Details

Hybridization, Diagnostic and Prognostic of PEM Fuel Cells


Hybridization, Diagnostic and Prognostic of PEM Fuel Cells

Durability and Reliability
1. Aufl.

von: Samir Jemei

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.10.2018
ISBN/EAN: 9781119563433
Sprache: englisch
Anzahl Seiten: 240

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Hydrogen is the most abundant element in the universe. It has a place in the energy mix of the future, especially regarding fuel cells (FCs). This book is an investigation into FCs. Prominence is given to the subject of PEMFCs (proton exchange membrane fuel cells) as they offer interesting perspectives on transport and stationary applications. This being said, a number of technological and scientific obstacles remain to be overcome before an industrial level of development can be reached.<br /> </p>
<p>Preface xi</p> <p><b>1 Introduction 1</b></p> <p><b>2 Introduction to Physics of the Solid State 8</b></p> <p>2.1 Structure 8</p> <p>2.1.1 Size Dependence of Properties 8</p> <p>2.1.2 Crystal Structures 9</p> <p>2.1.3 Face-Centered Cubic Nanoparticles 12</p> <p>2.1.4 Tetrahedrally Bonded Semiconductor Structures 15</p> <p>2.1.5 Lattice Vibrations 18</p> <p>2.2 Energy Bands 20</p> <p>2.2.1 Insulators, Semiconductors, and Conductors 20</p> <p>2.2.2 Reciprocal Space 22</p> <p>2.2.3 Energy Bonds and Gaps of Semiconductors 23</p> <p>2.2.4 Effective Masses 28</p> <p>2.2.5 Fermi Surfaces 29</p> <p>2.3 Localized Particles 30</p> <p>2.3.1 Donors, Acceptors, and Deep Traps 30</p> <p>2.3.2 Mobility 31</p> <p>2.3.3 Excitons 32</p> <p><b>3 Methods of Measuring Properties 35</b></p> <p>3.1 Introduction 35</p> <p>3.2 Structure 36</p> <p>3.2.1 Atomic Structures 36</p> <p>3.2.2 Crystallography 37</p> <p>3.2.3 Particle Size Determination 42</p> <p>3.2.4 Surface Structure 45</p> <p>3.3 Microscopy 46</p> <p>3.3.1 Transmission Electron Microscopy 46</p> <p>3.3.2 Field Ion Microscopy 51</p> <p>3.3.3 Scanning Microscopy 51</p> <p>3.4 Spectroscopy 58</p> <p>3.4.1 Infrared and Raman Spectroscopy 58</p> <p>3.4.2 Photoemission and X-Ray Spectroscopy 62</p> <p>3.4.3 Magnetic Resonance 68</p> <p><b>4 Properties of Individual Nanoparticles 72</b></p> <p>4.1 Introduction 72</p> <p>4.2 Metal Nanoclusters 74</p> <p>4.2.1 Magic Numbers 74</p> <p>4.2.2 Theoretical Modeling of Nanoparticles 75</p> <p>4.2.3 Geometric Structure 78</p> <p>4.2.4 Electronic Structure 81</p> <p>4.2.5 Reactivity 83</p> <p>4.2.6 Fluctuations 86</p> <p>4.2.7 Magnetic Clusters 86</p> <p>4.2.8 Bulk to Nanotransition 88</p> <p>4.3 Semiconducting Nanoparticles 90</p> <p>4.3.1 Optical Properties 90</p> <p>4.3.2 Photofragmentation 92</p> <p>4.3.3 Coulombic Explosion 93</p> <p>4.4 Rare Gas and Molecular Clusters 94</p> <p>4.4.1 Inert-Gas Clusters 94</p> <p>4.4.2 Superfluid Clusters 95</p> <p>4.4.3 Molecular Clusters 96</p> <p>4.5 Methods of Synthesis 97</p> <p>4.5.1 RF Plasma 97</p> <p>4.5.2 Chemical Methods 98</p> <p>4.5.3 Thermolysis 99</p> <p>4.5.4 Pulsed Laser Methods 100</p> <p>4.6 Conclusion 101</p> <p><b>5 Carbon Nanostructures 103</b></p> <p>5.1 Introduction 103</p> <p>5.2 Carbon Molecules 103</p> <p>5.2.1 Nature of the Carbon Bond 103</p> <p>5.2.2 New Carbon Structures 105</p> <p>5.3 Carbon Clusters 106</p> <p>5.3.1 Small Carbon Clusters 106</p> <p>5.3.2 Discovery of C<sub>60</sub> 107</p> <p>5.3.3 Structure of C<sub>60</sub> and Its Crystal 110</p> <p>5.3.4 Alkali-Doped C<sub>60</sub> 110</p> <p>5.3.5 Superconductivity in C<sub>60</sub> 112</p> <p>5.3.6 Larger and Smaller Fullerenes 113</p> <p>5.3.7 Other Buckyballs 113</p> <p>5.4 Carbon Nanotubes 114</p> <p>5.4.1 Fabrication 114</p> <p>5.4.2 Structure 117</p> <p>5.4.3 Electrical Properties 118</p> <p>5.4.4 Vibrational Properties 122</p> <p>5.4.5 Mechanical Properties 123</p> <p>5.5 Applications of Carbon Nanotubes 125</p> <p>5.5.1 Field Emission and Shielding 125</p> <p>5.5.2 Computers 126</p> <p>5.5.3 Fuel Cells 127</p> <p>5.5.4 Chemical Sensors 128</p> <p>5.5.5 Catalysis 129</p> <p>5.5.6 Mechanical Reinforcement 130</p> <p><b>6 Bulk Nanostructured Materials 133</b></p> <p>6.1 Solid Disordered Nanostructures 133</p> <p>6.1.1 Methods of Synthesis 133</p> <p>6.1.2 Failure Mechanisms of Conventional Grain-Sized Materials 137</p> <p>6.1.3 Mechanical Properties 139</p> <p>6.1.4 Nanostructured Multilayers 141</p> <p>6.1.5 Electrical Properties 142</p> <p>6.1.6 Other Properties 147</p> <p>6.1.7 Metal Nanocluster Composite Glasses 148</p> <p>6.1.8 Porous Silicon 150</p> <p>6.2 Nanostructured Crystals 153</p> <p>6.2.1 Natural Nanocrystals 153</p> <p>6.2.2 Computational Prediction of Cluster Lattices 153</p> <p>6.2.3 Arrays of Nanoparticles in Zeolites 154</p> <p>6.2.4 Crystals of Metal Nanoparticles 157</p> <p>6.2.5 Nanoparticle Lattices in Colloidal Suspensions 158</p> <p>6.2.6 Photonic Crystals 159</p> <p><b>7 Nanostructured Ferromagnetism 165</b></p> <p>7.1 Basics of Ferromagnetism 165</p> <p>7.2 Effect of Bulk Nanostructuring of Magnetic Properties 170</p> <p>7.3 Dynamics of Nanomagnets 172</p> <p>7.4 Nanopore Containment of Magnetic Particles 176</p> <p>7.5 Nanocarbon Ferromagnets 177</p> <p>7.6 Giant and Colossal Magnetoresistance 181</p> <p>7.7 Ferrofluids 186</p> <p><b>8 Optical and Vibrational Spectroscopy 194</b></p> <p>8.1 Introduction 194</p> <p>8.2 Infrared Frequency Range 196</p> <p>8.2.1 Spectroscopy of Semiconductors; Excitons 196</p> <p>8.2.2 Infrared Surface Spectroscopy 198</p> <p>8.2.3 Raman Spectroscopy 203</p> <p>8.2.4 Brillouin Spectroscopy 210</p> <p>8.3 Luminescence 213</p> <p>8.3.1 Photoluminescence 213</p> <p>8.3.2 Surface States 215</p> <p>8.3.3 Thermoluminescence 221</p> <p>8.4 Nanostructures in Zeolite Cages 222</p> <p><b>9 Quantum Wells, Wires, and Dots 226</b></p> <p>9.1 Introduction 226</p> <p>9.2 Preparation of Quantum Nanostructures 227</p> <p>9.3 Size and Dimensionality Effects 231</p> <p>9.3.1 Size Effects 231</p> <p>9.3.2 Conduction Electrons and Dimensionality 233</p> <p>9.3.3 Fermi Gas and Density of States 234</p> <p>9.3.4 Potential Wells 236</p> <p>9.3.5 Partial Confinement 241</p> <p>9.3.6 Properties Dependent on Density of States 242</p> <p>9.4 Excitons 244</p> <p>9.5 Single-Electron Tunneling 245</p> <p>9.6 Applications 248</p> <p>9.6.1 Infrared Detectors 248</p> <p>9.6.2 Quantum Dot Lasers 251</p> <p>9.7 Superconductivity 253</p> <p><b>10 Self-Assembly and Catalysis 257</b></p> <p>10.1 Self-Assembly 257</p> <p>10.1.1 Process of Self-Assembly 257</p> <p>10.1.2 Semiconductor Islands 258</p> <p>10.1.3 Monolayers 260</p> <p>10.2 Catalysis 264</p> <p>10.2.1 Nature of Catalysis 264</p> <p>10.2.2 Surface Area of Nanoparticles 264</p> <p>10.2.3 Porous Materials 268</p> <p>10.2.4 Pillared Clays 273</p> <p>10.2.5 Colloids 277</p> <p><b>11 Organic Compounds and Polymers 281</b></p> <p>11.1 Introduction 281</p> <p>11.2 Forming and Characterizing Polymers 283</p> <p>11.2.1 Polymerization 283</p> <p>11.2.2 Sizes of Polymers 284</p> <p>11.3 Nanocrystals 285</p> <p>11.3.1 Condensed Ring Types 285</p> <p>11.3.2 Polydiacetylene Types 289</p> <p>11.4 Polymers 292</p> <p>11.4.1 Conductive Polymers 292</p> <p>11.4.2 Block Copolymers 293</p> <p>11.5 Supramolecular Structures 295</p> <p>11.5.1 Transition-Metal-Mediated Types 295</p> <p>11.5.2 Dendritic Molecules 296</p> <p>11.5.3 Supramolecular Dendrimers 302</p> <p>11.5.4 Micelles 305</p> <p><b>12 Biological Materials 310</b></p> <p>12.1 Introduction 310</p> <p>12.2 Biological Building Blocks 311</p> <p>12.2.1 Sizes of Building Blocks and Nanostructures 311</p> <p>12.2.2 Polypeptide Nanowire and Protein Nanoparticle 314</p> <p>12.3 Nucleic Acids 316</p> <p>12.3.1 DNA Double Nanowire 316</p> <p>12.3.2 Genetic Code and Protein Synthesis 322</p> <p>12.4 Biological Nanostructures 324</p> <p>12.4.1 Examples of Proteins 324</p> <p>12.4.2 Micelles and Vesicles 326</p> <p>12.4.3 Multilayer Films 329</p> <p><b>13 Nanomachines and Nanodevices 332</b></p> <p>13.1 Microelectromechanical Systems (MEMSs) 332</p> <p>13.2 Nanoelectromechanical Systems (NEMSs) 335</p> <p>13.2.1 Fabrication 335</p> <p>13.2.2 Nanodevices and Nanomachines 339</p> <p>13.3 Molecular and Supramolecular Switches 345</p> <p><b>A Formulas for Dimensionality 357</b></p> <p>A.1 Introduction 357</p> <p>A.2 Delocalization 357</p> <p>A.3 Partial Confinement 358</p> <p><b>B Tabulations of Semiconducting Material Properties 361</b></p> <p>Index 371</p>
<p><b>Samir Jemeï</b> is Associate Professor (HDR) at the University of Burgundy Franche-Comté, France. For over twenty years he has been working in the field of fuel cells, specifically on FC hybridization and the diagnostic and prognostic of FC generators.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €