Details

Image Processing and GIS for Remote Sensing


Image Processing and GIS for Remote Sensing

Techniques and Applications
2. Aufl.

von: Jian Guo Liu, Philippa J. Mason

82,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 04.01.2016
ISBN/EAN: 9781118724170
Sprache: englisch
Anzahl Seiten: 472

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner.</p> <p>The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience.</p> <p>The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.</p>
<p>Overview of the book xi</p> <p><b>Part I Image processing</b></p> <p><b>1 Digital image and display 3</b></p> <p>1.1 What is a digital image? 3</p> <p>1.2 Digital image display 4</p> <p>1.3 Some key points 8</p> <p>1.4 Questions 8</p> <p><b>2 Point operations (contrast enhancement) 9</b></p> <p>2.1 Histogram modification and lookup table 9</p> <p>2.2 Linear contrast enhancement (LCE) 11</p> <p>2.2.1 Derivation of a linear function from two points 12</p> <p>2.3 Logarithmic and exponential contrast enhancement 13</p> <p>2.4 Histogram equalisation (HE) 14</p> <p>2.5 Histogram matching (HM) and Gaussian stretch 15</p> <p>2.6 Balance contrast enhancement technique (BCET) 16</p> <p>2.7 Clipping in contrast enhancement 18</p> <p>2.8 Tips for interactive contrast enhancement 18</p> <p>2.9 Questions 19</p> <p><b>3 Algebraic operations (multi‐image point operations) 21</b></p> <p>3.1 Image addition 21</p> <p>3.2 Image subtraction (differencing) 22</p> <p>3.3 Image multiplication 22</p> <p>3.4 Image division (ratio) 22</p> <p>3.5 Index derivation and supervised enhancement 26</p> <p>3.6 Standardization and logarithmic residual 29</p> <p>3.7 Simulated reflectance 29</p> <p>3.8 Summary 33</p> <p>3.9 Questions 34</p> <p><b>4 Filtering and neighbourhood processing 35</b></p> <p>4.1 FT: Understanding filtering in image frequency 35</p> <p>4.2 Concepts of convolution for image filtering 37</p> <p>4.3 Low pass filters (smoothing) 38</p> <p>4.4 High pass filters (edge enhancement) 42</p> <p>4.5 Local contrast enhancement 45</p> <p>4.6 FFT selective and adaptive filtering 46</p> <p>4.7 Summary 52</p> <p>4.8 Questions 52</p> <p><b>5 RGB‐IHS transformation 55</b></p> <p>5.1 Colour co‐ordinate transformation 55</p> <p>5.2 IHS de‐correlation stretch 57</p> <p>5.3 Direct de‐correlation stretch technique 58</p> <p>5.4 Hue RGB colour composites 60</p> <p>5.5 Derivation of RGB‐IHS and IHS‐RGB transformation based on 3D geometry of the RGB colour cube 63</p> <p>5.6 Mathematical proof of DDS and its properties 65</p> <p>5.7 Summary 67</p> <p>5.8 Questions 67</p> <p><b>6 Image fusion techniques 69</b></p> <p>6.1 RGB‐IHS transformation as a tool for data fusion 69</p> <p>6.2 Brovey transform (intensity modulation) 71</p> <p>6.3 Smoothing filter‐based intensity modulation 71</p> <p>6.4 Summary 75</p> <p>6.5 Questions 75</p> <p><b>7 Principal component analysis 77</b></p> <p>7.1 Principle of the PCA 77</p> <p>7.2 PC images and PC colour composition 79</p> <p>7.3 Selective PCA for PC colour composition 82</p> <p>7.4 De‐correlation stretch 84</p> <p>7.5 Physical property orientated coordinate transformation and tasselled cap transformation 85</p> <p>7.6 Statistical methods for band selection 87</p> <p>7.7 Remarks 88</p> <p>7.8 Questions 89</p> <p><b>8 Image classification 91</b></p> <p>8.1 Approaches of statistical classification 91</p> <p>8.2 Unsupervised classification (iterative clustering) 92</p> <p>8.3 Supervised classification 96</p> <p>8.4 Decision rules: Dissimilarity functions 97</p> <p>8.5 Post‐classification processing: Smoothing and accuracy assessment 98</p> <p>8.6 Summary 101</p> <p>8.7 Questions 101</p> <p><b>9 Image geometric operations 103</b></p> <p>9.1 Image geometric deformation 103</p> <p>9.2 Polynomial deformation model and image warping co‐registration 106</p> <p>9.3 GCP selection and automation of image co‐registration 109</p> <p>9.3.1 Manual and semi‐automatic GCP</p> <p>9.4 Summary 110</p> <p>9.5 Questions 110</p> <p><b>10 Introduction to interferometric synthetic aperture radar technique 113</b></p> <p>10.1 The principle of a radar interferometer 113</p> <p>10.2 Radar interferogram and DEM 115</p> <p>10.3 Differential InSAR and deformation measurement 117</p> <p>10.4 Multi‐temporal coherence image and random change detection 119</p> <p>10.5 Spatial de‐correlation and ratio coherence technique 121</p> <p>10.6 Fringe smoothing filter 123</p> <p>10.7 Summary 124</p> <p>10.8 Questions 125</p> <p><b>11 Sub‐pixel technology and its applications 127</b></p> <p>11.1 Phase correlation algorithm 127</p> <p>11.2 PC scanning for pixel‐wise disparity estimation 132</p> <p>11.3 Pixel‐wise image co‐registration 134</p> <p>11.4 Very narrow‐baseline stereo matching and 3D data generation 139</p> <p>11.5 Ground motion/deformation detection and estimation 143</p> <p>11.6 Summary 146</p> <p><b>Part II Geographical information systems</b></p> <p><b>12 Geographical information systems 151</b></p> <p>12.1 Introduction 151</p> <p>12.2 Software tools 152</p> <p>12.3 GIS, cartography and thematic mapping 152</p> <p>12.4 Standards, inter‐operability and metadata 153</p> <p>12.5 GIS and the internet 154</p> <p><b>13 Data models and structures 155</b></p> <p>13.1 Introducing spatial data in representing geographic features 155</p> <p>13.2 How are spatial data different from other digital data? 155</p> <p>13.3 Attributes and measurement scales 156</p> <p>13.4 Fundamental data structures 156</p> <p>13.5 Raster data 157</p> <p>13.6 Vector data 161</p> <p>13.7 Data conversion between models and structures 171</p> <p>13.8 Summary 174</p> <p>13.9 Questions 175</p> <p><b>14 Defining a coordinate space 177</b></p> <p>14.1 Introduction 177</p> <p>14.2 Datums and projections 177</p> <p>14.3 How coordinate information is stored and accessed 188</p> <p>14.4 Selecting appropriate coordinate systems 189</p> <p>14.5 Questions 189</p> <p><b>15 Operations 191</b></p> <p>15.1 Introducing operations on spatial data 191</p> <p>15.2 Map algebra concepts 192</p> <p>15.3 Local operations 194</p> <p>15.4 Neighbourhood operations 199</p> <p>15.5 Vector equivalents to raster map algebra 206</p> <p>15.6 Automating GIS functions 209</p> <p>15.7 Summary 209</p> <p>15.8 Questions 210</p> <p><b>16 Extracting information from point data: Geostatistics 211</b></p> <p>16.1 Introduction 211</p> <p>16.2 Understanding the data 211</p> <p>16.2.1 Histograms 212</p> <p>16.3 Interpolation 214</p> <p>16.4 Summary 224</p> <p>16.5 Questions 225</p> <p><b>17 Representing and exploiting surfaces 227</b></p> <p>17.1 Introduction 227</p> <p>17.2 Sources and uses of surface data 227</p> <p>17.3 Visualising surfaces 230</p> <p>17.4 Extracting surface parameters 236</p> <p>17.5 Summary 245</p> <p>17.6 Questions 246</p> <p><b>18 Decision support and uncertainty 247</b></p> <p>18.1 Introduction 247</p> <p>18.2 Decision support 247</p> <p>18.3 Uncertainty 248</p> <p>18.4 Risk and hazard 250</p> <p>18.5 Dealing with uncertainty in GIS‐based spatial analysis 250</p> <p>18.6 Summary 254</p> <p>18.7 Questions 255</p> <p><b>19 Complex problems and multi‐criterion evaluation 257</b></p> <p>19.1 Introduction 257</p> <p>19.2 Different approaches and models 258</p> <p>19.3 Evaluation criteria 259</p> <p>19.4 Deriving weighting coefficients 260</p> <p>19.5 Multi‐criterion combination methods 263</p> <p>19.6 Summary 272</p> <p>19.7 Questions 272</p> <p><b>Part III Remote sensing applications</b></p> <p><b>20 Image processing and GIS operation strategy 275</b></p> <p>20.1 General image processing strategy 276</p> <p>20.2 Remote sensing‐based GIS projects: From images to thematic mapping 284</p> <p>20.3 An example of thematic mapping based on optimal visualisation and interpretation of multi‐spectral satellite imagery 284</p> <p>20.4 Summary 292</p> <p><b>21 Thematic teaching case studies in SE Spain 293</b></p> <p>21.1 Thematic information extraction (1): Gypsum natural outcrop mapping and quarry change assessment 293</p> <p>21.2 Thematic information extraction (2): Spectral enhancement and mineral mapping of epithermal gold alteration and iron‐ore deposits in ferroan dolomite 299</p> <p>21.3 Remote sensing and GIS: Evaluating vegetation and landuse change in the Nijar Basin, SE Spain 308</p> <p>21.4 Applied remote sensing and GIS: A combined interpretive tool for regional tectonics, drainage and water resources in the Andarax basin 318</p> <p><b>22 Research case studies 335</b></p> <p>22.1 Vegetation change in the Three Parallel Rivers region, Yunnan Province, China 335</p> <p>22.2 GIS modelling of earthquake damage zones using satellite imagery and digital elevation model (DEM) data 345</p> <p>22.3 Predicting landslides using fuzzy geohazard mapping: An example from Piemonte, north‐west Italy 369</p> <p>22.4 Land surface change detection in a desert area in Algeria using multi‐temporal ERS SAR coherence images 380</p> <p><b>23 Industrial case studies 389</b></p> <p>23.1 Multi‐criteria assessment of mineral prospectivity in SE Greenland 389</p> <p>23.2 Water resource exploration in Somalia 405</p> <p><b>Part IV Summary</b></p> <p><b>24 Concluding remarks 419</b></p> <p>24.1 Image processing 419</p> <p>24.2 Geographic Information Systems 422</p> <p>24.3 Final remarks 425</p> <p><b>Appendix A Imaging sensor systems and remote sensing satellites 427</b></p> <p>A.1 Multi‐spectral sensing 427</p> <p>A.2 Broadband multi‐spectral sensors 431</p> <p>A.2.1 Digital camera 431</p> <p>A.2.2 Across‐track mechanical scanner 432</p> <p>A.2.3 Along‐track push‐broom scanner 433</p> <p>A.3 Thermal sensing and TIR sensors 434</p> <p>A.4 Hyperspectral sensors (imaging spectrometers) 434</p> <p>A.5 Passive microwave sensors 436</p> <p>A.6 Active sensing: SAR imaging systems 437</p> <p><b>Appendix B Online resources for information, software and data 441</b></p> <p>B.1 Software – proprietary, low cost and free (shareware) 441</p> <p>B.2 Information and technical information on standards, best practice, formats, techniques and various publications 441</p> <p>B.3 Data sources including online satellite imagery from major suppliers, DEM data plus GIS maps and data of all kinds 442</p> <p>References 443</p> <p>Index 451</p>
<p><b>Jian Guo Liu </b> received a Ph.D. in 1991 in remote sensing and image processing from Imperial College London, UK and an M.Sc. in 1982 in remote sensing and geology from China University of Geosciences, Beijing, China. He is a Reader in remote sensing in the Department of Earth Science and Engineering, Imperial College London. His current research activities include: sub-pixel technology for image registration, DEM generation and change detection; image processing techniques for data fusion, filtering and InSAR; and GIS multi-data modelling for geohazard studies.</p> <p><b>Philippa J Mason</b> completed a BSc in Geology at Southampton University in 1987, an MSc in Remote Sensing at University College London in 1993 and a PhD in 1998 at Imperial College London. She is a lecturer in remote sensing & GIS at Imperial College London and a consultant in geological remote sensing and image interpretation. Her research interests include the application of geospatial sciences to geohazards, tectonic geomorphology, spectral geology and mineral exploration.</p>
<p>Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner.</p> <p>The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience.</p> <p>The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.</p>

Diese Produkte könnten Sie auch interessieren:

Handbuch der Fließgewässer Norddeutschlands
Handbuch der Fließgewässer Norddeutschlands
von: Mario Sommerhäuser, Helmut Schuhmacher
PDF ebook
88,99 €
Hydroecology and Ecohydrology
Hydroecology and Ecohydrology
von: Paul J. Wood, David M. Hannah, Jon P. Sadler
PDF ebook
154,99 €
Analyzing Environmental Data
Analyzing Environmental Data
von: Walter W. Piegorsch, A. John Bailer
PDF ebook
76,99 €