Details

Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G


Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G


1. Aufl.

von: Alexander Kukushkin

112,50 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 03.07.2018
ISBN/EAN: 9781119484226
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Summarizes and surveys current LTE technical specifications and implementation options for engineers and newly qualified support staff Concentrating on three mobile communication technologies, GSM, 3G-WCDMA, and LTE—while majorly focusing on Radio Access Network (RAN) technology—this book describes principles of mobile radio technologies that are used in mobile phones and service providers’ infrastructure supporting their operation. It introduces some basic concepts of mobile network engineering used in design and rollout of the mobile network. It then follows up with principles, design constraints, and more advanced insights into radio interface protocol stack, operation, and dimensioning for three major mobile network technologies: Global System Mobile (GSM) and third (3G) and fourth generation (4G) mobile technologies. The concluding sections of the book are concerned with further developments toward next generation of mobile network (5G). Those include some of the major features of 5G such as a New Radio, NG-RAN distributed architecture, and network slicing. The last section describes some key concepts that may bring significant enhancements in future technology and services experienced by customers. Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G covers the types of Mobile Network by Multiple Access Scheme; the cellular system; radio propagation; mobile radio channel; radio network planning; EGPRS - GPRS/EDGE; Third Generation Network (3G), UMTS; High Speed Packet data access (HSPA); 4G-Long Term Evolution (LTE) system; LTE-A; and Release 15 for 5G. Focuses on Radio Access Network technologies which empower communications in current and emerging mobile network systems Presents a mix of introductory and advanced reading, with a generalist view on current mobile network technologies Written at a level that enables readers to understand principles of radio network deployment and operation Based on the author’s post-graduate lecture course on Wireless Engineering Fully illustrated with tables, figures, photographs, working examples with problems and solutions, and section summaries highlighting the key features of each technology described Written as a modified and expanded set of lectures on wireless engineering taught by the author, Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G is an ideal text for post-graduate and graduate students studying wireless engineering, and industry professionals requiring an introduction or refresher to existing technologies.
Foreword xvii Acknowledgements xix Abbreviations xxi 1 Introduction 1 2 Types of Mobile Network by Multiple-Access Scheme 3 3 Cellular System 5 3.1 Historical Background 5 3.2 Cellular Concept 5 3.3 Carrier-to-Interference Ratio 6 3.4 Formation of Clusters 8 3.5 Sectorization 9 3.6 Frequency Allocation 10 3.7 Trunking Effect 11 3.8 Erlang Formulas 13 3.9 Erlang B Formula 13 3.10 Worked Examples 14 4 Radio Propagation 19 4.1 Propagation Mechanisms 19 5 Mobile Radio Channel 27 5.1 Channel Characterization 28 5.2 Worked Examples 36 5.3 Fading 36 5.4 Diversity to Mitigate Multipath Fading 42 5.5 Worked Examples 44 5.6 Receiver Noise Factor (Noise Figure) 45 6 Radio Network Planning 49 6.1 Generic Link Budget 49 6.2 Worked Examples 56 7 Global SystemMobile, GSM, 2G 59 7.1 General Concept for GSM System Development 59 7.2 GSM System Architecture 59 7.3 Radio Specifications 69 7.4 Background for the Choice of Radio Parameters 81 7.5 Communication Channels in GSM 84 7.6 Mapping the Logical Channels onto Physical Channels 86 7.7 Signalling During a Call 93 7.8 Signal Processing Chain 97 7.9 Estimating Required Signalling Capacity in the Cell 100 References 102 8 EGPRS: GPRS/EDGE 103 8.1 GPRS Support Nodes 103 8.2 GPRS Interfaces 104 8.3 GPRS Procedures in Packet Call Setups 104 8.4 GPRS Mobility Management 105 8.5 Layered Overview of the Radio Interface 108 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 8.7 Summary 118 References 119 9 Third Generation Network (3G), UMTS 121 9.1 The WCDMA Concept 123 9.2 Major Parameters of 3G WCDMA Air Interface 136 9.3 Spectrum Allocation for 3G WCDMA 136 9.4 3G Services 138 9.5 UMTS Reference Network Architecture and Interfaces 140 9.6 Air-Interface Architecture and Processing 142 9.7 Channels on the Air Interface 146 9.8 Physical-Layer Procedures 150 9.9 RRC States 162 9.10 RRM Functions 167 9.11 Initial Access to the Network 169 9.12 Summary 170 References 171 10 High-Speed Packet Data Access (HSPA) 173 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 10.2 HSPA RRM Functions 175 10.3 MAC-hs and Physical-Layer Processing 181 10.4 HSDPA Channels 182 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 10.6 Air-Interface Dimensioning 192 10.7 Summary 203 References 204 11 4G-Long Term Evolution (LTE) System 205 11.1 Introduction 205 11.2 Architecture of an Evolved Packet System 206 11.3 LTE Integration with Existing 2G/3G Network 207 11.3.1 EPS Reference Points and Interfaces 208 11.4 E-UTRAN Interfaces 209 11.5 User Equipment 210 11.5.1 LTE UE Category 210 11.6 QoS in LTE 211 11.7 LTE Security 212 11.8 LTE Mobility 214 11.9 LTE Radio Interface 219 11.10 Principle of OFDM 220 11.11 OFDM Implementation using IFFT/FFT Processing 223 11.12 Cyclic Prefix 223 11.13 Channel Estimation and Reference Symbols 225 11.14 OFDM Subcarrier Spacing 227 11.15 Output RF Spectrum Emissions 227 11.16 LTE Multiple-Access Scheme, OFDMA 228 11.17 Single-Carrier FDMA (SC-FDMA) 229 11.18 OFDMA versus SC-FDMA Operation 230 11.19 SC-FDMA Receiver 231 11.20 User Multiplexing with DFTS-OFDM 231 11.21 MIMO Techniques 232 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 11.23 Radio Protocol Architecture 238 11.24 Downlink Physical Layer Processing 248 11.25 Downlink Control Channels 258 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 11.27 Uplink Control Signalling 264 11.28 Uplink Reference Signals 271 11.29 Physical-Layer Procedures 273 11.30 LTE Radio Dimensioning 279 11.31 Summary 289 References 290 12 LTE-A 293 12.1 Carrier Aggregation 296 12.2 Enhanced MIMO 300 12.3 Coordinated Multi-Point Operation (CoMP) 303 12.4 Relay Nodes 309 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 12.6 Downlink Multiuser Superposition, MUST 315 12.7 Summary of LTE-A Features 317 References 317 13 Further Development for the Fifth Generation 319 13.1 Overall Operational Requirements for a 5G Network System 320 13.2 Device Requirements 320 13.3 Capabilities of 5G 321 13.4 Spectrum Consideration 321 13.5 5G Technology Components 322 13.6 5G System Architecture (Release 15) 335 13.7 New Radio (NR) 341 13.8 Summary 364 References 364 14 Annex: Base-Station Site Solutions 367 14.1 The Base-Station OBSAI Architecture 367 14.2 Common Public Radio Interface, CPRI 370 14.3 SDR and Multiradio BTS 371 14.4 Site Solution with OBSAI Type Base Stations 372 References 375 Index 377
ALEXANDER KUKUSHKIN, PHD, Australia has worked within the telecommunications industry for 15 years for such major mobile network vendors as Ericsson, Lucent, Nokia, Nokia Siemens Network, and has been involved in consulting, system engineering, technical management, presales and rollout of the turn-key mobile network solutions in many parts of the world, including: Australia, USA, Germany, East Asia, Eastern Europe and Central Asia.
SUMMARIZES AND SURVEYS CURRENT LTE TECHNICAL SPECIFICATIONS AND IMPLEMENTATION OPTIONS FOR ENGINEERS AND NEWLY QUALIFIED SUPPORT STAFF Concentrating on three mobile communication technologies, GSM, 3G-WCDMA, and LTE—while majorly focusing on Radio Access Network (RAN) technology—this book describes principles of mobile radio technologies that are used in mobile phones and service providers' infrastructure, supporting their operation. It introduces some basic concepts of mobile network engineering used in design and rollout of the mobile network. It then follows up with principles, design constraints, and more advanced insights into radio interface protocol stack, operation, and dimensioning for three major mobile network technologies: Global System Mobile (GSM) and third (3G) and fourth generation (4G) mobile technologies. The concluding sections of the book are concerned with further developments toward next generation of mobile network (5G). Those include some of the major features of 5G such as a New Radio, NG-RAN distributed architecture, and network slicing. The last section describes some key concepts that may bring significant enhancements in future technology and services experienced by customers. Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G covers the types of Mobile Network by Multiple Access Scheme; the cellular system; radio propagation; mobile radio channel; radio network planning; EGPRS - GPRS/EDGE; Third Generation Network (3G), UMTS; High Speed Packet data access (HSPA); 4G-Long Term Evolution (LTE) system; LTE-A; and Release 15 for 5G. Focuses on Radio Access Network technologies which empower communications in current and emerging mobile network systems Presents a mix of introductory and advanced reading, with a generalist view on current mobile network technologies Written at a level that enables readers to understand principles of radio network deployment and operation Fully illustrated with tables, figures, photographs, working examples with problems and solutions, and section summaries highlighting the key features of each technology described Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G is an ideal text for postgraduate and graduate students studying wireless engineering and industry professionals requiring an introduction or refresher to existing technologies.

Diese Produkte könnten Sie auch interessieren:

5G Networks
5G Networks
von: Anwer Al-Dulaimi, Xianbin Wang, Chih-Lin I
EPUB ebook
140,99 €
Soft Computing Evaluation Logic
Soft Computing Evaluation Logic
von: Jozo Dujmovi
EPUB ebook
125,99 €
Soft Computing Evaluation Logic
Soft Computing Evaluation Logic
von: Jozo Dujmovi
PDF ebook
125,99 €