Details

Introduction to Applied Colloid and Surface Chemistry


Introduction to Applied Colloid and Surface Chemistry


1. Aufl.

von: Georgios M. Kontogeorgis, Soren Kiil

60,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 28.03.2016
ISBN/EAN: 9781118881200
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology.</p> <p>How do detergents really clean? (Why can't we just use water?) Why is milk "milky"? Why do we use eggs so often for making sauces? Can we deliver drugs in better and controlled ways? Coating industries wish to manufacture improved coatings e.g. for providing corrosion resistance, which are also environmentally friendly i.e. less based on organic solvents and if possible exclusively on water. Food companies want to develop healthy, tasty but also long-lasting food products which appeal to the environmental authorities and the consumer. Detergent and enzyme companies are working to develop improved formulations which clean more persistent stains, at lower temperatures and amounts, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions.</p> <p>All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable to chemists, chemical engineers, biologists, material and food scientists and many more.</p>
<p>Preface xi</p> <p>Useful Constants xvi</p> <p>Symbols and Some Basic Abbreviations xvii</p> <p>About the Companion Web Site xx</p> <p><b>1 Introduction to Colloid and Surface Chemistry 1</b></p> <p>1.1 What are the colloids and interfaces? Why are they important? Why do we study them together? 1</p> <p>1.1.1 Colloids and interfaces 3</p> <p>1.2 Applications 4</p> <p>1.3 Three ways of classifying the colloids 5</p> <p>1.4 How to prepare colloid systems 6</p> <p>1.5 Key properties of colloids 7</p> <p>1.6 Concluding remarks 7</p> <p>Appendix 1.1 8</p> <p>Problems 9</p> <p>References 10</p> <p><b>2 Intermolecular and Interparticle Forces 11</b></p> <p>2.1 Introduction – Why and which forces are of importance in colloid and surface chemistry? 11</p> <p>2.2 Two important long-range forces between molecules 12</p> <p>2.3 The van der Waals forces 15</p> <p>2.3.1 Van der Waals forces between molecules 15</p> <p>2.3.2 Forces between particles and surfaces 16</p> <p>2.3.3 Importance of the van der Waals forces 21</p> <p>2.4 Concluding remarks 25</p> <p>Appendix 2.1 A note on the uniqueness of the water molecule and some of the recent debates on water structure and peculiar properties 26</p> <p>References for the Appendix 2.1 28</p> <p>Problems 29</p> <p>References 33</p> <p><b>3 Surface and Interfacial Tensions – Principles and Estimation Methods 34</b></p> <p>3.1 Introduction 34</p> <p>3.2 Concept of surface tension – applications 34</p> <p>3.3 Interfacial tensions, work of adhesion and spreading 39</p> <p>3.3.1 Interfacial tensions 39</p> <p>3.3.2 Work of adhesion and cohesion 43</p> <p>3.3.3 Spreading coefficient in liquid–liquid interfaces 44</p> <p>3.4 Measurement and estimation methods for surface tensions 45</p> <p>3.4.1 The parachor method 46</p> <p>3.4.2 Other methods 48</p> <p>3.5 Measurement and estimation methods for interfacial tensions 50</p> <p>3.5.1 “Direct” theories (Girifalco–Good and Neumann) 51</p> <p>3.5.2 Early “surface component” theories (Fowkes, Owens–Wendt, Hansen/Skaarup) 52</p> <p>3.5.3 Acid–base theory of van Oss–Good (van Oss et al., 1987) – possibly the best theory to-date 57</p> <p>3.5.4 Discussion 59</p> <p>3.6 Summary 60</p> <p>Appendix 3.1 Hansen solubility parameters (HSP) for selected solvents 61</p> <p>Appendix 3.2 The “φ” parameter of the Girifalco–Good equation (Equation 3.16) for liquid–liquid interfaces. Data from Girifalco and Good (1957, 1960) 66</p> <p>Problems 67</p> <p>References 72</p> <p><b>4 Fundamental Equations in Colloid and Surface Science 74</b></p> <p>4.1 Introduction 74</p> <p>4.2 The Young equation of contact angle 74</p> <p>4.2.1 Contact angle, spreading pressure and work of adhesion for solid–liquid interfaces 74</p> <p>4.2.2 Validity of the Young equation 77</p> <p>4.2.3 Complexity of solid surfaces and effects on contact angle 78</p> <p>4.3 Young–Laplace equation for the pressure difference across a curved surface 79</p> <p>4.4 Kelvin equation for the vapour pressure, P, of a droplet (curved surface) over the “ordinary” vapour pressure Psat for a flat surface 80</p> <p>4.4.1 Applications of the Kelvin equation 81</p> <p>4.5 The Gibbs adsorption equation 82</p> <p>4.6 Applications of the Gibbs equation (adsorption, monolayers, molecular weight of proteins) 83</p> <p>4.7 Monolayers 86</p> <p>4.8 Conclusions 89</p> <p>Appendix 4.1 Derivation of the Young–Laplace equation 90</p> <p>Appendix 4.2 Derivation of the Kelvin equation 91</p> <p>Appendix 4.3 Derivation of the Gibbs adsorption equation 91</p> <p>Problems 93</p> <p>References 95</p> <p><b>5 Surfactants and Self-assembly. Detergents and Cleaning 96</b></p> <p>5.1 Introduction to surfactants – basic properties, self-assembly and critical packing parameter (CPP) 96</p> <p>5.2 Micelles and critical micelle concentration (CMC) 99</p> <p>5.3 Micellization – theories and key parameters 106</p> <p>5.4 Surfactants and cleaning (detergency) 112</p> <p>5.5 Other applications of surfactants 113</p> <p>5.6 Concluding remarks 114</p> <p>Appendix 5.1 Useful relationships from geometry 115</p> <p>Appendix 5.2 The Hydrophilic–Lipophilic Balance (HLB) 116</p> <p>Problems 117</p> <p>References 119</p> <p><b>6 Wetting and Adhesion 121</b></p> <p>6.1 Introduction 121</p> <p>6.2 Wetting and adhesion via the Zisman plot and theories for interfacial tensions 122</p> <p>6.2.1 Zisman plot 122</p> <p>6.2.2 Combining theories of interfacial tensions with Young equation and work of adhesion for studying wetting and adhesion 124</p> <p>6.2.3 Applications of wetting and solid characterization 130</p> <p>6.3 Adhesion theories 141</p> <p>6.3.1 Introduction – adhesion theories 141</p> <p>6.3.2 Adhesive forces 144</p> <p>6.4 Practical adhesion: forces, work of adhesion, problems and protection 147</p> <p>6.4.1 Effect of surface phenomena and mechanical properties 147</p> <p>6.4.2 Practical adhesion – locus of failure 148</p> <p>6.4.3 Adhesion problems and some solutions 149</p> <p>6.5 Concluding remarks 154</p> <p>Problems 155</p> <p>References 160</p> <p><b>7 Adsorption in Colloid and Surface Science – A Universal Concept 161</b></p> <p>7.1 Introduction – universality of adsorption – overview 161</p> <p>7.2 Adsorption theories, two-dimensional equations of state and surface tension–concentration trends: a clear relationship 161</p> <p>7.3 Adsorption of gases on solids 162</p> <p>7.3.1 Adsorption using the Langmuir equation 163</p> <p>7.3.2 Adsorption of gases on solids using the BET equation 164</p> <p>7.4 Adsorption from solution 168</p> <p>7.4.1 Adsorption using the Langmuir equation 168</p> <p>7.4.2 Adsorption from solution – the effect of solvent and concentration on adsorption 171</p> <p>7.5 Adsorption of surfactants and polymers 173</p> <p>7.5.1 Adsorption of surfactants and the role of CPP 173</p> <p>7.5.2 Adsorption of polymers 174</p> <p>7.6 Concluding remarks 179</p> <p>Problems 180</p> <p>References 184</p> <p><b>8 Characterization Methods of Colloids – Part I: Kinetic Properties and Rheology 185</b></p> <p>8.1 Introduction – importance of kinetic properties 185</p> <p>8.2 Brownian motion 185</p> <p>8.3 Sedimentation and creaming (Stokes and Einstein equations) 187</p> <p>8.3.1 Stokes equation 187</p> <p>8.3.2 Effect of particle shape 188</p> <p>8.3.3 Einstein equation 190</p> <p>8.4 Kinetic properties via the ultracentrifuge 191</p> <p>8.4.1 Molecular weight estimated from kinetic experiments (1 = medium and 2 = particle or droplet) 193</p> <p>8.4.2 Sedimentation velocity experiments (1 = medium and 2 = particle or droplet) 193</p> <p>8.5 Osmosis and osmotic pressure 193</p> <p>8.6 Rheology of colloidal dispersions 194</p> <p>8.6.1 Introduction 194</p> <p>8.6.2 Special characteristics of colloid dispersions’ rheology 196</p> <p>8.7 Concluding remarks 198</p> <p>Problems 198</p> <p>References 201</p> <p><b>9 Characterization Methods of Colloids – Part II: Optical Properties (Scattering, Spectroscopy and Microscopy) 202</b></p> <p>9.1 Introduction 202</p> <p>9.2 Optical microscopy 202</p> <p>9.3 Electron microscopy 204</p> <p>9.4 Atomic force microscopy 206</p> <p>9.5 Light scattering 207</p> <p>9.6 Spectroscopy 209</p> <p>9.7 Concluding remarks 210</p> <p>Problems 210</p> <p>References 210</p> <p><b>10 Colloid Stability – Part I: The Major Players (van der Waals and Electrical Forces) 211</b></p> <p>10.1 Introduction – key forces and potential energy plots – overview 211</p> <p>10.1.1 Critical coagulation concentration 213</p> <p>10.2 van der Waals forces between particles and surfaces – basics 214</p> <p>10.3 Estimation of effective Hamaker constants 215</p> <p>10.4 vdW forces for different geometries – some examples 217</p> <p>10.4.1 Complex fluids 219</p> <p>10.5 Electrostatic forces: the electric double layer and the origin of surface charge 219</p> <p>10.6 Electrical forces: key parameters (Debye length and zeta potential) 222</p> <p>10.6.1 Surface or zeta potential and electrophoretic experiments 223</p> <p>10.6.2 The Debye length 225</p> <p>10.7 Electrical forces 228</p> <p>10.7.1 Effect of particle concentration in a dispersion 229</p> <p>10.8 Schulze–Hardy rule and the critical coagulation concentration (CCC) 230</p> <p>10.9 Concluding remarks on colloid stability, the vdW and electric forces 233</p> <p>10.9.1 vdW forces 233</p> <p>10.9.2 Electric forces 234</p> <p>Appendix 10.1 A note on the terminology of colloid stability 235</p> <p>Appendix 10.2 Gouy–Chapman theory of the diffuse electrical double-layer 236</p> <p>Problems 238</p> <p>References 242</p> <p><b>11 Colloid Stability – Part II: The DLVO Theory – Kinetics of Aggregation 243</b></p> <p>11.1 DLVO theory – a rapid overview 243</p> <p>11.2 DLVO theory – effect of various parameters 244</p> <p>11.3 DLVO theory – experimental verification and applications 245</p> <p>11.3.1 Critical coagulation concentration and the Hofmeister series 245</p> <p>11.3.2 DLVO, experiments and limitations 247</p> <p>11.4 Kinetics of aggregation 255</p> <p>11.4.1 General – the Smoluchowski model 255</p> <p>11.4.2 Fast (diffusion-controlled) coagulation 255</p> <p>11.4.3 Stability ratio W 255</p> <p>11.4.4 Structure of aggregates 257</p> <p>11.5 Concluding remarks 264</p> <p>Problems 265</p> <p>References 268</p> <p><b>12 Emulsions 269</b></p> <p>12.1 Introduction 269</p> <p>12.2 Applications and characterization of emulsions 269</p> <p>12.3 Destabilization of emulsions 272</p> <p>12.4 Emulsion stability 273</p> <p>12.5 Quantitative representation of the steric stabilization 275</p> <p>12.5.1 Temperature-dependency of steric stabilization 276</p> <p>12.5.2 Conditions for good stabilization 277</p> <p>12.6 Emulsion design 278</p> <p>12.7 PIT – Phase inversion temperature of emulsion based on non-ionic emulsifiers 279</p> <p>12.8 Concluding remarks 279</p> <p>Problems 280</p> <p>References 282</p> <p><b>13 Foams 283</b></p> <p>13.1 Introduction 283</p> <p>13.2 Applications of foams 283</p> <p>13.3 Characterization of foams 285</p> <p>13.4 Preparation of foams 287</p> <p>13.5 Measurements of foam stability 287</p> <p>13.6 Destabilization of foams 288</p> <p>13.6.1 Gas diffusion 289</p> <p>13.6.2 Film (lamella) rupture 290</p> <p>13.6.3 Drainage of foam by gravity 291</p> <p>13.7 Stabilization of foams 293</p> <p>13.7.1 Changing surface viscosity 293</p> <p>13.7.2 Surface elasticity 293</p> <p>13.7.3 Polymers and foam stabilization 295</p> <p>13.7.4 Additives 296</p> <p>13.7.5 Foams and DLVO theory 296</p> <p>13.8 How to avoid and destroy foams 296</p> <p>13.8.1 Mechanisms of antifoaming/defoaming 297</p> <p>13.9 Rheology of foams 299</p> <p>13.10 Concluding remarks 300</p> <p>Problems 301</p> <p>References 302</p> <p><b>14 Multicomponent Adsorption 303</b></p> <p>14.1 Introduction 303</p> <p>14.2 Langmuir theory for multicomponent adsorption 304</p> <p>14.3 Thermodynamic (ideal and real) adsorbed solution theories (IAST and RAST) 306</p> <p>14.4 Multicomponent potential theory of adsorption (MPTA) 312</p> <p>14.5 Discussion. Comparison of models 315</p> <p>14.5.1 IAST – literature studies 315</p> <p>14.5.2 IAST versus Langmuir 315</p> <p>14.5.3 MPTA versus IAST versus Langmuir 317</p> <p>14.6 Conclusions 317</p> <p>Acknowledgments 319</p> <p>Appendix 14.1 Proof of Equations 14.10a,b 319</p> <p>Problems 319</p> <p>References 320</p> <p><b>15 Sixty Years with Theories for Interfacial Tension – Quo Vadis? 321</b></p> <p>15.1 Introduction 321</p> <p>15.2 Early theories 321</p> <p>15.3 van Oss–Good and Neumann theories 331</p> <p>15.3.1 The two theories in brief 331</p> <p>15.3.2 What do van Oss–Good and Neumann say about their own theories? 333</p> <p>15.3.3 What do van Oss–Good and Neumann say about each other’s theories? 334</p> <p>15.3.4 What do others say about van Oss–Good and Neumann theories? 335</p> <p>15.3.5 What do we believe about the van Oss–Good and Neumann theories? 338</p> <p>15.4 A new theory for estimating interfacial tension using the partial solvation parameters (Panayiotou) 339</p> <p>15.5 Conclusions – Quo Vadis? 344</p> <p>Problems 345</p> <p>References 349</p> <p><b>16 Epilogue and Review Problems 352</b></p> <p>Review Problems in Colloid and Surface Chemistry 353</p> <p>Index 358</p>
<p><b>Georgios M. Kontogeorgis </b>and <b>Søren Kiil</b> are both at the Technical University of Denmark, in the Dept of Chemical and Biochemical Engineering. Kontogeorgis is Professor of Applied Thermodynamics, and Kiil is Associate Professor in Coatings Science and Engineering.<br />Prof Kontogeorgis has been teaching the colloid and surface chemistry course for 12 years, for the past 3 co-teaching with Kiil. Both authors have diverse research interests in strongly interconnected fields. Kontogeorgis' research interests are in the fields of thermodynamics, physical chemistry (especially surface science and polymers), while Kiil’s interests are primarily in coatings science and engineering (antifouling-, anticorrosive-, wind turbine blades etc).<br />Both have valuable books publishing experience: Kontogeorgis most recently on thermodynamic models (2010, Wiley); and Kiil has co-authored a textbook on product design (2007, Wiley).</p>

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €