Details

Industrial Catalysis


Industrial Catalysis

A Practical Approach
3. Aufl.

von: Jens Hagen

147,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.09.2015
ISBN/EAN: 9783527684656
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Now in it's 3rd Edition,<i> Industrial Catalysis</i> offers all relevant information on catalytic processes in industry, including many recent examples. Perfectly suited for self-study, it is the ideal companion for scientists who want to get into the field or refresh existing knowledge.<br /><br />The updated edition covers the full range of industrial aspects, from catalyst development and testing to process examples and catalyst recycling. The book is characterized by its practical relevance, expressed by a selection of over 40 examples of catalytic processes in industry. In addition, new chapters on catalytic processes with renewable materials and polymerization catalysis have been included. Existing chapters have been carefully revised and supported by new subchapters, for example, on metathesis reactions, refinery processes, petrochemistry and new reactor concepts.<br /><br /><i> "I found the book accesible, readable and interesting - both as a refresher and as an introduction to new topics - and a convenient first reference on current industrial catalytic practise and processes."</i><br /> Excerpt from a book review for the second edition by P. C. H. Mitchell, Applied Organometallic Chemistry (2007)
<p>Preface to the Third Edition XV</p> <p>Abbreviations XVII</p> <p><b>1 Introduction 1</b></p> <p>1.1 The Phenomenon Catalysis 1</p> <p>1.2 Mode of Action of Catalysts 2</p> <p>1.2.1 Activity 4</p> <p>1.2.1.1 Turnover Frequency TOF 6</p> <p>1.2.1.2 Turnover Number TON 7</p> <p>1.2.2 Selectivity 7</p> <p>1.2.3 Stability 8</p> <p>1.2.4 Mole Balance and Conversion 8</p> <p>1.3 Classification of Catalysts 10</p> <p>1.4 Comparison of Homogeneous and Heterogeneous Catalysis 11</p> <p>Exercises 14</p> <p>References 15</p> <p><b>2 Homogeneous Catalysis with Transition Metal Catalysts 17</b></p> <p>2.1 Key Reactions in Homogeneous Catalysis 18</p> <p>2.1.1 Coordination and Exchange of Ligands 18</p> <p>2.1.2 Complex Formation 20</p> <p>2.1.3 Acid–Base Reactions 22</p> <p>2.1.4 Redox Reactions: Oxidative Addition and Reductive Elimination 23</p> <p>2.1.4.1 Oxidative Coupling and Reductive Cleavage 27</p> <p>2.1.5 Insertion and Elimination Reactions 28</p> <p>2.1.5.1 β-Elimination 30</p> <p>2.1.5.2 α-Elimination 30</p> <p>2.1.6 Reactions at Coordinated Ligands 31</p> <p>2.2 Catalyst Concepts in Homogeneous Catalysis 32</p> <p>2.2.1 The 16/18-Electron Rule 32</p> <p>2.2.2 Catalytic Cycles 34</p> <p>2.3 Characterization of Homogeneous Catalysts 35</p> <p>2.3.1 Infrared Spectroscopy 38</p> <p>2.3.2 NMR Spectroscopy 40</p> <p>Exercises 42</p> <p>References 45</p> <p><b>3 Homogeneously Catalyzed Industrial Processes 47</b></p> <p>3.1 Overview 47</p> <p>3.2 Examples of Industrial Processes 48</p> <p>3.2.1 Oxo Synthesis 50</p> <p>3.2.2 Production of Acetic Acid by Carbonylation of Methanol 52</p> <p>3.2.3 Selective Ethylene Oxidation by theWacker Process 55</p> <p>3.2.4 Oxidation of Cyclohexane 57</p> <p>3.2.5 Suzuki Coupling 58</p> <p>3.2.6 Oligomerization of Ethylene (SHOP Process) 59</p> <p>3.2.7 Telomerization of Butadiene 61</p> <p>3.2.8 Adipodinitrile 63</p> <p>3.3 Asymmetric Catalysis 63</p> <p>3.3.1 Introduction 63</p> <p>3.3.2 Catalysts 64</p> <p>3.3.3 Commercial Applications 65</p> <p>3.3.3.1 Asymmetric Hydrogenation 65</p> <p>3.3.3.2 Enantioselective Isomerization: L-Menthol 67</p> <p>3.3.3.3 Asymmetric Epoxidation 68</p> <p>3.4 Alkene Metathesis 69</p> <p>3.4.1 Examples of Heterogeneous Catalysis 72</p> <p>3.5 Recycling of Homogeneous Catalysts 73</p> <p>3.5.1 Overview 73</p> <p>3.5.1.1 Precipitation of the Catalyst or of the Product(s) 73</p> <p>3.5.1.2 Thermal Separation 73</p> <p>3.5.1.3 Membrane Separation 73</p> <p>3.5.1.4 Adsorption 74</p> <p>3.5.1.5 Phase Separation/Extraction 74</p> <p>3.5.2 Reactions in Two-Phase Liquid–Liquid Systems 74</p> <p>Exercises 76</p> <p>References 78</p> <p><b>4 Biocatalysis 81</b></p> <p>4.1 Introduction 81</p> <p>4.1.1 Active Sites 83</p> <p>4.1.2 Coenzymes 84</p> <p>4.2 Kinetics of Enzyme-Catalyzed Reactions 84</p> <p>4.3 Industrial Processes with Biocatalysts 90</p> <p>4.3.1 Acrylamide from Acrylonitrile 90</p> <p>4.3.2 Aspartame Through Enzymatic Peptide Synthesis 91</p> <p>4.3.3 L-Amino Acids by Aminoacylase Process 92</p> <p>4.3.4 Pharmaceuticals 93</p> <p>4.3.5 Herbicides 95</p> <p>4.3.5.1 4-Hydroxyphenoxypropionic Acid as Herbicide Intermediate 96</p> <p>Exercises 97</p> <p>References 97</p> <p><b>5 Heterogeneous Catalysis: Fundamentals 99</b></p> <p>5.1 Individual Steps in Heterogeneous Catalysis 99</p> <p>5.2 Kinetics and Mechanisms of Heterogeneously Catalyzed Reactions 101</p> <p>5.2.1 The Importance of Adsorption in Heterogeneous Catalysis 102</p> <p>5.2.2 Kinetic Treatment 106</p> <p>5.2.3 Mechanisms of Heterogeneously Catalyzed Gas-Phase Reactions 108</p> <p>5.2.3.1 Langmuir–Hinshelwood Mechanism (1921) 109</p> <p>5.2.3.2 Eley–Rideal Mechanism (1943) 111</p> <p>5.3 Catalyst Concepts in Heterogeneous Catalysis 113</p> <p>5.3.1 Energetic Aspects of Catalytic Activity 113</p> <p>5.3.2 Steric Effects 124</p> <p>5.3.3 Electronic Factors 134</p> <p>5.3.3.1 Redox Catalysts 134</p> <p>5.3.3.2 Acid/Base Catalysts (Ionic Catalysts) 135</p> <p>5.3.3.3 Metals 136</p> <p>5.3.3.4 Bimetallic Catalysts 140</p> <p>5.3.3.5 Semiconductors 144</p> <p>5.3.3.6 Insulators: Acidic and Basic Catalysts 157</p> <p>5.4 Catalyst Performance 164</p> <p>5.4.1 FactorsWhich Affect the Catalyst Performance 164</p> <p>5.4.2 Supported Catalysts 166</p> <p>5.4.3 Promoters 172</p> <p>5.4.4 Inhibitors 176</p> <p>5.5 Catalyst Deactivation 177</p> <p>5.5.1 Catalyst Poisoning 179</p> <p>5.5.2 Poisoning of Metals 179</p> <p>5.5.3 Poisoning of Semiconductor Oxides 182</p> <p>5.5.4 Poisoning of Solid Acids 182</p> <p>5.5.5 Deposits on the Catalyst Surface 183</p> <p>5.5.6 Thermal Processes and Sintering 185</p> <p>5.5.7 Catalyst Losses via the Gas Phase 186</p> <p>5.6 Regeneration and Recycling of Heterogeneous Catalysts 186</p> <p>5.7 Characterization of Heterogeneous Catalysts 189</p> <p>5.7.1 Physical Characterization 190</p> <p>5.7.1.1 Temperature-Programmed Desorption 195</p> <p>5.7.2 Chemical Characterization and Surface Analysis 195</p> <p>5.7.2.1 Temperature-Programmed Reaction Methods 196</p> <p>5.7.2.2 Transmission Electron Microscopy 197</p> <p>5.7.2.3 Low-Energy Electron Diffraction (LEED) 198</p> <p>5.7.2.4 IR Spectroscopy 199</p> <p>5.7.2.5 Electron Spectroscopy for Chemical Analysis (ESCA) 199</p> <p>5.7.2.6 Auger Electron Spectroscopy (AES) 201</p> <p>5.7.2.7 Ion Scattering Spectroscopy (ISS) 201</p> <p>5.7.2.8 Secondary Ion Mass Spectrometry (SIMS) 202</p> <p>Exercises 203</p> <p>References 209</p> <p><b>6 Catalyst Shapes and Production of Heterogeneous Catalysts 211</b></p> <p>6.1 Introduction 211</p> <p>6.2 Bulk Catalysts 212</p> <p>6.2.1 Precipitation 212</p> <p>6.2.2 Fusion and Alloy Leaching 214</p> <p>6.2.3 Sol–Gel Synthesis 215</p> <p>6.2.4 Flame Hydrolysis 217</p> <p>6.2.5 Hydrothermal Synthesis 217</p> <p>6.2.6 Heteropolyacids 219</p> <p>6.3 Supported Catalysts 219</p> <p>6.3.1 Impregnation 220</p> <p>6.3.2 Coprecipitation 225</p> <p>6.3.3 Adsorption/Ion-Exchange 226</p> <p>6.3.3.1 Ion-Exchange Resins 227</p> <p>6.3.4 Anchoring/Grafting 228</p> <p>6.3.5 Monolithic Catalysts 229</p> <p>6.4 Shaping of Catalysts and Catalyst Supports 230</p> <p>6.5 Immobilization of Homogeneous Catalysts 232</p> <p>6.5.1 Supported Solid-Phase Catalysts (SSPC) 234</p> <p>6.5.2 Supported Liquid-Phase Catalysts (SLPC) 236</p> <p>6.5.3 Encapsulation 236</p> <p>Exercises 237</p> <p>References 238</p> <p><b>7 Shape-Selective Catalysis: Zeolites 239</b></p> <p>7.1 Composition and Structure of Zeolites 239</p> <p>7.2 Catalytic Properties of the Zeolites 242</p> <p>7.2.1 Shape Selectivity 243</p> <p>7.2.1.1 Reactant Selectivity 243</p> <p>7.2.1.2 Product Selectivity 246</p> <p>7.2.1.3 Restricted Transition State Selectivity 246</p> <p>7.2.2 Acidity of Zeolites 247</p> <p>7.3 Isomorphic Substitution of Zeolites 251</p> <p>7.4 Metal-Doped Zeolites 252</p> <p>7.5 Applications of Zeolites 255</p> <p>Exercises 258</p> <p>References 259</p> <p><b>8 Heterogeneously Catalyzed Processes in Industry 261</b></p> <p>8.1 Overview 261</p> <p>8.1.1 Production of Inorganic Chemicals 261</p> <p>8.1.2 Production of Organic Chemicals 261</p> <p>8.1.3 Refinery Processes 262</p> <p>8.1.4 Catalysts in Environmental Protection 264</p> <p>8.2 Examples of Industrial Processes – Bulk Chemicals 266</p> <p>8.2.1 Ammonia Synthesis 266</p> <p>8.2.2 Hydrogenation 268</p> <p>8.2.3 Methanol Synthesis 270</p> <p>8.2.4 Selective Oxidation of Propene 272</p> <p>8.2.4.1 Oxidation of Propene with H2O2 to Propylene Oxide 277</p> <p>8.2.5 Selective Oxidation of Hydrocarbons 277</p> <p>8.2.5.1 n-Butane to Maleic Anhydride 278</p> <p>8.2.5.2 o-Xylene to Phthalic Anhydride 280</p> <p>8.3 Fine Chemicals Manufacture 281</p> <p>8.3.1 Fine Chemicals andTheir Synthesis 281</p> <p>8.3.2 Selected Examples of Industrial Processes 285</p> <p>8.3.2.1 Hydrogenation 286</p> <p>8.3.2.2 Oxidation 288</p> <p>8.3.2.3 Catalytic C–C Linkage 290</p> <p>8.3.2.4 Acid/Base Catalysis 292</p> <p>Exercises 294</p> <p>References 297</p> <p><b>9 Refinery Processes and Petrochemistry 299</b></p> <p>9.1 Hydrotreating 300</p> <p>9.2 Catalytic Cracking 302</p> <p>9.3 Hydrocracking 304</p> <p>9.4 Catalytic Reforming 306</p> <p>9.5 Alkylation 307</p> <p>9.6 Hydroisomerization 308</p> <p>9.7 Synthesis Gas and Hydrogen by Steam Reforming 310</p> <p>9.8 Natural Gas Conversion to Fuels and Chemicals 312</p> <p>9.9 Fischer–Tropsch Synthesis 313</p> <p>9.10 Etherification Reactions 315</p> <p>Exercises 316</p> <p>References 317</p> <p><b>10 Electrocatalytic Processes 319</b></p> <p>10.1 Comparison Between Electrocatalysis and Heterogeneous Catalysis 319</p> <p>10.2 Electroorganic Syntheses 319</p> <p>10.2.1 Electrocatalytic Hydrogenation 320</p> <p>10.2.2 Electrocatalytic Oxidation 322</p> <p>10.2.3 Electrochemical Addition 323</p> <p>10.3 Electrocatalysis in Fuel Cells 324</p> <p>10.3.1 Basic Principles 324</p> <p>10.3.2 Types of Fuel Cell and Catalyst 325</p> <p>10.3.3 Important Reactions in Fuel Cell Technology 328</p> <p>10.3.3.1 The Anodic Reaction 328</p> <p>10.3.3.2 The Cathodic Reaction 329</p> <p>10.3.3.3 Methanol Oxidation 331</p> <p>Exercises 332</p> <p>References 333</p> <p><b>11 Environmental Catalysis and Green Chemistry 335</b></p> <p>11.1 Automotive Exhaust Catalysis 335</p> <p>11.2 NOx Removal Systems 338</p> <p>11.2.1 Selective Catalytic Reduction of Nitrogen Oxides 338</p> <p>11.2.2 NOx Storage-Reduction Catalyst for Lean-Burning Engines 340</p> <p>11.3 Catalytic Afterburning 341</p> <p>11.4 Green Chemistry and Catalysis 344</p> <p>11.4.1 Examples of Catalytical Processes 345</p> <p>11.4.1.1 Aldol Condensation 345</p> <p>11.4.1.2 Diels–Alder Reaction 346</p> <p>11.4.1.3 Hydrogenation 347</p> <p>11.4.1.4 Cyclization inWater 347</p> <p>11.4.1.5 Use of Ionic Liquids 347</p> <p>11.4.1.6 Green Solvents 349</p> <p>Exercises 350</p> <p>References 351</p> <p><b>12 Phase-Transfer Catalysis 353</b></p> <p>12.1 Definition 353</p> <p>12.2 Catalysts for PTC 353</p> <p>12.3 Mechanism and Benefits of PTC 354</p> <p>12.4 PTC Reactions 355</p> <p>12.5 Selected Industrial Processes with PTC 356</p> <p>12.5.1 Continuous Dehydrohalogenation to Produce the Large-Scale Monomer Chloroprene 356</p> <p>12.5.2 Polycarbonate Manufacture with Phosgene 356</p> <p>12.5.3 Etherification (O-Alkylation) 357</p> <p>12.5.4 Aldehydes by Oxidation of Alcohols with Hypochlorite 357</p> <p>12.5.5 Carbonylation 357</p> <p>12.5.6 2-Phenylbutyronitrile by Alkylation 358</p> <p>Exercises 359</p> <p>References 359</p> <p><b>13 Catalytic Processes with Renewable Materials 361</b></p> <p>13.1 Biofuels 361</p> <p>13.2 Biorefinery 366</p> <p>13.2.1 Lignocellulose Feedstock Biorefinery 368</p> <p>13.3 Chemicals from Biomass 369</p> <p>13.3.1 Chemicals from Biomass via Platform Molecules 369</p> <p>13.3.1.1 Carbohydrates 369</p> <p>13.3.1.2 Fats and Oils 373</p> <p>13.3.1.3 Terpenes 375</p> <p>13.3.2 Direct Biomass Conversion to End-Products 376</p> <p>Exercises 378</p> <p>References 378</p> <p><b>14 Polymerization Catalysis 381</b></p> <p>14.1 Introduction 381</p> <p>14.2 Fundamentals of Catalytical Polymerization Processes 381</p> <p>14.3 Coordination Polymerization 383</p> <p>14.3.1 Ziegler–Natta Catalysts 383</p> <p>14.3.1.1 Heterogeneous Ziegler–Natta Catalysts 384</p> <p>14.3.1.2 Homogeneous Ziegler–Natta Catalysts 386</p> <p>14.3.1.3 Metallocenes 386</p> <p>14.3.1.4 Ring-OpeningMetathetic Polymerization 388</p> <p>14.4 Examples of Catalytical Polymerization Processes 389</p> <p>14.4.1 Polyethylene Production 389</p> <p>14.4.2 Polypropylene Production 391</p> <p>Exercises 392</p> <p>References 393</p> <p><b>15 Planning, Development, and Testing of Catalysts 395</b></p> <p>15.1 Stages of Catalyst Development 395</p> <p>15.2 Development of a Catalytical Process: Hydrogenation of Benzene to Cyclohexane 398</p> <p>15.3 Selection and Testing of Catalysts in Practice 401</p> <p>15.3.1 Catalyst Screening 401</p> <p>15.3.2 Catalyst Test Reactors and Kinetic Modeling 405</p> <p>15.3.2.1 Differential Reactor 405</p> <p>15.3.2.2 Differential Circulating Reactor 407</p> <p>15.3.2.3 Integral reactor 411</p> <p>15.3.3 Kinetic Modeling and Simulation 416</p> <p>15.3.3.1 Hydrogenation of Benzaldehyde 416</p> <p>15.3.3.2 Modeling of a Trickle Bed Reactor 420</p> <p>15.3.4 Catalyst Discovery via High-Throughput Experimentation 427</p> <p>Exercises 430</p> <p>References 430</p> <p><b>16 Catalysis Reactors 433</b></p> <p>16.1 Plug Flow Reactor (PFR) 433</p> <p>16.2 Continuous Stirred-Tank Reactor (CSTR) 435</p> <p>16.3 Reactor Calculations 436</p> <p>16.4 Two-Phase Reactors 440</p> <p>16.4.1 Single-Bed Reactor 441</p> <p>16.4.2 Multibed Reactor 441</p> <p>16.4.3 Multitubular Reactors 442</p> <p>16.4.4 Shallow-Bed Reactors 442</p> <p>16.4.5 Fluidized-Bed Reactors 443</p> <p>16.5 Three-Phase Reactors 443</p> <p>16.5.1 Fixed-Bed Reactors 445</p> <p>16.5.2 Suspension Reactors 447</p> <p>16.6 Reactors for Homogeneously Catalyzed Reactions 451</p> <p>16.7 New Reactor Concepts 452</p> <p>16.7.1 Membrane Reactors 452</p> <p>16.7.2 Catalytic Reactive Distillation 453</p> <p>16.7.3 Catalytic Microreactors 454</p> <p>Exercises 455</p> <p>References 457</p> <p><b>17 Economic Importance of Catalysts 459</b></p> <p>References 462</p> <p><b>18 Future Development of Catalysis 463</b></p> <p>18.1 Homogeneous Catalysis 463</p> <p>18.2 Heterogeneous Catalysis 465</p> <p>18.2.1 Use of Other Cheaper Raw Materials 467</p> <p>18.2.2 Catalysts for Energy Generation 468</p> <p>18.2.3 Better Strategies for Catalyst Development 469</p> <p>References 472</p> <p>Solutions to the Exercises 473</p> <p>Index 513</p>
<p>"This is the third addition of Jens Hagen?s overview of the industrial application of catalytic science and engineering. As with previous editions this work covers a wide range of catalytic processes spanning heterogeneous and homogeneous catalysis, including chapters on biocatalysis and electrocatalysis. This edition has been extensively revised and includes additions not present in earlier versions. A key feature of the text is inclusion of exercises in each chapter, with solutions provided...[This book] would...be a useful reference for an introductory undergraduate course on catalysis, for whom the exercises would be particularly valuable, or to a researcher starting out in area unfamiliar to them...</p> <p>...an excellent overview of catalysis and its applications more broadly..."(<b>AOC review March 2017<b>)</p>
Jens Hagen gives vocational training seminars on catalysis throughout the world and until his retirement he was Professor of Technical Chemistry at Mannheim University of Applied Sciences (Germany). The input he received through his international courses had an active influence on the content of the current edition of "Industrial Catalysis". Jens Hagen completed his first degree in chemical engineering in Essen (Germany), before studying chemistry at RWTH Aachen (Germany). He gained his doctorate in 1975 in the field of catalysis and high-pressure synthesis. Following a period in industry at Henkel KGaA, Dusseldorf (Germany), he was appointed as Professor at Mannheim University of Applied Sciences in 1979. Professor Hagen's teaching and research at the faculty of Chemical and Process Engineering focused on chemical reaction engineering and technical catalysis. In addition, he was the head of the Steinbeis Transfer Center for Process Engineering, Biotechnology and Environmental Techniques for many years.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €