4.7.3 Dispersion relations in biaxial medium</p> <p>4.7.4 Concept of isofrequency contours and isofrequency surfaces</p> <p>4.7.5 Dispersion relations in uniaxial medium</p> <p>References</p> <p><b>Chapter -5: Waves in Material Medium- II (Reflection and transmission of waves, Introduction to metamaterials</b></p> <p>5.1 EM-waves at interface of two different media</p> <p>5.1.1 Normal incidence of plane waves</p> <p>5.1.2 The interface of a dielectric and perfect conductor</p> <p>5.1.3 Transmission line model of composite medium</p> <p>5.2 Oblique incidence of plane waves</p> <p>5.2.1 TE (Perpendicular) polarization case</p> <p>5.2.2 TM (Parallel) polarization case</p> <p>5.2.3 Dispersion diagrams of refracted waves in isotropic and uniaxial anisotropic media</p> <p>5.2.4 Wave impedance and equivalent transmission line model</p> <p>5.3 Special Cases of Angle of Incidence</p> <p>5.3.1 Brewster angle</p> <p>5.3.2 Critical angle</p> <p>5.4 EM-waves incident at dielectric slab</p> <p>5.4.1 Oblique incidence</p> <p>5.4.2 Normal incidence</p> <p>5.5 EM-waves in metamaterial medium</p> <p>5.5.1 General introduction of metamaterials and their classifications</p> <p>5.5.2 EM-waves in DNG medium</p> <p>5.5.3 Basic transmission line model of the DNG medium</p> <p>5.5.4 Lossy DPS and DNG media</p> <p>5.5.5 Wave propagation in DNG slab</p> <p>5.5.6 DNG flat lens and superlens</p> <p>5.5.7 Doppler and Cerenkov radiation in DNG medium</p> <p>5.5.8 Metamaterial perfect absorber (MPA)</p> <p>References</p> <p><b>Chapter -6: Electrical Properties of Dielectric Medium </b></p> <p>6.1. Modeling of dielectric medium</p> <p>6.1.1 Dielectric polarization</p> <p>6.1.2 Susceptibility, relative permittivity and Clausius - Mossotti model</p> <p>6.1.3 Models of polarizability</p> <p>6.1.4 Magnetization of materials</p> <p>6.2 Static dielectric constants of materials</p> <p>6.2.1 Natural Dielectric Materials</p> <p>6.2.2 Artificial Dielectric Materials</p> <p>6.3 Dielectric mixtures</p> <p>6.3.1 General description of dielectric mixture medium</p> <p>6.3.2 Limiting values of equivalent relative permittivity</p> <p>6.3.3 Additional equivalent permittivity models of mixture</p> <p>6.4 Frequency response of dielectric materials</p> <p>6.4.1 Relaxation in material and decay law</p> <p>6.4.2 Polarization law of linear dielectric medium</p> <p>6.4.3 Debye dispersion relation</p> <p>6.5 Resonance response of the dielectric medium</p> <p>6.5.1 Lorentz oscillator model</p> <p>6.5.2 Drude model for conductor and plasma</p> <p>6.5.3 Dispersion models of dielectric mixture medium</p> <p>6.5.4 Kramers - Kronig relation</p> <p>6.6 Interfacial polarization</p> <p>6.6.1 Interfacial polarization in two-layered capacitor medium</p> <p>6.7 Circuit models of dielectric materials</p> <p>6.7.1 Series RC circuit model</p> <p>6.7.2 Parallel RC circuit model</p> <p>6.7.3 Parallel series combined circuit model</p> <p>6.7.4 Series combination of RC parallel circuit</p> <p>6.7.5 Series RLC resonant circuit model</p> <p>6.8 Substrate materials for microwave planar technology</p> <p>6.8.1 Evaluation of parameters of single term Debye and Lorentz models</p> <p>6.8.2 Multi-term and wideband Debye models</p> <p>6.8.3 Metasubstrates</p> <p>References</p> <p><b>Chapter -7: Waves in Waveguide Medium </b></p> <p>7.1 Classification of EM-fields</p> <p>7.1.1 Maxwell equations and vector potentials</p> <p>7.1.2 Magnetic vector potential</p> <p>7.1.3 Electric vector potential</p> <p>7.1.4 Generation of EM-field by electric and magnetic vector potentials</p> <p>7.2 Boundary surface and boundary conditions</p> <p>7.2.1 Perfect Electric Conductor (PEC)</p> <p>7.2.2 Perfect magnetic conductor (PMC)</p> <p>7.2.3 Interface of two media</p> <p>7.3 TEM-mode parallel-plate waveguide</p> <p>7.3.1 TEM field in parallel plate waveguide</p> <p>7.3.2 Circuit relations</p> <p>7.3.3 Kelvin- Heaviside transmission line equations from Maxwell equations</p> <p>7.4 Rectangular waveguides</p> <p>7.4.1 Rectangular waveguide with four electric walls</p> <p>7.4.2 Rectangular waveguide with four magnetic walls</p> <p>7.4.3 Rectangular waveguide with composite electric and magnetic walls</p> <p>7.5 Conductor backed dielectric sheet surface wave waveguide</p> <p>7.5.1 TMz surface wave mode</p> <p>7.5.2 TEz surface wave Mode</p> <p>7.6 Equivalent circuit model of waveguide</p> <p>7.6.1 Relation between wave impedance and characteristic impedance.</p> <p>7.6.2 Transmission line model of waveguide</p> <p>7.7 Transverse resonance method (TRM)</p> <p>7.7.1 Standard rectangular waveguide</p> <p>7.7.2 Dielectric loaded waveguide</p> <p>7.7.3 Slab waveguide</p> <p>7.7.4 Conductor backed multilayer dielectric sheet</p> <p>7.8 Substrate integrated waveguide (SIW)</p> <p>7.8.1 Complete mode substrate integrated waveguide (SIW)</p> <p>7.8.2 Half -mode substrate integrated waveguide (SIW)</p> <p>References</p> <p><b>Chapter -8: Microstrip Line: Basic Characteristics </b></p> <p>8.1 General description</p> <p>8.1.1 Conceptual evolution of microstrip lines</p> <p>8.1.2 Non-TEM nature of microstrip line</p> <p>8.1.3 Quasi-TEM mode of microstrip line</p> <p>8.1.4 Basic parameters of microstrip line</p> <p>8.2 Static closed-form models of microstrip line</p> <p>8.2.1 Homogeneous medium model of microstrip line (Wheeler’s Transformation)</p> <p>8.2.2 Static characteristic impedance of microstrip line</p> <p>8.2.3 Results on static parameters of microstrip line</p> <p>8.2.4 Effect of conductor thickness on static parameters of microstrip line</p> <p>8.2.5 Effect of shield on static parameters of microstrip line</p> <p>8.2.6 Microstrip line on anisotropic substrate</p> <p>8.3 Dispersion in microstrip line</p> <p>8.3.1 Nature of dispersion in microstrip</p> <p>8.3.2 Waveguide model of microstrip</p> <p>8.3.3 Logistic dispersion model of microstrip (Dispersion Law of Microstrip)</p> <p>8.3.4 Kirschning - Jansen dispersion model</p> <p>8.3.5 Improved model of frequency dependent characteristic impedance</p> <p>8.3.6 Synthesis of microstrip line</p> <p>8.4 Losses in microstrip line</p> <p>8.4.1 Dielectric loss in microstrip</p> <p>8.4.2 Conductor loss in microstrip</p> <p>8.5 Circuit model of lossy microstrip line.</p> <p>References</p> <p><b>Chapter -9: Coplanar Waveguide & Coplanar Strip Line: Basic Characteristics </b></p> <p>9.1 General description</p> <p>9.2 Fundamentals of conformal mapping method</p> <p>9.2.1 Complex variable</p> <p>9.2.2 Analytic function</p> <p>9.2.3 Properties of conformal transformation</p> <p>9.2.4 Schwarz- Christoffel (SC) - Transformation</p> <p>9.2.5 Elliptic sine function</p> <p>9.3 Conformal mapping analysis of coplanar waveguide</p> <p>9.3.1 Infinite extent CPW</p> <p>9.3.2 CPW on finite thickness substrate and infinite ground plane</p> <p>9.3.3 CPW with finite ground planes</p> <p>9.3.4 Static characteristics of CPW</p> <p>9.3.5 Top shielded CPW</p> <p>9.3.6 Conductor-backed CPW</p> <p>9.4 Coplanar strip line</p> <p>9.4.1 Symmetrical CPS on infinitely thick substrate</p> <p>9.4.2 Asymmetrical CPS (ACPS) on infinitely thick substrate</p> <p>9.4.3 Symmetrical CPS on finite thickness substrate</p> <p>9.4.4 Asymmetrical CPW (ACPW) and asymmetrical CPS (ACPS) on finite thickness substrate</p> <p>9.4.5 Asymmetric CPS line with infinitely wide ground plane</p> <p>9.4.6 CPS with coplanar ground plane [CPS-CGP]</p> <p>9.4.7 Discussion on results for CPS</p> <p>9.5 Effect of conductor thickness on characteristics of CPW and CPS structures</p> <p>9.5.1 CPW structure</p> <p>9.5.2 CPS structure</p> <p>9.6 Modal field and dispersion of CPW and CPS structures</p> <p>9.6.1 Modal field structure of CPW</p> <p>9.6.2 Modal field structure of CPS</p> <p>9.6.3 Closed-form dispersion model of CPW</p> <p>9.6.4 Dispersion in CPS line</p> <p>9.7 Losses in CPW and CPS structures</p> <p>9.7.1 Conductor loss</p> <p>9.7.2 Dielectric loss</p> <p>9.7.3 Substrate radiation loss</p> <p>9.8 Circuit models & synthesis of CPW and CPS</p> <p>9.8.1 Circuit model</p> <p>9.8.2 Synthesis of CPW</p> <p>9.8.3 Synthesis of CPS</p> <p>References</p> <p><b>Chapter -10: Slot Line: Basic Characteristics </b></p> <p>10.1 Slot line structures</p> <p>10.1.1 Structures of open slot line</p> <p>10.1.2 Shielded slot line structures</p> <p>10.2 Analysis and modelling of slot line</p> <p>10.2.1 Magnetic current mode</p> <p>10.3 Waveguide model</p> <p>10.3.1 Standard slot line</p> <p>10.3.2 Sandwich slot line</p> <p>10.3.3 Shielded slot line</p> <p>10.3.4 Characteristics of slot line</p> <p>10.4 Closed-form models</p> <p>10.4.1 Conformal mapping method</p> <p>10.4.2 Krowne model</p> <p>10.4.3 Integrated model</p> <p>References</p> <p><b>Chapter -11: Coupled Transmission Lines: Basic Characteristics </b></p> <p>11.1 Some coupled line structures</p> <p>11.2 Basic concepts of coupled transmission lines</p> <p>11.2.1 Forward and reverse directional coupling</p> <p>11.2.2 Basic definitions</p> <p>11.3 Circuit models of coupling</p> <p>11.3.1 Capacitive coupling– Even and odd mode basics</p> <p>11.3.2 Forms of capacitive coupling</p> <p>11.3.3 Forms of inductive coupling</p> <p>11.4 Even -Odd mode analysis of symmetrical coupled lines</p> <p>11.4.1 Analysis method</p> <p>11.4.2 Coupling coefficients</p> <p>11.5. Wave equation for coupled transmission lines</p> <p>11.5.1 Kelvin-Heaviside coupled transmission line equations</p> <p>11.5.2 Solution of coupled wave equation</p> <p>11.5.3 Modal characteristic impedance and admittance</p> <p>References</p> <p><b>Chapter -12: Planar Coupled Transmission Lines </b></p> <p>12.1 Line parameters of symmetric edge coupled microstrips</p> <p>12.1.1 Static models for even and odd mode relative permittivity and characteristic mpedances of edge coupled microstrips</p> <p>12.1.2 Frequency-dependent models of edge coupled microstrip lines</p> <p>12.2 Line parameters of asymmetric coupled microstrips</p> <p>12.2.1 Static parameters of asymmetricallycoupled microstrips</p> <p>12.2.2 Frequency dependent line parameters of asymmetrically coupled microstrips</p> <p>12.3 Line parameters of coupled CPW</p> <p>12.3.1 Symmetric edge coupled CPW</p> <p>12.3.2 Shielded broadside coupled CPW</p> <p>12.4 Network parameters of coupled line section</p> <p>12.4.1. Symmetrical coupled line in homogeneous medium</p> <p>12.4.2 Symmetrical coupled microstrip line in inhomogeneous medium</p> <p>12.4.3 ABCD matrix of symmetrical coupled transmission lines</p> <p>12.5 Asymmetrical coupled lines network parameters</p> <p>12.5.1 [ABCD] - parameters of the 4-port network</p> <p>References</p> <p><b>Chapter -13: Fabrication of Planar Transmission Lines</b></p> <p>13.1 Element of hybrid MIC (HMIC) technology</p> <p>13.1.1 Substrates</p> <p>13.1.2 Hybrid, MIC fabrication process</p> <p>13.1.3 Thin film process</p> <p>13.1.4 Thick film process</p> <p>13.2 Elements of monolithic MIC (MMIC) technology</p> <p>13.2.1 Fabrication process</p> <p>13.2.2 Planar transmission lines in MMIC</p> <p>13.3 Micromachined transmission line technology</p> <p>13.3.1 MEMS fabrication process</p> <p>13.3.2 MEMS transmission line structures</p> <p>13.4 Elements of LTCC</p> <p>13.4.1 LTCC materials and process</p> <p>13.4.2 LTCC circuit fabrication</p> <p>13.4.3 LTCC Planar transmission line and some components</p> <p>13.4.4 LTCC waveguide and cavity resonators</p> <p><b>Chapter -14: Static Variational Methods for Planar Transmission Lines </b></p> <p>14.1 Variational formulation of transmission line</p> <p>14.1.1 Basic concepts of variation</p> <p>14.1.2. Energy method based variational expression</p> <p>14.1.3 Green’s function method based variational expression</p> <p>14.2 Variational expression of line capacitance in Fourier Domain</p> <p>14.2.1 Transformation of Poisson equation in Fourier Domain</p> <p>14.2.2 Transformation of variational expression of line capacitance in Fourier Domain</p> <p>14.2.3 Fourier Transform of Some Charge Distribution Functions</p> <p>14. 3 Analysis of microstrip line by variational method</p> <p>14.3.1 Boxed microstrip line (Green’s function method in Space Domain)</p> <p>14.3.2 Open microstrip line (Green’s function method in Fourier Domain)</p> <p>14.3.3 Open microstrip line (Energy method in Fourier Domain)</p> <p>14.4 Analysis of multilayer microstrip line</p> <p>14.4.1 Space Domain analysis of multilayer microstrip structure</p> <p>14.4.2 Static Spectral Domain analysis of multilayer microstrip</p> <p>14.5 Analysis of coupled microstrip line in multilayer dielectric medium</p> <p>14.5.1 Space Domain analysis</p> <p>14.5.2 Spectral Domain analysis</p> <p>14.6 Discrete Fourier Transform method</p> <p>14.6.1 Discrete Fourier Transform</p> <p>14.6.2 Boxed microstrip line</p> <p>14.6.3 Boxed coplanar waveguide</p> <p>References</p> <p><b>Chapter -15: Multilayer Planar Transmission lines: SLR Formulation</b></p> <p>15.1 SLR process for multilayer microstrip lines</p> <p>15.1.1 SLR- process for lossy multilayer microstrip lines</p> <p>15.1.2 Dispersion model of multilayer microstrip lines</p> <p>15.1.3 Characteristic impedance and synthesis of multilayer microstrip lines</p> <p>15.1.4 Models of losses in multilayer microstrip lines</p> <p>15.1.5 Circuit model of multilayer microstrip lines</p> <p>15.2 SLR process for multilayer coupled microstrip lines</p> <p>15.2.1 Equivalent single layer substrate</p> <p>15.2.2 Dispersion model of multilayer coupled microstrips lines</p> <p>15.2.3 Characteristic impedance and synthesis of multilayer coupled microstrips</p> <p>15.2.4 Losses models of multilayer coupled microstrip lines</p> <p>15.3 SLR process for multilayer ACPW/CPW</p> <p>15.3.1 Single Layer Reduction (SLR) process for multilayer ACPW/CPW</p> <p>15.3.2 Static SDA of multilayer ACPW/CPW using two-conductor model</p> <p>15.3.3 Dispersion models of multilayer ACPW/CPW</p> <p>15.3.4 Loss models of multilayer ACPW/CPW</p> <p>15.4 Further consideration of SLR formulation</p> <p>References</p> <p><b>Chapter -16: Dynamic Spectral Domain Analysis </b></p> <p>16.1 General discussion of SDA</p> <p>16.2 Green’s function of single layer planar line</p> <p>16.2.1 Formulation of field problem</p> <p>16.2.2 Case #1: CPW and microstrip structures</p> <p>16.2.3 Case II- Sides : MW - EW, Bottom : MW, Top : EW</p> <p>16.3 Solution of hybrid mode field equations</p> <p> (Galerkin's Method in Fourier Domain)</p> <p>16.4 Basis functions for surface current density and slot field</p> <p>16.4.1 Nature of the field and current densities:</p> <p>16.4.2 Basis functions and nature of hybrid modes</p> <p>16.5 Coplanar multistrip structure</p> <p>16.6 Multilayer planar transmission lines</p> <p>16.6.1 Immittance approach for single level strip conductors</p> <p>16.6.2 Immittance approach for multilevel strip conductors</p> <p>References</p> <p><b>Chapter -17: Lumped and Line Resonators: Basic Characteristics </b></p> <p>17.1 Basic resonating structures</p> <p>17.2 Zero dimensional lumped resonator</p> <p>17.2.1 Lumped series resonant circuit</p> <p>17.2.2 Lumped parallel resonant circuit</p> <p>17.2.3 Resonator with external circuit</p> <p>17.2.4 One-port reflection type resonator</p> <p>17.2.5 Two-port transmission type resonator</p> <p>17.2.6 Two-port reaction type resonator</p> <p>17.3 Transmission line resonator</p> <p>17.3.1 Lumped resonator modeling of transmission line resonator</p> <p>17.3.2 Modal description of short-circuited line resonator</p> <p>References</p> <p><b>Chapter -18: Planar Resonating Structures </b></p> <p>18.1 Microstrip Line Resonator</p> <p>18.1.1 Open-ends microstrip resonator</p> <p>18.1.2 and Short-circuited ends microstrip resonator</p> <p>18.1.3 Microstrip ring resonator</p> <p>18.1.4 Microstrip step impedance resonator</p> <p>18.1.5 Microstrip hairpin resonator</p> <p>18.2 CPW resonator</p> <p>18.3 Slot line resonator</p> <p>18.4 Coupling of line resonator to source and load</p> <p>18.4.1 Direct-coupled resonator</p> <p>18.4.2 Reactively coupled line resonator</p> <p>18.4.3 Tapped line resonator</p> <p>18.4.4 Feed to planar transmission line resonator</p> <p>18.5 Coupled resonators</p> <p>18.5.1 Coupled microstrip line resonator</p> <p>18.5.2 Circuit model of coupled microstrip line resonator</p> <p>18.5.3 Some structures of coupled microstrip line resonator</p> <p>18.6 Microstrip patch resonators</p> <p>18.6.1 Rectangular patch</p> <p>18.6.2 Modified Wolff Model (MWM)</p> <p>18.6.3 Circular patch</p> <p>18.6.4 Ring patch</p> <p>18.6.5 Equilateral triangular patch</p> <p>18.7 2D Fractal resonators</p> <p>18.7.1 Fractal geometry</p> <p>18.7.2 Fractal resonator antenna</p> <p>18.7.3 Fractal resonators</p> <p>18.8 Dual mode resonators</p> <p>18.8.1 Dual mode patch resonators</p> <p>18.8.2 Dual mode ring resonators</p> <p>References</p> <p><b>Chapter -19: Planar Periodic Transmission Lines</b></p> <p>19.1 1D and 2D lattice structures</p> <p>19.1.1 Bragg's law of diffraction</p> <p>19.1.2 Crystal lattice structures</p> <p>19.1.3 Concept of Brillouin zone</p> <p>19.2 Space harmonics of periodic structures</p> <p>19.2.1 Floquet - Bloch theorem and space harmonics</p> <p>19.3 Circuit models of 1D periodic transmission line</p> <p>19.3.1 Periodically loaded artificial lines</p> <p>19.3.2 [ABCD] parameters of unit cell</p> <p>19.3.3 Dispersion in periodic lines</p> <p>19.3.4 Characteristics of 1D periodic lines</p> <p>19.3.5 Some loading elements of 1D periodic lines</p> <p>19.3.6 Realization of planar loading elements</p> <p>19.4 1D planar EBG structures</p> <p>19.4.1 1D Microstrip EBG line</p> <p>19.4.2 1D CPW EBG line</p> <p>References</p> <p><b>Chapter -20: Planar Periodic Surfaces </b></p> <p>20.1 2D planar EBG surfaces</p> <p>20.1.1 General introduction of EBG surfaces</p> <p>20.1.2 Characteristics of EBG surface</p> <p>20.1.3 Horizontal wire dipole near EBG surface</p> <p>20.2 Circuit models of mushroom type EBG</p> <p>20.2.1 Basic circuit model</p> <p>20.2.2 Dynamic circuit model</p> <p>20.3 Uniplanar EBG structures</p> <p>20.4 2D circuit models of EBG structures</p> <p>20.4.1 Shunt connected 2D planar EBG circuit model</p> <p>20.4.2 Series connected 2D planar EBG circuit model</p> <p>References</p> <p><b>Chapter -21: Metamaterials Realization and circuit models- I (Basic structural elements & bulk metamaterials)</b></p> <p>21.1 Artificial electric medium</p> <p>21.1.1 Polarization in the wire medium</p> <p>21.1.2 Equivalent parallel plate waveguide model of wire medium</p> <p>21. 1.3 Reactance loaded Wire Medium</p> <p>21.2 Artificial magnetic medium</p> <p>21.2.1 Characteristics of the SRR</p> <p>21.2.2 Circuit model of the SRR</p> <p>21.2.3 Computation of equivalent circuit parameters of SRR</p> <p>21.2.4 Bi-anisotropy in the SRR medium</p> <p>21.2.5 Variations in SRR structure</p> <p>21.3 Double negative metamaterials</p> <p>21.3.1 Composite permittivity-permeability functions</p> <p>21.3.2 Realization of composite DNG metamaterials</p> <p>21.3.3 Realization of single structure DNG metamaterials</p> <p>21.4 Homogenization and parameter extraction</p> <p>21.4.1 Nicolson – Ross - Weir (NRW) method</p> <p>21.4.2 Dynamic Maxwell Garnett model</p> <p>References</p> <p><b>Chapter -22: Metamaterials Realization and circuit models- II (Metalines and Metasurfaces) </b></p> <p>22.1 Circuit models of 1D – metamaterials</p> <p>22.1.1 Homogenization of the 1D-medium</p> <p>22.1.2 Circuit equivalence of material medium</p> <p>22.1.3 Single reactive loading of host medium</p> <p>22.1.4 Single reactive loading of host medium with coupling</p> <p>22.1.5 Circuit models of 1D metalines</p> <p>22.2 Non-resonant microstrip metalines</p> <p>22.2.1 Series-parallel (CRLH) metalines</p> <p>22.2.2 Cascaded MNG-ENG (CRLH) metalines</p> <p>22.2.3 Parallel-series (D-CRLH) metalines</p> <p>22.3 Resonant metalines</p> <p>22.3.1 Resonant inclusions</p> <p>22.3.2 Microstrip resonant metalines</p> <p>22.3.3 CPW resonant metalines</p> <p>22.4 Some application of metalines</p> <p>22.4.1 Backfire to endfire leaky wave antenna</p> <p>22.4.2 Metaline based microstrip directional coupler</p> <p>22.4.3 Multiband metaline based components</p> <p>22.5 Modelling and characterization of metasurfaces</p> <p>22.5.1 Characterization of metasurface</p> <p>22.5.2 Reflection and transmission coefficients of isotropic metasurfaces</p> <p>22.5.3 Phase control of metasurface</p> <p>22.5.4 Generalized Snell’s laws of metasurfaces</p> <p>22.5.5 Surface waves on metasurface</p> <p>22.6 Applications of metasurfaces</p> <p>22.6.1 Demonstration of anomalous reflection and refraction of metasurfaces</p> <p>22.6.2 Reflectionless transmission of metasurfaces</p> <p>22.6.3 Polarization conversion of incident plane wave</p> <p>References</p>
<p><b>ANAND K. VERMA, PhD,</b> is an Adjunct Professor in the School of Engineering, Macquarie University, Sydney. Formerly, he was Professor and Head of the Department of Electronic Science, South Campus, University of Delhi. He has been Visiting Professor at Otto-Van-Guericke University, Magdeburg, Germany (2002, 2002-2003), and Nanyang Technological University, Singapore as a Tan Chin Tuan Scholar (2001). He holds a German Patent on microstrip antenna. He has organized and attended many International Symposia and Workshops and conducted short-term courses and delivered invited lectures at the research institutes in India and in several countries. He was also chairman of the TPC, APMC-2004, Delhi. Professor Verma has published over 250 papers in international journals and in the proceedings of international and national symposia.
<p><b>Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models</b> <p>Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. <p><i>Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach</i> begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial, metalines, and metasurfaces realization and circuit models. <li><bl>Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions</bl></li> <li><bl>Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA</bl></li> <li><bl>Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study</bl></li> <p><i>Introduction to Modern Planar Transmission Lines</i> is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €