Details

Integration of Renewable Energy Sources with Smart Grid


Integration of Renewable Energy Sources with Smart Grid


1. Aufl.

von: M. Kathiresh, A. Mahaboob Subahani, G. R. Kanagachidambaresan

173,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.08.2021
ISBN/EAN: 9781119751892
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book starts with an overview of renewable energy technologies, smart grid technologies, energy storage systems, and covers the details of renewable energy integration with smart grid and the corresponding controls. This book provides better views on power scenario in developing countries.  The requirement of the integration of smart grid along with the energy storage systems are deeply discussed to acknowledge the importance of sustainable development of smart city.  The methodologies are made quite possible with the high-efficient power convertor topologies and intelligent control schemes.  These control schemes are capable to provide better control with the help of machine intelligence techniques and artificial intelligence.  The book also addresses the modern power convertor topologies and the corresponding control schemes for renewable energy integration with smart grid.  The design and analysis of power converters that are used for grid integration of solar PV along with simulation and experimental results are illustrated. The protection aspects of the microgrid with power electronic configurations for wind energy systems are elucidated. </p>
<p>Preface xv</p> <p><b>1 Renewable Energy Technologies 1<br /></b><i>V. Chamundeswari, R. Niraimathi, M. Shanthi and A. Mahaboob Subahani</i></p> <p>1. Introduction 1</p> <p>1.1 Types of Renewable Energy 2</p> <p>1.1.1 Solar Energy 3</p> <p>1.1.2 Wind Energy 7</p> <p>1.1.3 Fuel Cell 8</p> <p>1.1.4 Biomass Energy 11</p> <p>1.1.5 Hydro-Electric Energy 13</p> <p>1.1.6 Geothermal Energy 14</p> <p>References 17</p> <p><b>2 Present Power Scenario in India 19<br /></b><i>Niraimathi R., Pradeep V., Shanthi M. and Kathiresh M.</i></p> <p>2.1 Introduction 20</p> <p>2.2 Thermal Power Plant 20</p> <p>2.2.1 Components of Thermal Power Plant 21</p> <p>2.2.2 Major Thermal Power Plants in India 23</p> <p>2.3 Gas-Based Power Generation 24</p> <p>2.3.1 Basics of Gas-Based Power Generation 24</p> <p>2.3.2 Major Gas-Based Power Plants in India 25</p> <p>2.4 Nuclear Power Plants 26</p> <p>2.4.1 India’s Hold in Nuclear Power 27</p> <p>2.4.2 Major Nuclear Power Plants 27</p> <p>2.4.3 Currently Operational Nuclear Power Plants 28</p> <p>2.4.4 Challenges of Nuclear Power Plants 28</p> <p>2.5 Hydropower Generation 29</p> <p>2.5.1 Pumped Storage Plants 29</p> <p>2.6 Solar Power 30</p> <p>2.6.1 Photovoltaic 30</p> <p>2.6.2 Photovoltaic Solar Power System 30</p> <p>2.6.3 Concentrated Solar Power System 31</p> <p>2.6.4 Major Solar Parks in India 32</p> <p>2.7 Wind Energy 32</p> <p>2.8 The Inherited Structure 34</p> <p>References 34</p> <p><b>3 Introduction to Smart Grid 37<br /></b><i>G. R. Hemanth, S. Charles Raja and P. Venkatesh</i></p> <p>3.1 Need for Smart Grid in India 38</p> <p>3.2 Present Power Scenario in India 38</p> <p>3.2.1 Performance of Generation From Conventional Sources 40</p> <p>3.2.2 Status of Renewable Energy Sources 40</p> <p>3.3 Electric Grid 43</p> <p>3.3.1 Evolving Scenario of the Electric Grid 45</p> <p>3.3.1.1 Integrated Grid 46</p> <p>3.3.1.2 Prosumers 46</p> <p>3.3.1.3 Transmission v/s Energy Storage 47</p> <p>3.3.1.4 Changing Nature of Loads 47</p> <p>3.3.1.5 Electric Vehicles 48</p> <p>3.3.1.6 Microgrids 48</p> <p>3.4 Overview of Smart Grids 49</p> <p>3.4.1 Purpose of Smart Grid 49</p> <p>3.5 Smart Grid Components for Transmission System 50</p> <p>3.5.1 Supervisory Control and Data Acquisition System 50</p> <p>3.5.1.1 SCADA Overview 51</p> <p>3.5.1.2 Components of SCADA 51</p> <p>3.5.2 Energy Management System 52</p> <p>3.5.3 Wide-Area Monitoring System 52</p> <p>3.6 Smart Grid Functions Used in Distribution System 53</p> <p>3.6.1 Supervisory Control and Data Acquisition System 53</p> <p>3.6.2 Distribution Management System 54</p> <p>3.6.3 Distribution Automation 54</p> <p>3.6.4 Substation Automation 55</p> <p>3.6.5 Advanced Metering Infrastructure 55</p> <p>3.6.6 Geographical Information System 57</p> <p>3.6.7 Peak Load Management 58</p> <p>3.6.8 Demand Response 58</p> <p> 3.6.9 Power Quality Management 59</p> <p>3.6.10 Outage Management System 59</p> <p>3.6.11 Distribution Transformer Monitoring System 59</p> <p>3.6.12 Enterprise Application Integration 59</p> <p>3.6.13 Smart Street Lights 60</p> <p>3.6.14 Energy Storage 60</p> <p>3.6.15 Cyber Security 60</p> <p>3.6.16 Analytics 60</p> <p>3.7 Case Study: Techno-Economic Analysis 61</p> <p>3.7.1 Peak Load Shaving and Metering Efficiency 61</p> <p>3.7.2 Outage Management System 63</p> <p>3.7.3 Loss Detection 64</p> <p>3.7.4 Tamper Analysis 66</p> <p>3.8 Case Study: Solar PV Awareness of Puducherry SG Pilot Project 69</p> <p>3.9 Recent Trends in Smart Grids 70</p> <p>3.9.1 Smart GRIP Architecture 70</p> <p>3.9.2 Implementation of Smart Meter With Prepaid Facility 74</p> <p>References 74</p> <p><b>4 Internet of Things–Based Advanced Metering Infrastructure (AMI) for Smart Grids 77<br /></b><i>V. Gomathy, V. Kavitha, C. Nayantara, J. Mohammed Feros Khan, Vimalarani G. and S. Sheeba Rani</i></p> <p>4.1 Introduction 78</p> <p>4.1.1 Smart Grids 78</p> <p>4.1.2 Smart Meters 80</p> <p>4.2 Advanced Metering Infrastructure 81</p> <p>4.2.1 Smart Devices 82</p> <p>4.2.2 Communication 83</p> <p>4.2.3 Data Management System 85</p> <p>4.2.4 Mathematical Modeling 87</p> <p>4.2.5 Energy Theft Detection Techniques 89</p> <p>4.3 IoT-Based Advanced Metering Infrastructure 89</p> <p>4.3.1 Intrusion Detection System 90</p> <p>4.4 Results 93</p> <p>4.5 Discussion 94</p> <p>4.6 Conclusion and Future Scope 97</p> <p>References 97</p> <p><b>5 Requirements for Integrating Renewables With Smart Grid 101<br /></b><i>Indrajit Sarkar</i></p> <p>5.1 Introduction 102</p> <p>5.1.1 Smart Grid 102</p> <p>5.1.2 Renewable Energy Resources 105</p> <p>5.1.3 How Smart Grids Enable Renewables 111</p> <p>5.1.4 Smart Grid and Distributed Generation 111</p> <p>5.1.5 Grid Integration Terminologies 112</p> <p>5.2 Challenges in Integrating Renewables Into Smart Grid 112</p> <p>5.2.1 The Power Flow Control of Distributed Energy Resources 113</p> <p>5.2.2 Investments on New Renewable Energy Generations 113</p> <p>5.2.3 Transmission Expansion 114</p> <p>5.2.4 Improved Flexibility 114</p> <p>5.2.5 High Penetration of Renewables in Future 115</p> <p>5.2.6 Standardizing Control of ESS 115</p> <p>5.2.7 Regulations 116</p> <p>5.2.8 Standards 116</p> <p>5.3 Conclusion 116</p> <p>References 117</p> <p><b>6 Grid Energy Storage Technologies 119<br /></b><i>Chandra Sekhar Nalamati</i></p> <p>6.1 Introduction 120</p> <p>6.1.1 Need of Energy Storage System 121</p> <p>6.1.2 Services Provided by Energy Storage System 122</p> <p>6.2 Grid Energy Storage Technologies: Classification 123</p> <p>6.2.1 Pumped Hydro Storage System 123</p> <p>6.2.2 Compressed Air Storage System 124</p> <p>6.2.3 Flywheel Energy Storage System 125</p> <p>6.2.4 Superconducting Magnet Storage System 125</p> <p>6.2.5 Battery Storage System 127</p> <p>6.2.6 Capacitors and Super Capacitor Storage System 129</p> <p>6.2.7 Fuel Cell Energy Storage System 130</p> <p>6.2.8 Thermal Storage System 131</p> <p>6.3 Grid Energy Storage Technologies: Analogy 132</p> <p>6.4 Applications of Energy Storage System 135</p> <p>6.5 Power Conditioning of Energy Storage System 136</p> <p>6.6 Conclusions 136</p> <p>References 137</p> <p><b>7 Multi-Mode Power Converter Topology for Renewable Energy Integration With Smart Grid 141<br /></b><i>M. Sathiyanathan, S. Jaganathan and R. L. Josephine</i></p> <p>7.1 Introduction 142</p> <p>7.2 Literature Survey 144</p> <p>7.3 System Architecture 145</p> <p>7.3.1 Solar PV Array 146</p> <p>7.3.2 Wind Energy Generator 147</p> <p>7.4 Modes of Operation of Multi-Mode Power Converter 149</p> <p>7.4.1 Buck Mode 150</p> <p>7.4.2 Boost Mode 152</p> <p>7.4.3 Bi-Directional Mode 155</p> <p>7.5 Control Scheme 158</p> <p>7.5.1 Mode Selection 159</p> <p>7.5.2 Maximum Power Point Tracking 159</p> <p>7.5.3 Reconfigurable SPWM Generation 161</p> <p>7.6 Results and Discussion 163</p> <p>7.7 Conclusion 167</p> <p>References 168</p> <p><b>8 Decoupled Control With Constant DC Link Voltage for PV-Fed Single-Phase Grid Connected Systems 171<br /></b><i>C. Maria Jenisha</i></p> <p>8.1 Introduction 171</p> <p>8.2 Schematic of the Grid-Tied Solar PV System 173</p> <p>8.2.1 DC Link Voltage Controller 175</p> <p>8.2.2 MPPT Controller 176</p> <p>8.2.3 SPWM-Based dq Controller 176</p> <p>8.3 Simulation and Experimental Results of the Grid Tied Solar PV System 178</p> <p>8.4 Conclusion 183</p> <p>References 184</p> <p><b>9 Wind Energy Conversion System Feeding Remote Microgrid 187<br /></b><i>K. Arthishri and N. Kumaresan</i></p> <p>9.1 Introduction 188</p> <p>9.2 Literature Review 189</p> <p>9.3 Direct Grid Connected Configurations of Three-Phase WDIG Feeding Single-Phase Grid 191</p> <p>9.4 Three-Phase WDIG Feeding Single-Phase Grid With Power Converters 191</p> <p>9.5 Performance of the Three-Phase Wind Generator System Feeding Power to Single-Phase Grid 193</p> <p>9.5.1 Wind Turbine Characteristics 193</p> <p>9.5.2 Generator Analysis 194</p> <p>9.6 Power Converter Configurations 198</p> <p>9.6.1 Configuration 1: WDIG With Uncontrolled Rectifier–Line Commutated Inverter 198</p> <p>9.6.2 Configuration 2: WDIG With Uncontrolled Rectifier–(DC-DC)–Line Commutated Inverter 200</p> <p>9.6.2.1 Closed-Loop Operation of UR-DC/DC-LCI Configuration 200</p> <p>9.6.3 Configuration 3: WDIG With Uncontrolled Rectifier–Voltage Source Inverter 201</p> <p>9.6.3.1 Closed-Loop Operation of UR-VSI Configuration 202</p> <p>9.7 Conclusion 204</p> <p>References 204</p> <p><b>10 Microgrid Protection 209<br /></b><i>Suman M., Srividhya S. and Padmagirisan P.</i></p> <p>10.1 Introduction 209</p> <p>10.2 Necessity of Distributed Energy Resources 210</p> <p>10.3 Concept of Microgrid 210</p> <p>10.4 Why the Protection With Microgrid is Different From the Conventional Distribution System Protection 211</p> <p>10.4.1 Role of the Type of DER on Protection 212</p> <p>10.5 Foremost Challenges in Microgrid Protection 212</p> <p>10.5.1 Relay Blinding 212</p> <p>10.5.2 Variations in Fault Current Level 213</p> <p>10.5.3 Selectivity 214</p> <p>10.5.4 False/Unnecessary Tripping 214</p> <p>10.5.5 Loss of Mains (Islanding Condition) 214</p> <p>10.6 Microgrid Protection 215</p> <p>10.6.1 Overcurrent Protection 215</p> <p>10.6.2 Distance Protection 216</p> <p>10.6.2.1 Effect of Distributed Generator Inclusion in the Distribution System on Distance Relay 218</p> <p>10.6.3 Differential Protection 219</p> <p>10.6.3.1 Drawbacks in Differential Protection 220</p> <p>10.6.4 Hybrid Tripping Relay Characteristic 220</p> <p>10.6.5 Voltage-Based Methods 221</p> <p>10.6.6 Adaptive Protection Methods 222</p> <p>10.7 Literature Survey 223</p> <p>10.8 Comparison of Various Existing Protection Schemes for Microgrids 225</p> <p>10.9 Loss of Mains (Islanding) 225</p> <p>10.10 Necessity to Detect the Unplanned Islanding 227</p> <p>10.10.1 Health Hazards to Maintenance Personnel 227</p> <p>10.10.2 Unsynchronized Reclosing 228</p> <p>10.10.3 Ineffective Grounding 228</p> <p>10.10.4 Inept Protection 229</p> <p>10.10.5 Loss of Voltage and Frequency Control 229</p> <p>10.11 Unplanned Islanding Identification Methods 229</p> <p>10.11.1 Communication-Based Methods (Remote Method) 230</p> <p>10.11.2 Non-Communication–Based Methods (Local Method) 230</p> <p>10.11.2.1 Passive Method 230</p> <p>10.11.2.2 Active Method 231</p> <p>10.11.2.3 Hybrid Method 232</p> <p>10.12 Comparison of Unplanned Islanding Identification Methods 234</p> <p>10.13 Discussion 234</p> <p>10.14 Conclusion 235</p> <p>References 235</p> <p><b>11 Microgrid Optimization and Integration of Renewable Energy Resources: Innovation, Challenges and Prospects 239<br /></b><i>Blesslin Sheeba T., G. Jims John Wessley, Kanagaraj V., Kamatchi S., A. Radhika and Janeera D.A.</i></p> <p>11.1 Introduction 240</p> <p>11.2 Microgrids 242</p> <p>11.3 Renewable Energy Sources 245</p> <p>11.3.1 Renewable Energy Technologies (RETs) 246</p> <p>11.3.2 Distributed Storage Technologies 247</p> <p>11.3.3 Combined Heat and Power 248</p> <p>11.4 Integration of RES in Microgrid 248</p> <p>11.5 Microgrid Optimization Schemes 250</p> <p>11.5.1 Load Forecasting Schemes 251</p> <p>11.5.2 Generation Unit Control 252</p> <p>11.5.3 Storage Unit Control 252</p> <p>11.5.4 Data Monitoring and Transmission 253</p> <p>11.5.4.1 Communication Systems 254</p> <p>11.5.5 Energy Management and Power Flow 256</p> <p>11.6 Challenges in Implementation of Microgrids 257</p> <p>11.7 Future Prospects of Microgrids 259</p> <p>11.8 Conclusion 259</p> <p>References 260</p> <p><b>12 Challenges in Planning and Operation of Large-Scale Renewable Energy Resources Such as Solar and Wind 263<br /></b><i>J. Vishnupriyan and A. Dhanasekaran</i></p> <p>12.1 Introduction 264</p> <p>12.2 Solar Grid Integration 265</p> <p>12.3 Wind Energy Grid Integration 267</p> <p>12.4 Challenges in the Integration of Renewable Energy Systems with Grid 267</p> <p>12.4.1 Disturbances in the Grid Side 269</p> <p>12.4.2 Virtual Synchronous Machine Method 271</p> <p>12.4.3 Frequency Control 272</p> <p>12.4.4 Solar Photovoltaic Array in Frequency Regulation 275</p> <p>12.4.5 Harmonics 275</p> <p>12.5 Electrical Energy Storage (EES) 276</p> <p>12.6 Conclusion 277</p> <p>References 278</p> <p><b>13 Mitigating Measures to Address Challenges of Renewable Integration—Forecasting, Scheduling, Dispatch, Balancing, Monitoring, and Control 281<br /></b><i>K. Latha Maheswari, B. Sathya and A. Maideen Abdhulkader Jeylani</i></p> <p>13.1 Introduction 282</p> <p>13.2 Microgrid 283</p> <p>13.2.1 Types of Microgrid 284</p> <p>13.2.1.1 DC Microgrid 284</p> <p>13.2.1.2 AC Microgrid 285</p> <p>13.2.1.3 Hybrid AC-DC Microgrid 286</p> <p>13.3 Large-Scale Integration of Renewables: Issues and Challenges 287</p> <p>13.4 A Review on Short-Term Load Forecasting Methods 288</p> <p>13.4.1 Short-Term Load Forecasting Methods 290</p> <p>13.4.1.1 Statistical Technique 290</p> <p>13.5 Overview on Control of Microgrid 291</p> <p>13.5.1 Need for Microgrid Control 291</p> <p>13.5.2 Fully Centralized Control 292</p> <p>13.5.3 Decentralized Control 292</p> <p>13.5.4 Hierarchical Control 293</p> <p>13.5.4.1 Primary Control 293</p> <p>13.5.4.2 Secondary Control 295</p> <p>13.5.4.3 Tertiary Control 295</p> <p>13.6 Measures to Support Large-Scale Renewable Integration 296</p> <p>13.6.1 Basic Idea of Preventive Control 297</p> <p>13.6.1.1 Maximum Output Control Mode 297</p> <p>13.6.1.2 Output Following Mode 298</p> <p>References 298</p> <p><b>14 Mitigation Measures for Power Quality Issues in Renewable Energy Integration and Impact of IoT in Grid Control 305<br /></b><i>Hepsiba D., L.D. Vijay Anand, Granty Regina Elwin J., J.B. Shajilin and D. Ruth Anita Shirley</i></p> <p>14.1 Introduction 306</p> <p>14.2 Impact of Power Quality Issues 308</p> <p>14.2.1 Power Quality in Renewable Energy 314</p> <p>14.2.2 Power Quality Issues in Wind and Solar Renewable Energy 316</p> <p>14.2.2.1 Wind Renewable Energy 316</p> <p>14.2.2.2 Solar Renewable Energy 317</p> <p>14.3 Mitigation of Power Quality Issues 317</p> <p>14.3.1 UPQC 317</p> <p>14.3.2 DVR 318</p> <p>14.3.3 D-STATCOM 319</p> <p>14.3.4 UPS 319</p> <p>14.3.5 TVSS 320</p> <p>14.3.6 Internet of Things in Distributed Generations Systems 320</p> <p>14.4 Discussions 321</p> <p>14.5 Conclusion and Future Scope 322</p> <p>References 323</p> <p><b>15 Smart Grid Implementations and Feasibilities 327<br /></b><i>Suresh N. S., Padmavathy N. S., S. Arul Daniel and Ramakrishna Kappagantu</i></p> <p>15.1 Introduction 328</p> <p>15.1.1 Smart Grid Technologies—Literature Review 328</p> <p>15.2 Need for Smart Grid 329</p> <p>15.2.1 Smart Grid Description 330</p> <p>15.3 Smart Grid Sensing, Measurement, Control, and Automation Technologies 331</p> <p>15.3.1 Advanced Metering Infrastructure 332</p> <p>15.3.2 Key Components of AMI 332</p> <p>15.3.3 Smart Meter 332</p> <p>15.3.4 Communication Infrastructure and Protocols for AMI 333</p> <p>15.3.4.1 Data Concentrator Unit 334</p> <p>15.3.5 Benefits of AMI 335</p> <p>15.3.6 Peak Load Management 336</p> <p>15.3.7 Distribution Management System 336</p> <p>15.3.8 Distribution Automation System 337</p> <p>15.4 Implementation of Smart Grid Project 339</p> <p>15.4.1 Challenges and Issues of SG Implementation 339</p> <p>15.4.2 Smart Grid Implementation in India: Puducherry Pilot Project 341</p> <p>15.4.3 Power Quality of the Smart Grid 341</p> <p>15.5 Solar PV System Implementation Barriers 342</p> <p>15.6 Smart Grid and Microgrid in Other Areas 343</p> <p>15.6.1 Maritime Power System 343</p> <p>15.6.2 Space Electrical Grids 343</p> <p>15.7 Conclusion 344</p> <p>References 345</p> <p>Index 347</p>
<p><b>M. Kathiresh </b>PhD from Anna University and is a faculty member in the Department of Electrical and Electronics Engineering, PSG College of Technology, Anna University, India.</p> <p><b>A. Mahaboob Subahani</b> works in the Department of Electrical and Electronics Engineering, PSG College of Technology, Anna University, India.</p> <p><b>G.R. Kanagachidambaresan </b>PhD from PSG College of Technology, Anna University is an associate professor in the Department of Computer Science and Engineering in Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
102,99 €