Details

Innovation in Wind Turbine Design


Innovation in Wind Turbine Design


2. Aufl.

von: Peter Jamieson

89,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.03.2018
ISBN/EAN: 9781119137955
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An updated and expanded new edition of this comprehensive guide to innovation in wind turbine design</b></p> <p><i>Innovation in Wind Turbine Design</i>, Second Edition comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components.</p> <p>This second edition has been substantially expanded and generally updated.  New content includes elementary actuator disc theory of the low induction rotor concept, much expanded discussion of offshore issues and of airborne wind energy systems, updated drive train information with basic theory of the epicyclic gears and differential drives, a clarified presentation of the basic theory of energy in the wind and fallacies about ducted rotor design related to theory, lab testing and field testing of the Katru and Wind Lens ducted rotor systems, a short review of LiDAR, latest developments of the multi-rotor concept including the Vestas 4 rotor system and a new chapter on the innovative DeepWind VAWT.</p> <p>The bookis divided into four main sections covering design background, technology evaluation, design themes and innovative technology examples.</p> <p>Key features:</p> <ul> <li>Expanded substantially with new content.</li> </ul> <ul> <li>Comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components.</li> <li>Includes innovative examples from working experiences for commercial clients.</li> <li>Updated to cover recent developments in the field. </li> </ul> <p>The book is a must-have reference for professional wind engineers, power engineers and turbine designers, as well as consultants, researchers and graduate students.</p>
<p>Foreword xv</p> <p>Preface xvii</p> <p>Acknowledgement xix</p> <p>Introduction 1</p> <p>0.1 Why Innovation? 1</p> <p>0.2 The Challenge of Wind 2</p> <p>0.3 The Specification of a Modern Wind Turbine 2</p> <p>0.4 The Variability of the Wind 4</p> <p>0.5 Early Electricity-Generating Wind Turbines 4</p> <p>0.6 Commercial Wind Technology 6</p> <p>0.7 Basis of Wind Technology Evaluation 7</p> <p>0.7.1 Standard Design as Baseline 7</p> <p>0.7.2 Basis of Technological Advantage 7</p> <p>0.7.3 Security of Claimed Power Performance 8</p> <p>0.7.4 Impact of Proposed Innovation 8</p> <p>0.8 Competitive Status of Wind Technology 8</p> <p>References 9</p> <p><b>Part I Design Background 11 </b></p> <p><b>1 Rotor Aerodynamic Theory 13</b></p> <p>1.1 Introduction 13</p> <p>1.2 Aerodynamic Lift 14</p> <p>1.3 Power in the Wind 16</p> <p>1.4 The Actuator Disc Concept 17</p> <p>1.5 Open Flow Actuator Disc 19</p> <p>1.5.1 Power Balance 19</p> <p>1.5.2 Axial Force Balance 20</p> <p>1.5.3 Froude’s Theorem and the Betz Limit 20</p> <p>1.5.4 The Power Extraction Process 22</p> <p>1.5.5 Relativity in a Fluid Flow Field 23</p> <p>1.6 Why a Rotor? 25</p> <p>1.7 Actuator Disc in Augmented Flow and Ducted Rotor Systems 26</p> <p>1.7.1 Fundamentals 26</p> <p>1.7.2 Generalised Actuator Disc 28</p> <p>1.7.3 The Force on a Diffuser 36</p> <p>1.7.4 Generalised Actuator Disc Theory and Realistic Diffuser Design 37</p> <p>1.8 Blade Element Momentum Theory 38</p> <p>1.8.1 Introduction 38</p> <p>1.8.2 Momentum Equations 38</p> <p>1.8.3 Blade Element Equations 40</p> <p>1.8.4 Non-dimensional Lift Distribution 40</p> <p>1.8.5 General Momentum Theory 41</p> <p>1.8.6 BEM in Augmented Flow 42</p> <p>1.8.7 Closed-Form BEM Solutions 44</p> <p>1.9 Optimum Rotor Design 46</p> <p>1.9.1 Optimisation to Maximise Cp 46</p> <p>1.9.2 The Power Coefficient, Cp 48</p> <p>1.9.3 Thrust Coefficient 51</p> <p>1.9.4 Out-of-Plane Bending Moment Coefficient 52</p> <p>1.9.5 Optimisation to a Loading Constraint 54</p> <p>1.9.6 Optimisation of Rotor Design and Hub Flow 56</p> <p>1.10 Limitations of Actuator Disc and BEM Theory 57</p> <p>1.10.1 Actuator Disc Limitations 57</p> <p>1.10.2 Inviscid Modelling and Real Flows 58</p> <p>1.10.3 Wake Rotation and Tip Effect 58</p> <p>1.10.4 Optimum Rotor Theory 59</p> <p>1.10.5 Skewed Flow 59</p> <p>1.10.6 Summary of BEM Limitations 59</p> <p>References 60</p> <p><b>2 Rotor Aerodynamic Design 65</b></p> <p>2.1 Optimum Rotors and Solidity 65</p> <p>2.2 Rotor Solidity and Ideal Variable Speed Operation 66</p> <p>2.3 Solidity and Loads 68</p> <p>2.4 Aerofoil Design Development 68</p> <p>2.5 Sensitivity of Aerodynamic Performance to Planform Shape 73</p> <p>2.6 Aerofoil Design Specification 74</p> <p>2.7 Aerofoil Design for Large Rotors 75</p> <p>References 77</p> <p><b>3 Rotor Structural Interactions 79</b></p> <p>3.1 Blade Design in General 79</p> <p>3.2 Basics of Blade Structure 80</p> <p>3.3 Simplified Cap Spar Analyses 82</p> <p>3.3.1 Design for Minimum Mass with Prescribed Deflection 83</p> <p>3.3.2 Design for Fatigue Strength: No Deflection Limits 83</p> <p>3.4 The Effective t/c Ratio of Aerofoil Sections 84</p> <p>3.5 Blade Design Studies: Example of a Parametric Analysis 85</p> <p>3.6 Industrial Blade Technology 91</p> <p>3.6.1 Design 91</p> <p>3.6.2 Manufacturing 92</p> <p>3.6.3 Design Development 94</p> <p>References 94</p> <p><b>4 Upscaling of Wind Turbine Systems 97</b></p> <p>4.1 Introduction: Size and Size Limits 97</p> <p>4.2 The ‘Square-Cube’ Law 100</p> <p>4.3 Scaling Fundamentals 100</p> <p>4.4 Similarity Rules for Wind Turbine Systems 102</p> <p>4.4.1 Tip Speed 102</p> <p>4.4.2 Aerodynamic Moment Scaling 103</p> <p>4.4.3 Bending Section Modulus Scaling 103</p> <p>4.4.4 Tension Section Scaling 103</p> <p>4.4.5 Aeroelastic Stability 103</p> <p>4.4.6 Self-Weight Load Scaling 103</p> <p>4.4.7 Blade (Tip) Deflection Scaling 104</p> <p>4.4.8 More Subtle Scaling Effects and Implications 104</p> <p>4.4.8.1 Size Effect 104</p> <p>4.4.8.2 Aerofoil Boundary Layer 104</p> <p>4.4.8.3 Earth’s Boundary Layer, Wind Shear and Turbulence 104</p> <p>4.4.9 Gearbox Scaling 105</p> <p>4.4.10 Support Structure Scaling 105</p> <p>4.4.11 Power/Energy Scaling 105</p> <p>4.4.12 Electrical Systems Scaling 106</p> <p>4.4.13 Control Systems Scaling 106</p> <p>4.4.14 Scaling Summary 106</p> <p>4.5 Analysis of Commercial Data 107</p> <p>4.5.1 Blade Mass Scaling 108</p> <p>4.5.2 Shaft Mass Scaling 111</p> <p>4.5.3 Scaling of Nacelle Mass and Tower Top Mass 112</p> <p>4.5.4 Tower Top Mass 114</p> <p>4.5.5 Tower Scaling 114</p> <p>4.5.5.1 Height versus Diameter 114</p> <p>4.5.5.2 Mass versus Diameter 115</p> <p>4.5.5.3 Normalised Mass versus Diameter 116</p> <p>4.5.6 Gearbox Scaling 118</p> <p>4.6 Upscaling of VAWTs 119</p> <p>4.7 Rated Tip Speed 120</p> <p>4.8 Upscaling of Loads 121</p> <p>4.9 Violating Similarity 123</p> <p>4.10 Cost Models 124</p> <p>4.11 Scaling Conclusions 125</p> <p>References 126</p> <p><b>5 Wind Energy Conversion Concepts 127</b></p> <p>References 129</p> <p><b>6 Drive-Train Design 131</b></p> <p>6.1 Introduction 131</p> <p>6.2 Definitions 131</p> <p>6.3 Objectives of Drive-Train Innovation 132</p> <p>6.4 Drive-Train Technology Maps 132</p> <p>6.5 Direct Drive 136</p> <p>6.6 Hybrid Systems 139</p> <p>6.7 Geared Systems – the Planetary Gearbox 140</p> <p>6.8 Drive Trains with Differential Drive 144</p> <p>6.9 Hydraulic Transmission 145</p> <p>6.10 Efficiency of Drive-Train Components 148</p> <p>6.10.1 Introduction 148</p> <p>6.10.2 Efficiency over the Operational Range 150</p> <p>6.10.3 Gearbox Efficiency 151</p> <p>6.10.4 Generator Efficiency 152</p> <p>6.10.5 Converter Efficiency 153</p> <p>6.10.6 Transformer Efficiency 153</p> <p>6.10.7 Fluid Coupling Efficiency 153</p> <p>6.11 Drive-Train Dynamics 154</p> <p>6.12 The Optimum Drive Train 155</p> <p>6.13 Innovative Concepts for Power Take-Off 157</p> <p>References 160</p> <p><b>7 Offshore Wind Technology 163</b></p> <p>7.1 Design for Offshore 163</p> <p>7.2 High-Speed Rotor 164</p> <p>7.2.1 Design Logic 164</p> <p>7.2.2 Speed Limit 164</p> <p>7.2.3 Rotor Configurations 165</p> <p>7.2.4 Design Comparisons 167</p> <p>7.3 ‘Simpler’ Offshore Turbines 170</p> <p>7.4 Rating of Offshore Wind Turbines 171</p> <p>7.5 Foundation and Support Structure Design 172</p> <p>7.5.1 Foundation Design Concepts 172</p> <p>7.5.2 Support Structure Design Concepts 173</p> <p>7.5.3 Loads, Foundations and Costs 174</p> <p>7.6 Electrical Systems of Offshore Wind Farms 175</p> <p>7.6.1 Collection System for an Offshore Wind Farm 175</p> <p>7.6.2 Integration of Offshore Wind Farms into Electrical Networks 177</p> <p>7.6.2.1 High-Voltage Alternating Current (HVAC) 177</p> <p>7.6.2.2 Current-Source Converter (CSC) 179</p> <p>7.6.2.3 Voltage-Source Converter for Offshore Wind Farm Integration 180</p> <p>7.7 Operations and Maintenance (O&M) 180</p> <p>7.7.1 Introduction 180</p> <p>7.7.2 Modelling 181</p> <p>7.7.3 Inspection of Wind Turbines 182</p> <p>7.8 Offshore Floating Wind Turbines 183</p> <p>References 188</p> <p><b>8 Future Wind Technology 191</b></p> <p>8.1 Evolution 191</p> <p>8.2 Present Trends – Consensus in Blade Number and Operational Concept 193</p> <p>8.3 Present Trends – Divergence in Drive-Train Concepts 194</p> <p>8.4 Future Wind Technology – Airborne 194</p> <p>8.4.1 Introduction 194</p> <p>8.4.2 KPS – Cable Tension Power Take-Off 198</p> <p>8.4.2.1 Earth Axes 198</p> <p>8.4.2.2 Kite Axes 198</p> <p>8.4.2.3 BEM Application to the Kite as an Aerofoil Section (No Tip Loss Applied) 199</p> <p>8.4.3 Daisy Kite – Rotary Power Transmission 202</p> <p>8.4.4 Omnidea – Rotating Cylindrical Balloon as a Lifting Body 203</p> <p>8.4.5 Makani 203</p> <p>8.4.6 Airborne Conclusions 204</p> <p>8.5 Future Wind Technology – Energy Storage 204</p> <p>8.5.1 Types of Energy Storage 204</p> <p>8.5.2 Battery Storage 204</p> <p>8.5.3 Gas Pressure Storage 205</p> <p>8.5.4 Compressed Air Storage 205</p> <p>8.5.5 Flywheel Energy Storage 206</p> <p>8.5.6 Thermal Energy Storage 206</p> <p>8.6 Innovative Energy Conversion Solutions 207</p> <p>8.6.1 Electrostatic Generator 207</p> <p>8.6.2 Vibrating Column 208</p> <p>References 208</p> <p><b>Part II Technology Evaluation 211</b></p> <p><b>9 Cost of Energy 213</b></p> <p>9.1 The Approach to Cost of Energy 213</p> <p>9.2 Energy: the Power Curve 216</p> <p>9.3 Energy: Efficiency, Reliability, Availability 222</p> <p>9.3.1 Efficiency 222</p> <p>9.3.2 Reliability 222</p> <p>9.3.3 Availability 223</p> <p>9.4 Capital Costs 224</p> <p>9.5 Operation and Maintenance 225</p> <p>9.6 Overall Cost Split 226</p> <p>9.7 Scaling Impact on Cost 227</p> <p>9.8 Impact of Loads (Site Class) 228</p> <p>References 232</p> <p><b>10 Evaluation Methodology 235</b></p> <p>10.1 Key Evaluation Issues 235</p> <p>10.2 Fatal Flaw Analysis 235</p> <p>10.3 Power Performance 236</p> <p>10.3.1 The Betz Limit 236</p> <p>10.3.2 The Pressure Difference across a Wind Turbine 237</p> <p>10.3.3 Total Energy in the Flow 238</p> <p>10.4 Structure and Essential Mass 239</p> <p>10.5 Drive-Train Torque 241</p> <p>10.6 Representative Baseline 241</p> <p>10.7 Design Loads Comparison 242</p> <p>10.8 Evaluation Example: Optimum Rated Power of a Wind Turbine 244</p> <p>10.9 Evaluation Example: the Carter Wind Turbine and Structural Flexibility 246</p> <p>10.10 Evaluation Example: Concept Design Optimisation Study 249</p> <p>10.11 Evaluation Example: Ducted Turbine Design Overview 251</p> <p>10.11.1 Extreme Loads 251</p> <p>10.11.2 Drive-Train Torque 252</p> <p>10.11.3 Energy Capture 252</p> <p>References 253</p> <p><b>Part III Design Themes 255</b></p> <p><b>11 Optimum Blade Number 257</b></p> <p>11.1 Energy Capture Comparisons 257</p> <p>11.2 Blade Design Issues 258</p> <p>11.3 Operational and System Design Issues 260</p> <p>11.4 Multi-bladed Rotors 265</p> <p>References 266</p> <p><b>12 Pitch versus Stall 267</b></p> <p>12.1 Stall Regulation 267</p> <p>12.2 Pitch Regulation 269</p> <p>12.3 Fatigue Loading Issues 270</p> <p>12.4 Power Quality and Network Demands 272</p> <p>12.4.1 Grid Code Requirements and Implications for Wind Turbine Design 272</p> <p>References 274</p> <p><b>13 HAWT or VAWT? 277</b></p> <p>13.1 Introduction 277</p> <p>13.2 VAWT Aerodynamics 277</p> <p>13.3 Power Performance and Energy Capture 282</p> <p>13.4 Drive-Train Torque 284</p> <p>13.5 Niche Applications for VAWTs 286</p> <p>13.6 Status of VAWT Design 286</p> <p>13.6.1 Problems 286</p> <p>13.6.2 Advances in VAWT Understanding and Technology 287</p> <p>References 289</p> <p><b>14 Free Yaw 291</b></p> <p>14.1 Yaw System COE Value 291</p> <p>14.2 Yaw Dynamics 291</p> <p>14.3 Yaw Damping 293</p> <p>14.4 Main Power Transmission 293</p> <p>14.5 Operational Experience of Free Yaw Wind Turbines 294</p> <p>14.6 Summary View 295</p> <p>References 295</p> <p><b>15 Multi-rotor Systems (MRS) 297</b></p> <p>15.1 Introduction 297</p> <p>15.2 Standardisation Benefit and Concept Developments 297</p> <p>15.3 Operational Systems 298</p> <p>15.4 Scaling Economics 298</p> <p>15.5 History Overview 300</p> <p>15.6 Aerodynamic Performance of Multi-rotor Arrays 300</p> <p>15.7 Recent Multi-rotor Concepts 301</p> <p>15.8 MRS Design Based on VAWT Units 304</p> <p>15.9 MRS Design within the Innwind.EU Project 306</p> <p>15.9.1 Loads, Structure and Yaw System Design 306</p> <p>15.9.2 Operations and Maintenance 308</p> <p>15.9.3 Cost of Energy Evaluation 309</p> <p>15.10 Multi-rotor Conclusions 311</p> <p>References 311</p> <p><b>16 Design Themes Summary 313</b></p> <p><b>Part IV Innovative Technology Examples 315</b></p> <p><b>17 Adaptable Rotor Concepts 317</b></p> <p>17.1 Rotor Operational Demands 317</p> <p>17.2 Management of Wind Turbine Loads 319</p> <p>17.3 Control of Wind Turbines 320</p> <p>17.4 LiDAR 321</p> <p>17.4.1 Introduction 321</p> <p>17.4.2 The LiDAR Operational Principle 321</p> <p>17.4.3 Evaluation of LiDAR for Control of Wind Turbines 322</p> <p>17.4.4 An Example of Future Innovation in LiDAR 323</p> <p>17.5 Adaptable Rotors 323</p> <p>17.6 The Coning Rotor 326</p> <p>17.6.1 Concept 326</p> <p>17.6.2 Coning Rotor: Outline Evaluation – Energy Capture 328</p> <p>17.6.3 Coning Rotor: Outline Evaluation – Loads 329</p> <p>17.6.4 Concept Overview 330</p> <p>17.7 Variable Diameter Rotor 330</p> <p>References 332</p> <p><b>18 Ducted Rotors 335</b></p> <p>18.1 Introduction 335</p> <p>18.2 The Katru Shrouded Rotor System 336</p> <p>18.3 The Wind Lens Ducted Rotor 340</p> <p>References 344</p> <p><b>19 The Gamesa G10X Drive Train 345</b></p> <p><b>20 DeepWind Innovative VAWT 349</b></p> <p>20.1 The Concept 349</p> <p>20.1.1 Blades 349</p> <p>20.1.2 Controls 351</p> <p>20.1.3 Generator Concepts 351</p> <p>20.1.4 Torque Absorption 353</p> <p>20.1.5 Anchoring Part 353</p> <p>20.2 DeepWind Concept at 5 MW Scale 353</p> <p>20.3 Marine Operations Installation, Transportation and O&M 353</p> <p>20.4 Testing and Demonstration 353</p> <p>20.5 Cost Estimations 355</p> <p>References 356</p> <p><b>21 Gyroscopic Torque Transmission 357</b></p> <p>References 362</p> <p><b>22 The Norsetek Rotor Design 363</b></p> <p>References 365</p> <p><b>23 Siemens Blade Technology 367</b></p> <p><b>24 Stall-Induced Vibrations 371</b></p> <p>References 374</p> <p><b>25 Magnetic Gearing and Pseudo-Direct Drive 377</b></p> <p>25.1 Magnetic Gearing Technology 377</p> <p>25.2 Pseudo-Direct-Drive Technology 380</p> <p>References 382</p> <p><b>26 Summary and Concluding Comments 383</b></p> <p>Index 385</p>
<p> <strong>PETER JAMIESON</strong> is based at Strathclyde University for two days a week acting as a special technical advisor whilst also conducting independent research into wind energy. As a founder member of GL Garrad Hassan's Scottish office and of their Special Projects Department, he is uniquely positioned to offer the highest guidance in the future development of wind energy in the UK and beyond.
<p> <strong>An updated and expanded new edition of this comprehensive guide to innovation in wind turbine design</strong> <p> <em>Innovation in Wind Turbine Design, Second Edition</em> comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. <p> This second edition has been substantially expanded and generally updated. New content includes elementary actuator disc theory of the low induction rotor concept, much expanded discussion of offshore issues and of airborne wind energy systems, updated drive train information with basic theory of the epicyclic gears and differential drives, a clarified presentation of the basic theory of energy in the wind and fallacies about ducted rotor design related to theory, lab testing and field testing of the Katru and Wind Lens ducted rotor systems, a short review of LiDAR, latest developments of the multi-rotor concept including the Vestas 4 rotor system and a new chapter on the innovative DeepWind VAWT. <p> The book is divided into four main sections covering design background, technology evaluation, design themes and innovative technology examples. <p> <strong>Key features:</strong> <ul> <li>Expanded substantially with new content.</li> <li>Comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components.</li> <li>Includes innovative examples from working experiences for commercial clients.</li> <li>Updated to cover recent developments in the field.</li> </ul> <br> <p> The book is a must-have reference for professional wind engineers, power engineers and turbine designers, as well as consultants, researchers and graduate students.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €