Details

Highly Efficient OLEDs


Highly Efficient OLEDs

Materials Based on Thermally Activated Delayed Fluorescence
1. Aufl.

von: Hartmut Yersin

192,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 27.09.2018
ISBN/EAN: 9783527691739
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The essential resource that offers a comprehensive understanding of OLED optimizations</b></p> <p><i>Highly Efficient OLEDs. Materials Based on Thermally Activated Delayed Fluorescence</i> (TADF) offers substantial information on the working principle of OLEDs and on new types of emitting materials (organic and inorganic). As the authors explain, OLEDs that use the Singlet-Harvesting mechanism based on the molecular property of TADF work according to a new exciton harvesting principle. Thus, low-cost emitter materials, such as Cu(I) or Ag(I) complexes as well as metal-free organic molecules, have the potential to replace high-cost rare metal complexes being currently applied in OLED technology.</p> <p>With contributions from an international panel of experts on the topic, the text shows how the application of new TADF materials allow for the development of efficient OLED displays and lighting systems. This new mechanism is the gateway to the third-generation of luminescent materials. This important resource:</p> <ul> <li>Offers a state-of-the-art compilation of the latest results in the dynamically developing field of OLED materials</li> <li>Is edited by a pioneer in the field of OLED material technology</li> <li>Contains a detailed application-oriented guide to new low-cost materials for displays and lighting</li> <li>Puts the focus on the emerging fields of OLED technology</li> </ul> <p>Written for materials scientists, solid state chemists, solid state physicists, and electronics engineers, <i>Highly Efficient OLEDs. Materials Based on Thermally Activated Delayed Fluorescence</i> offers a comprehensive resource to the latest advances of OLEDs based on new TADF materials.</p>
<p>Preface xv</p> <p><b>1 TADF Material Design: Photophysical Background and Case Studies Focusing on Cu(I) and Ag(I) Complexes 1<br /></b><i>Hartmut Yersin, Rafał Czerwieniec, Marsel Z. Shafikov, and Alfiya F. Suleymanova</i></p> <p>1.1 Introduction 1</p> <p>1.2 TADF,Molecular Parameters, and Diversity of Materials 4</p> <p>1.2.1 TADF and Phosphorescence 6</p> <p>1.2.2 Minimizing ΔE(S<sub>1</sub>–T<sub>1</sub>) 7</p> <p>1.2.3 Importance of k<sub>r</sub>(S<sub>1</sub>–S<sub>0</sub>) 7</p> <p>1.3 Case Study: TADF of a Cu(I) Complex with Large ΔE(S<sub>1</sub>–T<sub>1</sub>) 15</p> <p>1.3.1 DFT and TD-DFT Calculations 16</p> <p>1.3.2 Flattening Distortions and Nonradiative Decay 16</p> <p>1.3.3 TADF Properties 18</p> <p>1.3.4 Radiative S<sub>1</sub>→S<sub>0</sub> Rate, Absorption, and Strickler–Berg Relation 20</p> <p>1.4 Case Study: TADF of a Cu(I) Complex with Small ΔE(S<sub>1</sub>–T<sub>1</sub>) 22</p> <p>1.4.1 DFT and TD-DFT Calculations 22</p> <p>1.4.2 Emission Spectra and Quantum Yields 23</p> <p>1.4.3 The Triplet State T1 and Spin–Orbit Coupling 23</p> <p>1.4.4 Temperature Dependence of the Emission Decay Time and TADF 28</p> <p>1.5 Energy Separation ΔE(S<sub>1</sub>–T<sub>1</sub>) and S<sub>1</sub>→S<sub>0</sub> Fluorescence Rate 30</p> <p>1.5.1 Experimental Correlation Between ΔE(S<sub>1</sub>–T<sub>1</sub>) and kr(S<sub>1</sub>→S<sub>0</sub>) for Cu(I) Compounds 31</p> <p>1.5.2 Quantum Mechanical Considerations 32</p> <p>1.6 Design Strategies for Highly Efficient Ag(I)-Based TADF Compounds 34</p> <p>1.6.1 Ag(phen)(P2-nCB): A First Step to Achieve TADF 34</p> <p>1.6.2 Emission Quenching in Ag(phen)(P2-nCB) 36</p> <p>1.6.3 Sterical Hindrance. Tuning of the Emission Quantum Yield up to 100% 38</p> <p>1.6.4 Detailed Characterization of Ag(dbp)(P2-nCB) 40</p> <p>1.7 Conclusion and Future Perspectives 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>2 Highly Emissive d10 Metal Complexes as TADF Emitters with Versatile Structures and Photophysical Properties 61<br /></b><i>Koichi Nozaki and Munetaka Iwamura</i></p> <p>2.1 Introduction 61</p> <p>2.2 Phosphorescence and TADF Mechanisms 62</p> <p>2.3 Structure-Dependent Photophysical Properties of Four-Coordinate [Cu(N^N)<sub>2</sub>] Complexes 64</p> <p>2.4 Flattening Distortion Dynamics of the MLCT Excited State 76</p> <p>2.5 Green and Blue Emitters: [Cu(N^N)(P^P)] and [Cu(N^N)(P^X)] 77</p> <p>2.6 Three-Coordinate Cu(I) Complexes 79</p> <p>2.7 Dinuclear Cu(I) Complexes 80</p> <p>2.8 Ag(I), Au(I), Pt(0), and Pd(0) Complexes 84</p> <p>2.9 Summary 85</p> <p>References 86</p> <p><b>3 Luminescent Dinuclear Copper(I) Complexes with Short Intramolecular Cu–Cu Distances 93<br /></b><i>Akira Tsuboyama</i></p> <p>3.1 Introduction 93</p> <p>3.2 Overview of Luminescent Dinuclear Copper(I) Complexes 94</p> <p>3.2.1 Structure 94</p> <p>3.2.2 Luminescence Properties 99</p> <p>3.3 Structural and Photophysical Studies of the Dinuclear Copper(I) Complexes: [Cu(μ-C∧N)]<sub>2</sub> (C∧N=2-(bis(trimethylsilyl)methyl) pyridine Derivatives) 100</p> <p>3.3.1 Outline 100</p> <p>3.3.2 X-ray Crystallographic Study 101</p> <p>3.3.3 Photophysical Properties 102</p> <p>3.3.3.1 Absorption Spectrum 102</p> <p>3.3.3.2 DFT Calculation 103</p> <p>3.3.3.3 Emission Properties 104</p> <p>3.3.3.4 Emission Decay Kinetic Analysis 105</p> <p>3.3.4 OLED Device 110</p> <p>3.3.5 Experimental 111</p> <p>3.3.5.1 Synthesis 111</p> <p>3.3.5.2 Measurement, Calculation, and Device 111</p> <p>3.3.5.3 X-ray Structure Analysis 112</p> <p>3.3.5.4 DFT Calculation 112</p> <p>3.3.5.5 OLED Device 112</p> <p>3.4 Conclusion 112</p> <p>Acknowledgment 113</p> <p>References 114</p> <p><b>4 Molecular Design and Synthesis of Metal Complexes as Emitters for TADF-Type OLEDs 119<br /></b><i>Masahisa Osawa and Mikio Hoshino</i></p> <p>4.1 Introduction 119</p> <p>4.2 Cu(I) Complexes for OLEDs 122</p> <p>4.2.1 Energy Levels of Molecular Orbitals in Tetrahedral Geometries 122</p> <p>4.2.2 Ligand Variation 123</p> <p>4.3 Mononuclear Cu(I) Complexes for OLEDs 126</p> <p>4.3.1 Bis(diimine) Type 131</p> <p>4.3.2 [Cu(NN)(PP)]<sup>+</sup> Complexes with phen or bipy Derivatives as Ligands 131</p> <p>4.3.3 [Cu(NN)(PP)]<sup>+</sup> Complexes with NN Ligands OtherThan phen or bipy Derivatives 134</p> <p>4.3.4 Tetrahedral Cu(I) Complexes with the LUMO on the PP Ligand 142</p> <p>4.3.5 Charge-NeutralThree-Coordinate Cu(I) Complexes 146</p> <p>4.4 Dinuclear Cu(I) Complexes for OLEDs 155</p> <p>4.4.1 Dinuclear Cu(I) Complexes Possessing {Cu2(𝜇-X)2} Cores 155</p> <p>4.4.2 Other Dinuclear Cu(I) Complexes 157</p> <p>4.5 Another Group of Metal Complexes Exhibiting TADF 157</p> <p>4.6 Conclusion 160</p> <p>Acknowledgments 160</p> <p>Appendix 161</p> <p>4.A.1 Schematic Structures of 1–86 161</p> <p>4.A.2 Abbreviations and Molecular Structures of Materials for OLEDs 168</p> <p>References 171</p> <p><b>5 Ionic [Cu(NN)(PP)]+ TAD9727 F Complexes with Pyridine-based Diimine Chelating Ligands and Their Use in OLEDs 177<br /></b><i>Rongmin Yu and Can-Zhong Lu</i></p> <p>5.1 Introduction 177</p> <p>5.2 The Influence of Molecular and Electronic Structure on Emissive Properties of Cu(I) Complexes 178</p> <p>5.3 Heteroleptic Diimine/Diphosphine [Cu(NN)(PP)]+ Complexes with Pyridine-Based Ligand 181</p> <p>5.3.1 [Cu(NN)(PP)]<sup>+</sup> Complexes with 2,2′-bipyridyl-based Ligands 181</p> <p>5.3.1.1 [Cu(NN)(PP)]<sup>+</sup> Complexes with 2-(2′-pyridyl)benzimidazole and 2-(2′-pyridyl)imidazole-based Ligands 182</p> <p>5.3.2 [Cu(NN)(PP)]<sup>+</sup> Complexes with 5-(2-pyridyl)tetrazole-based Ligands 185</p> <p>5.3.3 [Cu(NN)(PP)]<sup>+</sup> Complexes with 3-(2′-pyridyl)-1,2,4-triazole-based Ligands 187</p> <p>5.3.4 [Cu(NN)(PP)] Complexes with 2-(2-pyridyl)-pyrrolide-based Ligands 188</p> <p>5.3.5 [Cu(NN)(PP)]<sup>+</sup> Complexes with 1-(2-pyridyl)-pyrazole-based Ligands 189</p> <p>5.3.6 [Cu(NN)(PP)]<sup>+</sup> Complexes with Carbazolyl-modified 1-(2-pyridyl)-pyrazole-based Ligands 191</p> <p>5.3.7 [Cu(NN)(PP)]<sup>+</sup> Complexes with 1-phenyl-3-(2-pyridyl)pyrazole-based Ligands 192</p> <p>5.3.8 [Cu(NN)(PP)]<sup>+</sup> Complexes with 3-phenyl-5-(2-pyridyl)-1H-1,2,4- triazole-based Ligands 193</p> <p>5.4 Conclusion and Perspective 194</p> <p>References 195</p> <p><b>6 Efficiency Enhancement of Organic Light-Emitting Diodes Exhibiting Delayed Fluorescence and Nonisotropic Emitter Orientation 199<br /></b><i>Tobias D. Schmidt andWolfgang Brütting</i></p> <p>6.1 Introduction 199</p> <p>6.2 OLED Basics 200</p> <p>6.2.1 Working Principle 200</p> <p>6.2.2 Electroluminescence Quantum Efficiency 202</p> <p>6.2.3 Delayed Fluorescence 203</p> <p>6.2.4 Nonisotropic Emitter Orientation 204</p> <p>6.2.5 Optical Modeling 205</p> <p>6.3 Comprehensive Efficiency Analysis of OLEDs 206</p> <p>6.4 Case Studies 209</p> <p>6.4.1 Treating the OLED as a Black Box 209</p> <p>6.4.2 Highly EfficientThermally Activated Delayed Fluorescence Device 214</p> <p>6.4.3 Low Efficiency Roll-Off Triplet–Triplet Annihilation Device 218</p> <p>6.5 Conclusion 222</p> <p>Acknowledgments 223</p> <p>References 223</p> <p><b>7 TADF Kinetics and Data Analysis in Photoluminescence and in Electroluminescence 229<br /></b><i>Tiago Palmeira and Mário N. Berberan-Santos</i></p> <p>7.1 TADF Kinetics 229</p> <p>7.1.1 Introduction 229</p> <p>7.1.2 Excitation Types 231</p> <p>7.1.3 Photoexcitation 232</p> <p>7.1.3.1 Rate Equations 232</p> <p>7.1.3.2 Fluorescence and Phosphorescence Decays 232</p> <p>7.1.3.3 Steady-state Fluorescence and Phosphorescence Intensities 233</p> <p>7.1.3.4 Excited-state Cycles 235</p> <p>7.1.3.5 TADF Onset Temperature 238</p> <p>7.1.3.6 Conditions for Efficient TADF 239</p> <p>7.1.4 Electrical Excitation 240</p> <p>7.1.4.1 Steady State 240</p> <p>7.1.4.2 Conditions for Efficient Electroluminescence 241</p> <p>7.1.5 More Complex Schemes 244</p> <p>7.2 TADF Data Analysis 245</p> <p>7.2.1 Introduction 245</p> <p>7.2.2 Steady-state Data 245</p> <p>7.2.2.1 Delayed Fluorescence and Phosphorescence Intensities as a Function of Temperature: Rosenberg–Parker Method 245</p> <p>7.2.2.2 Prompt and Delayed Fluorescence Intensities as a Function of Temperature 245</p> <p>7.2.2.3 Delayed Fluorescence Intensity as a Function of Temperature 249</p> <p>7.2.3 Decay Data 249</p> <p>7.2.4 Combined Steady-state and Decay Data 250</p> <p>7.2.4.1 Linear Relation Between Delayed Fluorescence Lifetime and Intensity Ratio 250</p> <p>7.2.4.2 Linearized Relation for the Determination of ΔEST 250</p> <p>7.3 Conclusion 252</p> <p>Acknowledgment 252</p> <p>References 252</p> <p><b>8 Intersystem Crossing Processes in TADF Emitters 257<br /></b><i>Christel M. Marian, Jelena Föller, Martin Kleinschmidt, andMihajlo Etinski</i></p> <p>8.1 Introduction 257</p> <p>8.1.1 Electroluminescent Emitters 257</p> <p>8.1.2 Thermally Activated Delayed Fluorescence 258</p> <p>8.2 Intersystem Crossing Rate Constants 259</p> <p>8.2.1 Condon Approximation 260</p> <p>8.2.1.1 Electronic Spin–Orbit Coupling Matrix Elements 261</p> <p>8.2.1.2 Overlap of VibrationalWave Functions 262</p> <p>8.2.2 Beyond the Condon Approximation 263</p> <p>8.2.3 Computation of ISC and rISC Rate Constants 264</p> <p>8.2.3.1 Classical Approach 265</p> <p>8.2.3.2 Statical Approaches 265</p> <p>8.2.3.3 Dynamical Approaches 265</p> <p>8.3 Excitation Energies and Radiative Rate Constants 266</p> <p>8.3.1 Time-Dependent Density FunctionalTheory 266</p> <p>8.3.2 DFT-Based Multireference Configuration Interaction 267</p> <p>8.3.3 Fluorescence and Phosphorescence Rates 268</p> <p>8.4 Case Studies 269</p> <p>8.4.1 Copper(I) Complexes 269</p> <p>8.4.1.1 Three-Coordinated Cu(I)–NHC–Phenanthroline Complex 270</p> <p>8.4.1.2 Four-coordinated Cu(I)–bis-Phenanthroline Complexes 275</p> <p>8.4.2 Metal-Free TADF Emitters 277</p> <p>8.4.2.1 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) 279</p> <p>8.4.2.2 Mechanism of the Triplet-to-Singlet Upconversion in the Assistant Dopants ACRXTN and ACRSA 282</p> <p>8.5 Outlook and Concluding Remarks 285</p> <p>References 286</p> <p><b>9 The Role of Vibronic Coupling for Intersystem Crossing and Reverse Intersystem Crossing Rates in TADF Molecules 297<br /></b><i>Thomas J. Penfold and Jamie Gibson</i></p> <p>9.1 Introduction 297</p> <p>9.1.1 Background to Delayed Fluorescence 300</p> <p>9.1.2 The Mechanism of rISC 302</p> <p>9.2 Beyond a Static Description 303</p> <p>9.2.1 Obtaining the Potential Energy Surfaces 304</p> <p>9.2.1.1 Vibronic Coupling Model Hamiltonian 306</p> <p>9.2.2 Solving for the Motion of the Nuclei 309</p> <p>9.2.2.1 Multiconfigurational Time-Dependent Hartree Approach 310</p> <p>9.2.2.2 Density Matrix Formalism of MCTDH: 𝜌MCTDH 311</p> <p>9.3 Case Studies 312</p> <p>9.3.1 Ultrafast Dynamics of a Cu(I)–phenanthroline Complex 313</p> <p>9.3.2 The Contribution of Vibronic Coupling to the rISC of PTZ-DBTO2 316</p> <p>9.4 Conclusions and Outlook 322</p> <p>References 323</p> <p><b>10 Exciplex: Its Nature and Application to OLEDs 331<br /></b><i>Hwang-Beom Kim, Dongwook Kim, and Jang-Joo Kim</i></p> <p>10.1 Introduction 331</p> <p>10.2 Formation and Electronic Structures of Exciplexes 332</p> <p>10.3 Optical Properties of Exciplexes 336</p> <p>10.3.1 Photoluminescence of Exciplexes 336</p> <p>10.3.2 Absorption Spectra of Exciplexes 338</p> <p>10.4 Decay Processes of the Exciplex in Solution 339</p> <p>10.4.1 Fluorescence Rate Constant for the Exciplex State 340</p> <p>10.4.2 Contact Radical Ion Pair (CRIP) Versus Solvent-separated Radical Ion Pair (SSRIP) 342</p> <p>10.4.3 Charge Separation Versus Charge Recombination 343</p> <p>10.4.4 Intersystem Crossing (ISC) in the Exciplex 345</p> <p>10.5 Exciplexes in Organic Solid Films 346</p> <p>10.5.1 Prompt Versus Delayed Fluorescence 347</p> <p>10.5.2 Spectral Shift as a Function of Time 350</p> <p>10.6 OLEDs Using Exciplexes 353</p> <p>10.6.1 Exciplexes as Emitters 353</p> <p>10.6.2 Exciplexes as Sensitizers 356</p> <p>10.7 Summary and Outlook 360</p> <p>Appendix 360</p> <p>10.A.1 Small Molecular Pairs of Donors and Acceptors Forming Exciplexes 360</p> <p>10.A.2 Small Molecules with Electron-donatingMoieties Forming Exciplexes 360</p> <p>10.A.3 Small Molecules with Electron-accepting Moieties Forming Exciplexes 365</p> <p>10.A.4 Small Molecules with Electron-donating and Electron-accepting Moieties Forming Exciplexes 368</p> <p>References 370</p> <p><b>11 Thermally Activated Delayed FluorescenceMaterials Based on Donor–AcceptorMolecular Systems 377<br /></b><i>Ye Tao, Runfeng Chen, Huanhuan Li, Chao Zheng, andWei Huang</i></p> <p>11.1 Introduction 377</p> <p>11.2 TADF OLEDs 380</p> <p>11.2.1 Device Structures and Operation Mechanisms of TADF OLED 380</p> <p>11.2.2 TADF Molecules as Emitters for OLEDs 382</p> <p>11.2.3 TADF Molecules as Host Materials and Sensitizers for OLEDs 382</p> <p>11.2.4 Host-free TADF OLEDs 383</p> <p>11.3 Basic Considerations in Molecular Design of TADF Molecules 384</p> <p>11.3.1 Design Principles of Donor–Acceptor Molecular Systems for TADF Emission 384</p> <p>11.3.2 Control of Singlet–Triplet Energy Splitting (ΔEST) 386</p> <p>11.3.3 Modulation of Luminescent Efficiency of TADF Emission 389</p> <p>11.4 Typical Donor–Acceptor Molecular Systems with High TADF Performance 391</p> <p>11.4.1 Cyano-based TADF Molecules 391</p> <p>11.4.2 Nitrogen Heterocycle-based TADF Molecules 396</p> <p>11.4.3 Diphenyl Sulfoxide-based TADF Molecules 405</p> <p>11.4.4 X-bridged Diphenyl Sulfoxide-based TADF Molecules 407</p> <p>11.4.5 Diphenyl Ketone-based TADF Molecules 408</p> <p>11.4.6 X-bridged Diphenyl Ketone TADF Molecules 410</p> <p>11.5 Organoboron-based TADF Molecules 411</p> <p>11.6 TADF Polymers 412</p> <p>11.7 Intermolecular D–A System for TADF Emission 413</p> <p>11.8 Summary and Outlook 417</p> <p>References 417</p> <p><b>12 Photophysics of Thermally Activated Delayed Fluorescence 425<br /></b><i>AndrewMonkman</i></p> <p>12.1 Introduction 425</p> <p>12.2 Comments on the Techniques Used in Our Studies 428</p> <p>12.3 Basic Absorption and Emission Properties 428</p> <p>12.4 Phosphorescence and Triplet State Measurements 438</p> <p>12.5 Characteristics of the Delayed Fluorescence 440</p> <p>12.5.1 Time-resolved Emission in Solution 440</p> <p>12.5.2 Time-resolved Emission in Solid State 446</p> <p>12.5.3 Kinetics of the 1CT Prompt State 449</p> <p>12.6 UnderstandingWhich Excited States are Involved 450</p> <p>12.7 Excited-state Properties 452</p> <p>12.8 Dynamical Processes 455</p> <p>12.9 Emitter–host Interactions 457</p> <p>12.10 Energy Diagram for TADF 459</p> <p>12.11 Final Comments 459</p> <p>Acknowledgments 461</p> <p>References 461</p> <p><b>13 Thioxanthone (TX) Derivatives and Their Application in Organic Light-emitting Diodes 465<br /></b><i>XiaofangWei, YingWang, and PengfeiWang</i></p> <p>13.1 Organic Light-emitting Diodes 465</p> <p>13.2 Pure Organic TADF Materials in OLEDs 467</p> <p>13.3 TX Derivatives for OLED 468</p> <p>13.3.1 High Efficient OLEDs Based on TX-based TADF Materials 468</p> <p>13.3.1.1 Design and Characterization of TX-based TADF Emitters 468</p> <p>13.3.1.2 Nondoped OLEDs Based on TADF Emitters with QuantumWell Structure 481</p> <p>13.3.1.3 White OLEDs Based on Blue Fluorescent Emitter and Yellow TX-based TADF Emitters 486</p> <p>13.3.2 TADF Host for Phosphorescent Emitters 490</p> <p>13.4 Concluding Remarks and Outlook 495</p> <p>Acknowledgments 496</p> <p>References 496</p> <p><b>14 Solution-Processed TADF Materials and Devices Based on Organic Emitters 501<br /></b><i>Nidhi Sharma,Michael YinWong, Ifor D.W. Samuel, and Eli Zysman-Colman</i></p> <p>14.1 Introduction 501</p> <p>14.1.1 Solution-Processed Blue TADF Materials and Devices 504</p> <p>14.1.2 Solution-Processed Green TADF Materials and Devices 512</p> <p>14.1.3 Solution-Processed Yellow-to-Red TADF Materials and Devices 523</p> <p>14.1.4 Comparison of State-of-the-Art Solution-Processed OLEDs to Vacuum-Deposited Counterparts 526</p> <p>14.1.5 Solution-Processed TADF Polymers and Dendrimers 527</p> <p>14.2 Summary and Outlook 537</p> <p>References 538</p> <p><b>15 Status and Next Steps of TADF Technology: An Industrial Perspective 543<br /></b><i>Alhama Arjona-Esteban and Daniel Volz</i></p> <p>15.1 What Does the MarketWant? 543</p> <p>15.1.1 The Emitter Materials: Heart of the OLED 544</p> <p>15.1.2 Processing Aspects 547</p> <p>15.1.3 Sustainability Aspects 549</p> <p>15.1.3.1 Availability Issues 549</p> <p>15.1.3.2 Recycling Considerations 550</p> <p>15.1.4 Realization of Efficient and Stable Blue OLEDs 550</p> <p>15.1.4.1 The Blue Gap 550</p> <p>15.1.4.2 Key Performance Indicators 551</p> <p>15.2 Mastering Blue OLEDs with TADF Technology 552</p> <p>15.2.1 Current Status of Blue TADF Technology: Academia 552</p> <p>15.2.2 Current Status of Blue TADF Technology: Industry 554</p> <p>15.3 An Alternative Approach: TADF Emitters as (Co) Hosts 559</p> <p>15.3.1 General Remarks 559</p> <p>15.3.2 First Attempts of Using TADF as Hosts 561</p> <p>15.3.3 Discussion of Various Concepts 562</p> <p>15.3.3.1 TADF as Host for Other TADF Emitters 562</p> <p>15.3.3.2 TADF as Host for Fluorescent Materials 563</p> <p>15.3.3.3 TADF as Host for Phosphorescent Emitters 564</p> <p>15.4 Outlook:What to Expect from TADF Technology in the Future 566</p> <p>References 567</p> <p>Index 573</p>
The research activities of <b>Prof. Dr. Hartmut Yersin</b>, University in Regensburg, Germany, focus on the development of new concepts for OLEDs and, in particular, of TADF materials. He is strongly interested in fundamental photophysical understanding and characterization of molecular properties and their impact on technological requirements.
<p><b>The essential resource that offers a comprehensive understanding of OLED optimizations</b></p> <p><i>Highly Efficient OLEDs. Materials Based on Thermally Activated Delayed Fluorescence</i> (TADF) offers substantial information on the working principle of OLEDs and on new types of emitting materials (organic and inorganic). As the authors explain, OLEDs that use the Singlet-Harvesting mechanism based on the molecular property of TADF work according to a new exciton harvesting principle. Thus, low-cost emitter materials, such as Cu(I) or Ag(I) complexes as well as metal-free organic molecules, have the potential to replace high-cost rare metal complexes being currently applied in OLED technology.</p> <p>With contributions from an international panel of experts on the topic, the text shows how the application of new TADF materials allow for the development of efficient OLED displays and lighting systems. This new mechanism is the gateway to the third-generation of luminescent materials. This important resource:</p> <ul> <li>Offers a state-of-the-art compilation of the latest results in the dynamically developing field of OLED materials</li> <li>Is edited by a pioneer in the field of OLED material technology</li> <li>Contains a detailed application-oriented guide to new low-cost materials for displays and lighting</li> <li>Puts the focus on the emerging fields of OLED technology</li> </ul> <p>Written for materials scientists, solid state chemists, solid state physicists, and electronics engineers, <i>Highly Efficient OLEDs. Materials Based on Thermally Activated Delayed Fluorescence</i> offers a comprehensive resource to the latest advances of OLEDs based on new TADF materials.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €