Details

Insect Biodiversity


Insect Biodiversity

Science and Society
Volume 2

von: Robert G. Foottit, Peter H. Adler

96,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 11.04.2018
ISBN/EAN: 9781118945599
Sprache: englisch
Anzahl Seiten: 1024

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Volume Two of the new guide to the study of biodiversity in insects Volume Two of Insect Biodiversity: Science and Society presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives. Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity. This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text: Offers the most up-to-date information on the important topic of insect biodiversity Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change With its companion Volume I, presents current information on the biodiversity of all insect orders Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems Includes scientific approaches and methods for the study of insect biodiversity The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.
List of Contributors xxiii Foreword xxix Preface, Volume II xxxiii Acknowledgments xxxv 1 Introduction – A Brief History of Revolutions in the Study of Insect Biodiversity 1Peter H. Adler and Robert G. Foottit 1.1 Discovery 1 1.2 Conceptual Development 5 1.3 Information Management 6 1.4 Conclusions 7 Acknowledgments 8 References 8 Part I Habitats and Regions 13 2 Insect Biodiversity in the Arctic 15Ian D. Hodkinson 2.1 Documenting Biodiversity – Traditional Taxonomy Versus DNA Barcoding 17 2.2 Insect Species Diversity in the Arctic 18 2.2.1 Composition of the Arctic Insect Fauna 18 2.2.2 Species Richness Trends Along Latitudinal Gradients 25 2.2.3 Geographical and Regional Variations in Species Richness 27 2.2.4 Diversity Oases Within the Arctic 28 2.3 Historical Insect Biodiversity in the Arctic – the Time Perspective 29 2.3.1 Nunataks and Glacial Refugia as Generators of Biodiversity 30 2.3.2 Endemism 31 2.4 Biodiversity on the Landscape Scale 32 2.4.1 Variation in Biodiversity on a Landscape Scale 32 2.4.2 Local Effects on Biodiversity – Predation and Natural Disturbance 34 2.5 Important Characteristics of Arctic Insect Biodiversity 35 2.5.1 Specialist Versus Generalist Species 35 2.5.2 Life?History Adaptation 35 2.5.3 Genetic Diversity Within Species and Groups 36 2.5.4 Reproductive Variation and Parthenogenesis 36 2.5.5 A Diversity of Adaptations for Maximizing Heat Absorption 37 2.6 Cold Tolerance – a Diversity of Adaptations 38 2.6.1 Brachyptery and Wing Polymorphism 39 2.7 Dispersal, Immigration, and Biodiversity 39 2.8 Pollinator Networks and Pollinator Biodiversity 40 2.9 A Biodiversity Paradise for Parasites? 41 2.10 Biodiversity and the Changing Arctic Climate 42 References 44 3 Insect Biodiversity in Indochina: A Window into the Riches of the Oriental Region 59Seunghwan Lee and Ram Keshari Duwal 3.1 Physical Geography and Climate 62 3.2 Features of Insect Biodiversity in the Lower Mekong Subregion 62 3.2.1 Blattodea 70 3.2.2 Coleoptera 70 3.2.3 Dermaptera 71 3.2.4 Diptera 72 3.2.5 Embiodea 72 3.2.6 Ephemeroptera 72 3.2.7 Hemiptera 72 3.2.8 Hymenoptera 72 3.2.9 “Isoptera” 72 3.2.10 Lepidoptera 72 3.2.11 Mantodea 73 3.2.12 Mecoptera 73 3.2.13 Megaloptera 73 3.2.14 Microcoryphia and Zygentoma 73 3.2.15 Neuroptera 73 3.2.16 Notoptera (Grylloblattodea and Mantophasmatodea) 73 3.2.17 Odonata 73 3.2.18 Orthoptera 73 3.2.19 Phasmatodea 73 3.2.20 Phthiraptera 73 3.2.21 Plecoptera 74 3.2.22 Psocoptera 74 3.2.23 Raphidioptera 74 3.2.24 Siphonaptera 74 3.2.25 Strepsiptera 74 3.2.26 Thysanoptera 74 3.2.27 Trichoptera 74 3.2.28 Zoraptera 74 3.3 Insect Biodiversity and Society in Indochina 74 3.3.1 Entomophagy in the Lower Mekong Subregion 74 3.3.2 Research Initiatives 76 3.4 Conclusions 77 Acknowledgments 78 References 78 4 Biodiversity of Arthropods on Islands 81Rosemary G. Gillespie and Kipling Will 4.1 What is an Island? 81 4.1.1 History of the Island 82 4.1.2 Degree of Isolation 84 4.1.3 Area of the Island 84 4.1.4 Age of the Island 85 4.2 Ecological Attributes of Islands 85 4.2.1 Species Diversity on Islands 85 4.2.2 Island Colonization 86 4.2.3 Factors Facilitating Establishment 86 4.2.4 Niche Preemption 86 4.2.5 Ecological Release 87 4.2.6 Networks of Ecological Interactions 87 4.3 Evolution on Islands 87 4.3.1 Anagenesis 87 4.3.2 Cladogenesis 87 4.3.3 Adaptive Radiation 88 4.3.4 Isolation, Hybridization, and Admixture 88 4.3.5 Parallel Evolution and Convergence 89 4.4 Evolution in Other Insular Environments 89 4.4.1 Mountaintops – Sky Islands 89 4.4.2 Caves 89 4.4.3 Desert Dunes and Salt Lakes 89 4.4.4 Habitat Fragments 90 4.5 Characteristics of Island Biodiversity 90 4.5.1 Disharmony 90 4.5.2 Endemism 91 4.5.3 Loss of Dispersal Ability and Flightlessness 91 4.5.4 Innovations 91 4.5.5 Size 92 4.5.6 Reproductive Shifts 92 4.6 Conservation 92 4.6.1 Taxonomic Impediments 93 4.6.2 Restricted Ranges and Small Population Sizes 93 4.6.3 Abiotic Factors 93 4.6.4 Invasive Species 94 4.7 Conclusion 94 References 94 5 Beneficial Insects in Agriculture: Enhancement of Biodiversity and Ecosystem Services 105Matthew S. Jones and William E. Snyder 5.1 Components of Biodiversity: Species Richness, Species Evenness, and Species Identity 106 5.2 Why Does Insect Biodiversity Matter to Agriculture? 106 5.2.1 Complementarity 107 5.2.1.1 Temporal Complementarity 107 5.2.1.2 Spatial Complementarity 108 5.2.1.3 Behavioral Complementarity 109 5.2.2 Identity Effects in Pollinator, Predator, and Detritivore Communities 110 5.2.3 Disruptive Species Interactions in Diverse Communities 111 5.3 Degradation of Biodiversity Through Agricultural Intensification, and Its Reversal 112 5.4 Restoring Biodiversity to Agroecosystems 112 5.4.1 Restoring Key Resources 112 5.4.2 Optimizing Use of Pesticides 113 5.4.3 Diversifying Farming Landscapes at Larger Scales 113 5.5 Conclusions and Recommendations 115 5.5.1 Clarify Mechanisms Leading to Biodiversity Effects 115 5.5.2 Consider Biodiversity Effects That Span Multiple Ecosystem Services 115 5.5.3 Better Link Management Practices to Beneficial Biodiversity Effects 115 5.5.4 Rank the Relative Importance of Habitat Loss Versus Agrochemical Use 116 5.5.5 Elucidate Strategies That Facilitate Transition from Current Agricultural Production Practices to Those That Are Sustainable and Provide Improved Ecosystem Services 116 5.6 Summary 116 Acknowledgments 117 References 117 6 Insects in Caves 123David C. Culver and Tanja Pipan 6.1 The Story of Leptodirus hochenwartii 123 6.2 The Variety of Subterranean Spaces 124 6.2.1 Overview 124 6.2.2 Caves 125 6.2.3 Soil and Interstitial Habitats 126 6.2.4 Shallow Subterranean Habitats 127 6.2.4.1 Epikarst 128 6.2.4.2 Milieu Souterrain Superficiel 128 6.2.4.3 Calcrete Aquifers 128 6.2.4.4 Unifying Features of Shallow Subterranean Habitats 130 6.3 Ecological Roles of Insects in Caves 133 6.3.1 Relative Importance of Subterranean Habitats in the Ecology of Different Insects 133 6.3.2 Trophic Roles 134 6.4 Morphological and Life?History Adaptations of Insects to Subterranean Life 134 6.5 Probable Modes of Successful Colonization of Subterranean Space 138 6.5.1 Initial Colonization 140 6.5.2 Successful Colonization 140 6.5.3 Allopatric Versus Parapatric Speciation 141 6.5.4 Subterranean Dispersal 142 6.6 Taxonomic and Geographic Patterns of Subterranean Insect Biodiversity 142 6.6.1 Geographic Patterns 142 6.6.2 Taxonomic Review of Troglobiotic Insects 143 6.6.2.1 Collembola 144 6.6.2.2 Diplura 146 6.6.2.3 Coleoptera 146 6.6.2.4 Fulgoromorpha 147 6.7 Human Utility and Protection of Cave Insects 147 References 147 Part II Taxa 153 7 Biodiversity of the Thysanurans (Microcoryphia and Zygentoma) 155Luis F. Mendes 7.1 Paleontological Data 159 7.2 Parasitism 167 7.2.1 Unicellular Parasites 167 7.2.2 Nematoda 167 7.2.3 Acarids 167 7.2.4 Strepsiptera 167 7.2.5 Fungi 167 7.3 Predation 168 7.4 Order Microcoryphia (= Archaeognatha) 168 7.4.1 Characterization 168 7.4.2 Bionomics 172 7.4.3 Taxonomy 173 7.4.4 Identification Key for Families, Subfamilies, and Paleoforms of Microcoryphia 174 7.5 Order Zygentoma (= Thysanura Sensu Stricto) 175 7.5.1 Characterization 175 7.5.2 Bionomics 179 7.5.3 Taxonomy 180 7.5.4 Identification Key for Families and Subfamilies of Zygentoma 181 7.6 Genetic Studies of Thysanurans 183 7.7 Thysanurans and Humans 184 7.8 Geographic Distribution of the Thysanurans 185 References 187 8 Biodiversity of Zoraptera and Their Little?Known Biology 199Jae C. Choe 8.1 Morphology 201 8.2 Life History and Ecology 204 8.3 Reproduction 208 8.4 Phylogenetic Position – “The Zoraptera Problem” 210 8.5 Conclusion 211 Acknowledgments 212 References 212 9 Biodiversity of Embiodea 219Janice S. Edgerly 9.1 Diversity in Habitat and Silk 223 9.2 The Promise of Silk?Like Biomaterials and Emerging Lessons from Webspinners 228 9.3 Social Behavior 229 9.4 Families of Embiodea 231 9.4.1 Andesembiidae 231 9.4.2 Anisembiidae 232 9.4.3 Archembiidae 233 9.4.4 Australembiidae 234 9.4.5 Clothodidae 234 9.4.6 Embiidae 235 9.4.7 Embonychidae 236 9.4.8 Notoligotomidae 236 9.4.9 Oligotomidae 236 9.4.10 Paedembiidae 238 9.4.11 Ptilocerembiidae 238 9.4.12 Scelembiidae 238 9.4.13 Teratembiidae 239 9.5 Webspinners of the Fossil Record 239 9.6 Conclusion 239 References 240 10 Biodiversity of Orthoptera 245Hojun Song 10.1 Taxonomic Classification and Phylogeny 245 10.2 Diversity and Distribution 246 10.3 Morphological and Biological Diversity 250 10.4 Societal Importance 253 10.5 Overview of Taxa 254 10.5.1 Suborder Ensifera 254 10.5.1.1 Superfamily Grylloidea 255 10.5.1.2 Superfamily Gryllotalpoidea 255 10.5.1.3 Superfamily Schizodactyloidea 259 10.5.1.4 Superfamily Rhaphidophoroidea 260 10.5.1.5 Superfamily Hagloidea 260 10.5.1.6 Superfamily Stenopelmatoidea 260 10.5.1.7 Superfamily Tettigonioidea 261 10.5.2 Suborder Caelifera 262 10.5.2.1 Superfamily Tridactyloidea 263 10.5.2.2 Superfamily Tetrigoidea 263 10.5.2.3 Superfamily Eumastacoidea 265 10.5.2.4 Superfamily Proscopioidea 266 10.5.3.5 Superfamily Tanaoceroidea 266 10.5.3.6 Superfamily Trigonopterygoidea 267 10.5.3.7 Superfamily Pneumoroidea 267 10.5.3.8 Superfamily Pyrgomorphoidea 267 10.5.3.9 Superfamily Acridoidea 268 Acknowledgments 271 References 271 11 Biodiversity of Phasmatodea 281Sven Bradler and Thomas R. Buckley 11.1 Phasmatodean Phylogeny 286 11.2 Overview of Taxa 288 11.2.1 Timema 289 11.2.2 Agathemera 290 11.2.3 Heteronemiinae 290 11.2.4 Aschiphasmatinae 290 11.2.5 Phylliinae – The True Leaf Insects 291 11.2.6 Heteropteryginae 292 11.2.7 Diapheromerinae 293 11.2.8 Pseudophasmatinae 294 11.2.9 Palophinae 294 11.2.10 The African Clade 295 11.2.11 Gratidiini 295 11.2.12 Clitumnini 296 11.2.13 Medaurini 296 11.2.14 Pharnaciini 296 11.2.15 Cladomorphinae 296 11.2.16 Stephanacridini 297 11.2.17 Lanceocercata – The “Marsupials” Among the Phasmatodea 297 11.2.18 Lonchodinae 299 11.2.19 Necrosciinae 300 11.3 The Phasmatodean Fossil Record 300 11.4 Phasmatodea as Research Tools 302 11.5 Importance to Human Society 304 References 304 12 Biodiversity of Dermaptera 315Fabian Haas 12.1 Epizoic Dermaptera 315 12.2 Structure and Function 318 12.3 Locomotion 319 12.4 Distribution 319 12.5 Development and Reproduction 323 12.6 Behavior 323 12.6.1 Mating Behavior and Maternal Care 323 12.6.2 Defense 324 12.6.3 Feeding 324 12.7 Parasitism and Symbiosis 324 12.8 Fossils and Research History 324 12.9 Overview of Taxa 325 12.9.1 Lower Dermaptera 325 12.9.2 Higher Dermaptera 326 12.10 Societal and Scientific Importance 326 12.10.1 Plant Pests, Biological Control Agents, and General Nuisances 326 12.10.2 Medical, Veterinary, and Forensic Importance 326 12.10.3 Invasive Alien Species 327 12.10.4 Pollination and Other Ecological Services 327 12.10.5 Research Tools 327 12.10.6 Conservation – Vanishing Species 328 12.10.7 Cultural Legacy 328 Acknowledgments 328 References 328 13 Biodiversity of Grylloblattodea and Mantophasmatodea 335Monika J. B. Eberhard, Sean D. Schoville and Klaus?Dieter Klass 13.1 Grylloblattodea 336 13.1.1 Morphology and Biology 336 13.1.2 Overview of Taxa 341 13.2 Mantophasmatodea 343 13.2.1 Morphology and Biology 343 13.2.2 Overview of Taxa 346 13.2.2.1 Tanzaniophasmatidae 349 13.2.2.2 Mantophasmatidae 349 13.2.2.3 Tyrannophasma/Praedatophasma Clade 350 13.2.2.4 Austrophasmatidae 350 13.3 Fossil Record 351 13.4 Conclusions 352 Acknowledgments 353 References 353 14 Biodiversity of Blattodea – the Cockroaches and Termites 359Marie Djernæs 14.1 Overview of Taxa 362 14.1.1 Superfamily Corydioidea 363 14.1.1.1 Family Corydiidae 363 14.1.1.2 Family Nocticolidae 365 14.1.2 Superfamily Blaberoidea 366 14.1.2.1 Family Ectobiidae 366 14.1.2.2 Family Blaberidae 368 14.1.3 Superfamily Blattoidea 369 14.1.3.1 Family Blattidae 369 14.1.3.2 Family Lamproblattidae 370 14.1.3.3 Family Tryonicidae 371 14.1.3.4 Family Anaplectidae 371 14.1.3.5 Family Cryptocercidae 371 14.1.3.6 Termites 371 14.2 Societal Importance 373 14.2.1 Cockroaches and Science 373 14.2.2 Cockroaches as Pests 374 14.2.3 Cockroaches as Food, Feed, and Medicine 375 14.2.4 Pet and Feeder Species 376 14.2.5 Ecological Importance 376 14.2.6 Conservation Status 377 References 377 15 Biodiversity of Mantodea 389Frank Wieland and Gavin J. Svenson 15.1 Morphological and Biological Diversity 391 15.2 Phylogeny and Classification 396 15.2.1 Acanthopidae 396 15.2.2 Acontistidae 396 15.2.3 Amorphoscelidae 397 15.2.4 Angelidae 398 15.2.5 Chaeteessidae 398 15.2.6 Coptopterygidae 399 15.2.7 Empusidae 399 15.2.8 Epaphroditidae 399 15.2.9 Eremiaphilidae 400 15.2.10 Galinthiadidae 400 15.2.11 Hymenopodidae 401 15.2.12 Iridopterygidae 401 15.2.13 Liturgusidae 401 15.2.14 Mantidae 402 15.2.15 Mantoididae 402 15.2.16 Metallyticidae 403 15.2.17 Photinaidae 403 15.2.18 Stenophyllidae 404 15.2.19 Tarachodidae 404 15.2.20 Thespidae 404 15.2.21 Toxoderidae 405 15.2.22 Incertae Sedis 405 15.2.23 Suprafamilial Groups 405 15.2.23.1 Acanthopoidea 405 15.2.23.2 Artimantodea 405 15.2.23.3 Cernomantodea 406 15.2.23.4 Eumantodea 406 15.2.23.5 Mantidea 406 15.2.23.6 Mantoidea 406 15.2.23.7 Mantomorpha 406 15.2.23.8 Neomantodea 406 15.3 Morphological Convergence and Ecomorphs 406 15.4 Conclusions 407 References 407 16 Biodiversity of Psocoptera 417Edward L. Mockford 16.1 Classification 418 16.2 Overview of the Psocoptera 422 16.2.1 Suborder Trogiomorpha 422 16.2.1.1 Infraorder Atropetae 423 16.2.1.2 Infraorder Psocatropetae 434 16.2.1.3 Infraorder Prionoglaridetae 434 16.2.2 Suborder Troctomorpha 434 16.2.2.1 Infraorder Nanopsocetae 434 16.2.2.2 Infraorder Amphientometae 436 16.2.2.3 Superfamily Amphientomoidea 436 16.2.2.4 Superfamily Electrentomoidea 437 16.2.3 Suborder Psocomorpha 438 16.2.3.1 Infraorder Archipsocetae 438 16.2.3.2 Infraorder Caeciliusetae 438 16.2.3.3 Infraorder Homilopsocidea 441 16.2.3.4 Infraorder Philotarsetae 443 16.2.3.5 Infraorder Epipsocetae 444 16.2.3.6 Infraorder Psocetae 445 16.3 Summary of Diversity of the Psocoptera and Predictions 447 16.4 The Importance to Humans of Psocopteran Biodiversity 448 Acknowledgments 448 References 449 17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) 457Terry D. Galloway 17.1 Phthiraptera – The Parasitic Lice 458 17.2 Siphonaptera – The Fleas 465 17.3 Medical and Veterinary Importance 474 17.3.1 Lice 474 17.3.2 Fleas 475 17.4 Community Diversity of Lice and Fleas 477 17.5 Conservation of Lice and Fleas 478 Acknowledgments 479 References 479 18 Biodiversity of Thysanoptera 483Laurence A. Mound 18.1 What Are Thrips? 484 18.2 Family Diversity 484 18.3 The Lives of Thrips 486 18.4 Thrips Around the World 487 18.5 Thrips as Research Targets 488 18.6 Structural Diversity of Thrips 491 18.7 Thrips as Pests 493 18.8 Thrips and Human Life 494 18.9 Thrips Information Sources 495 References 496 19 The Diversity of the True Hoppers (Hemiptera: Auchenorrhyncha) 501Charles R. Bartlett, Lewis L. Deitz, Dmitry A. Dmitriev, Allen F. Sanborn, Adeline Soulier?Perkinand Matthew S. Wallace 19.1 Overview of the Auchenorrhyncha 511 19.1.1 Cicadomorpha 511 19.1.1.1 Superfamily Cicadoidea – The Cicadas: Cicadidae and Tettigarctidae 516 19.1.1.2 Superfamily Cercopoidea – Spittlebugs or Froghoppers 518 19.1.1.3 Superfamily Membracoidea – Leafhoppers and Treehoppers 521 19.1.2 Fulgoromorpha 530 19.1.2.1 Superfamily Fulgoroidea – The Planthoppers 536 19.2 Prospectus 549 Acknowledgments 550 References 551 20 The Biodiversity of Sternorrhyncha: Scale Insects, Aphids, Psyllids, and Whiteflies 591Nate B. Hardy 20.1 Sternorrhyncha and Society 591 20.1.1 Economic Importance 591 20.1.2 Ecological Importance 593 20.1.3 Existential Importance 593 20.2 Taxonomic Diversity of Sternorrhyncha 593 20.2.1 Phylogeny and Classification 593 20.2.1.1 Aphidoidea 594 20.2.1.2 Aleyrodoidea 594 20.2.1.3 Coccoidea 595 20.2.1.4 Psylloidea 595 20.3 Functional Diversity of Sternorrhyncha 596 20.3.1 Trophic Diversity 596 20.3.1.1 Phloem Feeding 596 20.3.1.2 Not Phloem Feeding 596 20.3.1.3 Trophic?Breadth Variation 596 20.3.2 Trophic Evolution 597 20.3.3 Endosymbiosis 598 20.3.4 Endosymbiont Diversity 598 20.3.4.1 Endosymbiont Phylogenetic Diversity 598 20.3.4.2 Endosymbiont Functional Diversity 602 20.3.5 Endosymbiont Evolution 604 20.3.5.1 Ecological Speciation 605 20.3.5.2 Conflictual Speciation 606 20.3.6 Life?Cycle Diversity 607 20.3.6.1 Aphid Soldiers and Eusocial Societies 608 20.3.6.2 Life?Cycle Evolution 609 20.3.7 Genetic?System Diversity 610 20.3.7.1 Holocentric Chromosomes 610 20.3.7.2 Sex Determination and Parthenogenesis 610 20.3.7.3 Sex Ratio 611 20.3.7.4 Supernumerary Chromosomes 613 20.3.8 Genetic?System Evolution 613 20.3.8.1 What Sternorrhyncha Can Tell Us About the Evolution of Sex 613 20.3.8.2 What Sternorrhyncha Can Tell Us About the Evolution of Genetic Systems 614 20.4 Conclusions 615 Acknowledgments 616 References 616 21 Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera) 627John D. Oswald and Renato J. P. Machado 21.1 Phylogeny 628 21.2 Geological Age 628 21.3 Metamorphosis and Life Stages 629 21.3.1 Adults 629 21.3.2 Eggs and Oviposition 630 21.3.3 Larvae 632 21.3.4 Pupae 633 21.4 Biology 634 21.5 Distribution 636 21.6 Overview of Orders and Families 637 21.6.1 Order Megaloptera 642 21.6.1.1 Family Corydalidae 642 21.6.1.2 Family Sialidae 642 21.6.2 Order Neuroptera 644 21.6.2.1 Family Ascalaphidae 644 21.6.2.2 Family Berothidae 645 21.6.2.3 Family Chrysopidae 645 21.6.2.4 Family Coniopterygidae 647 21.6.2.5 Family Dilaridae 647 21.6.2.6 Family Hemerobiidae 649 21.6.2.7 Family Ithonidae 649 21.6.2.8 Family Mantispidae 650 21.6.2.9 Family Myrmeleontidae 651 21.6.2.10 Family Nemopteridae 652 21.6.2.11 Family Nevrorthidae 653 21.6.2.12 Family Nymphidae 653 21.6.2.13 Family Osmylidae 655 21.6.2.14 Family Psychopsidae 656 21.6.2.15 Family Sisyridae 656 21.6.3 Order Raphidioptera 657 21.6.3.1 Family Inocelliidae 657 21.6.3.2 Family Raphidiidae 657 21.7 Societal Importance 658 21.8 Scientific Importance 659 Acknowledgments 660 References 660 22 Biodiversity of Strepsiptera 673Jeyaraney Kathirithamby 22.1 Family Bahiaxenidae 678 22.2 Suborder Mengenillidia 678 22.2.1 Family Mengenillidae 678 22.3 Suborder Stylopidia 681 22.3.1 Family Corioxenidae 685 22.4 Infraorder Stylopiformia 685 22.4.1 Family Myrmecolacidae 685 22.4.2 Family Lychnocolacidae 688 22.4.3 Family Stylopidae 688 22.4.4 Family Xenidae 689 22.4.5 Family Bohartillidae 690 22.4.6 Family Elenchidae 691 22.4.7 Family Halictophagidae 692 22.5 Conclusions 694 Acknowledgments 694 References 694 23 Biodiversity of Mecoptera 705Wesley J. Bicha 23.1 Suborder Nannomecoptera 706 23.1.1 Family Nannochoristidae 706 23.2 Suborder Pistillifera 707 23.2.1 Infraorder Raptipedia 707 23.2.1.1 Family Bittacidae 707 23.2.2 Infraorder Opisthogonopora 709 23.2.2.1 Group Boreomorpha 710 23.2.2.2 Group Meropomorpha 711 23.2.2.3 Group Panorpomorpha 711 23.3 Societal Value of Mecoptera 715 23.4 Scientific Value of Mecoptera 716 23.5 Conclusion 716 References 716 Part III Perspectives 721 24 The Fossil History of Insect Diversity 723Conrad C. Labandeira 24.1 Importance of the Insect Fossil Record 724 24.2 Types of Insect Diversity Past and Present 725 24.2.1 Taxonomic and Taxic Diversity 725 24.2.2 Ecological Diversity 730 24.2.3 Biotal Diversity 733 24.2.4 Plant–Insect Interactional Diversity 735 24.2.4.1 Short?Term Studies 746 24.2.4.2 Intermediate?Term Studies 746 24.2.4.3 Long?Term Studies 747 24.2.4.4 Very Long?Term Studies 747 24.2.5 Morphological Diversity 749 24.2.5.1 Size Disparity 753 24.2.5.2 Structural Disparity 753 24.2.5.3 Developmental Disparity 757 24.2.5.4 Key Innovations 757 24.2.6 Functional Diversity 760 24.2.6.1 Functional Feeding Groups 760 24.2.6.2 Lacustrine Ecospace Occupation 760 24.2.6.3 Parasitoids and Trophic Roles in Food Webs 761 24.2.7 Behavioral Diversity 761 24.2.7.1 Sociality 762 24.2.7.2 Mimicry and Warning Coloration 762 24.2.7.3 Pollen?Collection Strategies 763 24.3 Biodiversity Changes Through Time 765 24.3.1 Long?Term Environmental Change 765 24.3.1.1 Mid?Paleozoic Beginnings of Terrestrial Ecosystems 765 24.3.1.2 Initial Taxic Radiation of Insects 765 24.3.1.3 Late Paleozoic Expansion of Herbivore Functional Feeding Groups 766 24.3.1.4 Ecological and Behavioral Changes from the Mesozoic Lacustrine Revolution 767 24.3.1.5 The Parasitoid Revolution 767 24.3.1.6 Biodiversity Ramifications of the Early Expansion of Angiosperms 768 24.3.1.7 Expansion of the Grassland Biome 769 24.3.2 Short?Term Environmental Change 770 24.3.2.1 Permian–Triassic Global Crisis and Reductions in Biodiversity 770 24.3.2.2 Cretaceous–Paleogene Global Crisis and Reductions in Biodiversity 771 24.3.2.3 Biodiversity Realignments During the Paleocene–Eocene Thermal Maximum 772 24.3.2.4 End?Pleistocene Extinctions and Their Meaning for the Modern World 772 24.4 Current Societal Aspects of Fossil Insect Biodiversity 773 24.4.1 Human Interests and Biases 773 24.4.2 Tools for Understanding Evolutionary and Ecological Diversification 773 24.4.3 Detection of Insect?Borne Diseases in the Fossil Record 774 24.4.4 Insect Herbivory and Global Warming 775 24.4.5 The Current Biodiversity Crisis 775 24.5 Conclusions 776 24.5.1 The Importance of the Insect Fossil Record for Understanding Insect Diversity 776 24.5.2 The Five Fundamental Types of Diversity in the Insect Fossil Record 776 24.5.3 The Effect of Long?Term Environmental Change on Insect Diversity 776 24.5.4 The Effect of Short?Term Environmental Changes on Insect Diversity 776 24.5.5 How Fossil Insect Biodiversity Affects Us All 776 Acknowledgments 776 References 777 25 Phenotypes in Insect Biodiversity Research 789István Mikó and Andrew R. Deans 25.1 Phenotype Data: Past and Present 789 25.2 Phenotype Data: Present and Future 791 25.2.1 Biological Ontologies 791 25.2.2 Ontologies in Biodiversity Research 792 25.2.2.1 Referencing a Glossary 792 25.2.2.2 Generating Logically Consistent Phenotypes 793 25.2.2.3 Reasoning Across Phenotype Data 794 25.3 Challenges and Future Directions 795 25.3.1 Social Challenges to “Standardization” 795 25.3.2 Ontology Development Barriers 795 25.3.3 Ontology Implementation Barriers 796 25.3.4 Phenotype Complexity 796 25.3.5 Communicating Primarily with Semantic Phenotypes 796 25.3.6 No Clearinghouse for Phenotype Data 796 25.3.7 Reasoning Challenges 797 Acknowledgments 797 References 797 26 Global Change and Insect Biodiversity in Agroecosystems 801David R. Gillespie, Matthew J. W. Cock, Thibaud Decaëns, Philippa J. Gerard, Sandra D. Gillespie, Juan J. Jiménez and Owen O. Olfert 26.1 Global Change 801 26.2 Insect Biodiversity in Agriculture 803 26.2.1 What Do We Mean By “Biodiversity”? 804 26.3 Effects of Global Change on Biodiversity – What Do We Know? 805 26.3.1 Crop Pests and Natural Enemies 805 26.3.1.1 Distribution 805 26.3.1.2 Community Composition 808 26.3.1.3 Other Responses to Climate Change 810 26.3.2 Soil Function and Topsoil Maintenance 812 26.3.3 Implications of Global Change for Crop Pollination 814 26.3.3.1 Evidence for Importance of Biodiversity for Pollination Service to Crops 814 26.3.3.2 Expected Effects of Global Change on Pollinator Diversity – Consequences for Society 814 26.4 Island Versus Continent Contrasts 815 26.4.1 Impacts on Biodiversity of Insects in Island Agroecosystems 816 26.5 Tropical Versus Temperate Issues 818 26.5.1 Climate Tolerances in Tropical and Temperate Species 819 26.6 Some Concluding Viewpoints 822 References 823 27 Digital Photography and the Democratization of Biodiversity Information 839Stephen A. Marshall 27.1 The Digital Insect Collection 840 27.2 Digital Images in Interactive Keys 844 27.3 Digital Photography and Taxonomic Revisions 845 27.4 Organization of Digital Insect Collections 848 27.5 Conclusions 849 References 849 28 Bee (Hymenoptera: Apoidea: Anthophila) Diversity Through Time 851Sophie Cardinal 28.1 Morphological Diversity 851 28.2 Behavioral Diversity: Social, Nesting, and Floral Hosts 852 28.3 Geographical Diversity 852 28.4 Evolutionary History and Diversification 853 28.5 Conclusions 863 References 864 29 Insect Biodiversity in Culture and Art 869Gene Kritsky and Jessee J. Smith 29.1 Prehistory 870 29.2 Insects in the Ancient World 871 29.3 The Cult of Artemis: A Case Study 874 29.4 Roman Insect Art 875 29.5 Ancient China 876 29.6 Religions of India 877 29.7 Post?Classical Era 877 29.8 The Americas 880 29.9 Modern History 882 29.10 Japanese Art 884 29.11 Language and Literature 886 29.12 Insects in Music 889 29.13 Insects in Cinema 891 29.14 Akihabara Culture: Toys, Video Games, and Anime from Modern Japan 892 29.15 Present and Future Trends in Cultural Entomology 894 29.16 The Internet Age 895 References 896 Index of Arthropod Taxa Arranged by Order and Family 899 Index of Arthropod Taxa Arranged Alphabetically 943 Index of non?Arthropod Taxa Arranged Alphabetically 975 Subject Index 979
ROBERT G. FOOTTIT is a research scientist specializing in the taxonomy of aphids and related groups, with the Canadian National Collection of Insects and Agriculture and Agri-Food Canada. His research interests include the use of morphological and molecular approaches in the study of aphid species and populations. PETER H. ADLER is a professor of entomology at Clemson University, where he holds a teaching and research appointment, specializing in the behavior, ecology, genetics, and systematics of insects, particularly butterflies and medically important flies.
Volume Two of the new guide to the study of biodiversity in insects Volume Two of Insect Biodiversity: Science and Society presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives. Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity. This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text: Offers the most up-to-date information on the important topic of insect biodiversity Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change With its companion Volume I, presents current information on the biodiversity of all insect orders Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems Includes scientific approaches and methods for the study of insect biodiversity The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.

Diese Produkte könnten Sie auch interessieren:

Model Animals in Neuroendocrinology
Model Animals in Neuroendocrinology
von: Mike Ludwig, Gil Levkowitz
EPUB ebook
135,28 €
Model Animals in Neuroendocrinology
Model Animals in Neuroendocrinology
von: Mike Ludwig, Gil Levkowitz
EPUB ebook
122,99 €
Model Animals in Neuroendocrinology
Model Animals in Neuroendocrinology
von: Mike Ludwig, Gil Levkowitz
PDF ebook
122,99 €