Details

Health Risk Assessment for Asbestos and Other Fibrous Minerals


Health Risk Assessment for Asbestos and Other Fibrous Minerals


1. Aufl.

von: Andrey Korchevskiy, James Rasmuson, Eric Rasmuson

154,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.07.2024
ISBN/EAN: 9781119438427
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Evaluates the risks and human health impacts of asbestos and other fibrous minerals</b> <p>Despite continuous efforts to eliminate asbestos from commercial use, it remains a serious occupational and environmental hazard. <i>Health Risk Assessment for Asbestos and Other Fibrous Minerals</i> provides a rigorous discussion of risk assessment methodology for elongate mineral particles, covering basics, theory, models, and practical applications, enabling readers to participate in carrying out efficient and informed health risk assessments, to estimate potential adverse effects for exposed populations, and to determine the acceptability of risks at a given level of exposure. <p>Coverage includes: <ul><li>Mineralogy, health effects, pathology, exposure assessment, modeling, and characterization of risks for asbestos and similar toxic materials</li><li>Necessary integration of epidemiology, toxicology, industrial hygiene, and environmental health expertise when performing a health risk assessment</li><li>Emerging and not-well-known hazards, e.g. erionite and other naturally occurring fibrous minerals</li><li>Contributions by Garry Burdett, Bruce Case, Lucy Darnton, Daniel Hall, Arseniy Korchevskiy, Brooke Mossman, Cassidy Strode, Robert Strode, and Ann Wylie</li><li>Case studies and examples of risk calculations</li></ul> <p><i>Health Risk Assessment for Asbestos and Other Fibrous Minerals</i> is a highly practical reference on the subject for occupational and public health professionals, industry and government regulators, industrial hygienists, and risk assessors, along with epidemiologists, biostatisticians, toxicologists, and other scientific professionals.
<p>List of Contributors xv</p> <p>Preface xvii</p> <p><b>Part I Hazard Identification 1</b></p> <p><b>1 Mineralogical Characteristics and Risk Assessment of Elongate Mineral Particles (EMPs): Asbestos, Fiber, and Fragment 3<br /> </b><i>Ann G. Wylie</i></p> <p>Introduction 3</p> <p>Nomenclature 6</p> <p>Source Specificity: Chemical and Physical Properties 8</p> <p>Source Specificity: Dimension 11</p> <p>Structural Groupings of Common Elongate Minerals 13</p> <p>Establishing the Chemical Composition of Minerals 15</p> <p>Mineral Intergrowths and Associations 16</p> <p>Bioreactivity of Mineral Surfaces: Chemical Factors 17</p> <p>The Specificity of Mineral Surfaces: The Example of Quartz 17</p> <p>General Considerations of Solubility 18</p> <p>Formation of Reactive Oxygen Species (ROS) 20</p> <p>Coatings 21</p> <p>Surface Charge 22</p> <p>EMP Surfaces: Chain Silicates and Zeolites 23</p> <p>Physical Factors 24</p> <p>Specific Surface Area 24</p> <p>Enthalpy and Other Thermodynamic Properties 26</p> <p>Density and Aerodynamic Diameter 26</p> <p>Stiffness and Tensile Strength 28</p> <p>The Effects of Heat 30</p> <p>Dimensionality: General Considerations 30</p> <p>Establishing Measurement Protocols 32</p> <p>Optical vs. Electron Microscopy Methods 32</p> <p>Stratified Counting 34</p> <p>Sample Preparation for TEM: Direct vs. Indirect Preparation 34</p> <p>Frequency Distributions of Length and Width 35</p> <p>Lung Burden 37</p> <p>Dimensionality and Carcinogenicity 38</p> <p>Discussion 39</p> <p>References 40</p> <p><b>2 Toxicology of Mineral Fibers and Implications for Risk Assessment 52<br /> </b><i>Brooke T. Mossman</i></p> <p>Introduction 52</p> <p>Use of Rodent Models to Analyze the Toxicity to Disease Potential of Naturally Occurring and Synthetic Fibers 53</p> <p>Inhalation Studies 53</p> <p>Intratracheal Instillation and Oropharyngeal Aspiration Studies 54</p> <p>Intrapleural Injection Studies 54</p> <p>Intraperitoneal Injection Studies 54</p> <p>Comparative Results on Effects of Asbestos and Other Naturally Occurring Fibers in Rodent Studies 54</p> <p>In vitro Models of Toxicity 66</p> <p>Advantages and Disadvantage of In vitro Models 66</p> <p>Contributions of In vitro Models to Understanding Mechanisms of Cytotoxicity and Carcinogenesis by Mineral Fibers 67</p> <p>Properties of Mineral Fibers Important in Toxicity and Carcinogenic Effects 68</p> <p>A Systems Biology Approach to Understanding Connections and Interactions Between Adverse Outcomes in Mineral Fiber-Induced Diseases 71</p> <p>References 72</p> <p><b>3 Health Outcomes of Asbestos Exposure – A Pathology and Diagnostic Perspective 82<br /> </b><i>Bruce Case</i></p> <p>Introduction 82</p> <p>Nonmalignant Change in Structure or Function 83</p> <p>Nonmalignant Asbestos-Related Disease 84</p> <p>Pleural 84</p> <p>Asbestos Effusion 84</p> <p>Pleural Plaques and Localized Pleural Thickening (LPT) 84</p> <p>Diffuse Pleural Thickening 88</p> <p>Rounded Atelectasis 89</p> <p>Lung 89</p> <p>Asbestosis 89</p> <p>Malignant Diseases Attributable to Asbestos Exposure 92</p> <p>General Comments 92</p> <p>Asbestos-Related Lung Cancer 94</p> <p>Mesothelioma – Accelerating Knowledge 96</p> <p>References 102</p> <p><b>Part II Exposure Assessment 109</b></p> <p><b>4 Principles of Exposure Assessment for Elongate Mineral Particles (EMPs) 111<br /> </b><i>Eric Rasmuson, James Rasmuson, and Andrey Korchevskiy</i></p> <p>General Principles and Methods 113</p> <p>Gathering Information 113</p> <p>Evaluating the Quality of Data 114</p> <p>Measurement Techniques 116</p> <p>Comparison of the Results of Different Analytical Methodologies 120</p> <p>Proximity to the Emission Source 121</p> <p>Adjusting Results for Censored Data 122</p> <p>Correlation of EMP Exposures and Lung Burden Analysis 122</p> <p>References 123</p> <p><b>5 Asbestos Exposure Measurements: Principles of Current and Historical Data Interpretation 127<br /> </b><i>Garry Burdett</i></p> <p>Aim and Background 127</p> <p>Causes of Asbestos-Related Lung Disease and Their Relationship to Exposure Assessment 128</p> <p>Exposure Measurement 130</p> <p>Historic Methods of Asbestos Exposure Measurement 131</p> <p>Gravimetric Methods 131</p> <p>Impaction Sampling and Microscopic Particle Counting 132</p> <p>Impinger Sampling and Microscopic Particle Counting 132</p> <p>Thermal Precipitator (TP) Sampling and Microscopic Particle Counting 133</p> <p>Direct Reading Instruments for Particle and Fiber Counting 134</p> <p>Early Sampling Strategies 135</p> <p>Development of the Current Analytical Methods for Fiber Counting 136</p> <p>Membrane Filter Sampling and Phase Contrast Microscopy Fiber Counting (MF-PCM) 136</p> <p>Membrane Filter Sampling and Electron Microscopy (EM) Analysis 137</p> <p>Limitations of Current Indices of Exposure Assessment 139</p> <p>Variability of the MF-PCM Index Over Time 140</p> <p>Sampling Method 140</p> <p>Sample Preparation 141</p> <p>Microscope Equipment and Set-Up 142</p> <p>Fiber Definition 143</p> <p>Counting Procedures and Performance 144</p> <p>Effect of Changes to the MF-PCM Counts Over Time 145</p> <p>Conclusion 146</p> <p>Acknowledgements 147</p> <p>References 147</p> <p><b>6 Asbestos Exposure Modeling Using Advanced Tools Including Computational Fluid Dynamics (CFD) 153<br /> </b><i>Daniel Hall, James Rasmuson, and Cassidy Strode</i></p> <p>Introduction 153</p> <p>Validation and Application of CFD Air Dispersion Modeling 155</p> <p>Overview of CFD General Methodology 157</p> <p>CFD Simulation Set-Up 159</p> <p>Geometry Creation and Set-Up 159</p> <p>Mesh Creation 160</p> <p>Parameter Set-Up 160</p> <p>Computational Solve 162</p> <p>Post-processing 162</p> <p>Complementary Modeling Software Tools 163</p> <p>Other Software Tools 164</p> <p>Indoor and Outdoor Modeling Examples 164</p> <p>First Example – Indoor CFD Modeling 164</p> <p>Preliminary Outdoor CFD Wind Simulation – Effect on Indoor Ventilation 166</p> <p>Indoor CFD Simulations 168</p> <p>Mill Ventilation 168</p> <p>Other Model Parameters 169</p> <p>Source Descriptions 170</p> <p>Reheat Furnace Brick Removal Source 170</p> <p>Pipe Insulation Removal Source 171</p> <p>CFD Results 172</p> <p>Second Example – Outdoor CFD, AERMOD, and CALPUFF Models 174</p> <p>Model Geometry 177</p> <p>Receptor Descriptions 177</p> <p>Source Descriptions 177</p> <p>Fugitive Plant Emission – Manufacturing, Finishing, Fiber Warehouse, Tray Loading, and Stripping Station 180</p> <p>Baghouse Source Emission Rates 182</p> <p>Pipe Storage and Shipping Yard Source Emission Rate 183</p> <p>Crusher Source Emission Rate 183</p> <p>Meteorology 184</p> <p>CFD Results 186</p> <p>EPA Outdoor Dispersion Models 188</p> <p>Geophysical Set-Up 188</p> <p>CALMET Set-Up 189</p> <p>CALPUFF Processor 189</p> <p>CALPUFF Results 191</p> <p>AERMOD Model 191</p> <p>Geophysical Set-Up 191</p> <p>Meteorology Set-Up 191</p> <p>AERMOD Set-Up 193</p> <p>AERMOD Results 194</p> <p>Comparison of CFD, CALPUFF, and AERMOD Results 194</p> <p>Discussion and Conclusions 194</p> <p>References 197</p> <p><b>Part III Dose-Response Assessment 201</b></p> <p><b>7 Asbestos Dose–Response Assessment: The Peto Model and Its Application in the US EPA and Berman and Crump Studies 203<br /> </b><i>Andrey Korchevskiy</i></p> <p>Rationale and Meaning of the Peto Model 203</p> <p>Utilization of the Peto Model by the US EPA 212</p> <p>Berman and Crump Meta-analysis Based on Peto Model 218</p> <p>References 228</p> <p><b>8 The Hodgson and Darnton Approach to Quantifying the Risks of Mesothelioma and Lung Cancer in Relation to Asbestos Exposure 233<br /> </b><i>Lucy Darnton</i></p> <p>Introduction 233</p> <p>Overview of the Hodgson and Darnton Approach 234</p> <p>Metrics and Data Requirements 235</p> <p>Lung Cancer 235</p> <p>Mesothelioma 236</p> <p>Other Data Issues 236</p> <p>Summary of Cohorts Included in the Original and Updated Meta-Analyses 237</p> <p>Crocidolite Cohorts 238</p> <p>Amosite Cohorts 239</p> <p>Other Amphiboles: Vermiculite Miners and Associated Workers, Libby, Montana, USA 241</p> <p>Chrysotile Cohorts 242</p> <p>Summary of Original and Updated Meta-Analyses 245</p> <p>Mesothelioma 245</p> <p>Lung Cancer 250</p> <p>Nonlinear Exposure–Response Relationship 256</p> <p>Pleural Mesothelioma 257</p> <p>Peritoneal Mesothelioma 259</p> <p>Lung Cancer 260</p> <p>Summary 262</p> <p>Application of Hodgson and Darnton for Risk Assessment 262</p> <p>Conclusions 264</p> <p>References 266</p> <p><b>9 Prediction of Mesothelioma Mortality in the Context of Country-wide Risk Evaluation 270<br /> </b><i>Lucy Darnton</i></p> <p>Conclusions 284</p> <p>References 284</p> <p><b>10 Implications of Exposure Measurement Methodologies for Dose–Response Assessment in Asbestos Worker Cohorts 286<br /> </b><i>Garry Burdett</i></p> <p>Electron Microscopy Fiber Size Distribution for Different Cohorts and Their Relationship to PCM Fiber Counts 287</p> <p>TEM Fiber-Size-Distribution in Cohorts from Mines and Mills 288</p> <p>TEM Size Distributions from Manufacturing Cohorts 289</p> <p>SEM Size Distributions from Manufacturing Cohorts 292</p> <p>EM Determinations of Asbestos Fiber Types in Asbestos Industry Cohorts 293</p> <p>Natural Occurrence 294</p> <p>Mixed-Use 295</p> <p>External Sources 296</p> <p>Lung Burden Analysis 296</p> <p>Conversions of Historic Cohort Measurement Indices to MF-PCM Fiber Counts 296</p> <p>Conversion from Impinger Counts to MF-PCM 297</p> <p>Conversions from Other Particle Counting Methods 299</p> <p>Conversions from Gravimetric Measurement 299</p> <p>Crocidolite Cohort Exposures 302</p> <p>Wittenoom Occupational 302</p> <p>Wittenoom Environmental 305</p> <p>South African Mines and Mills 306</p> <p>Massachusetts Cigarette Filter Manufacturing 309</p> <p>UK Gas Mask Workers 310</p> <p>Other Cohorts Exposed to Crocidolite 311</p> <p>Crocidolite Summary 311</p> <p>Amosite Cohort Exposures 311</p> <p>South African Amosite Mining 311</p> <p>Patterson, New Jersey 314</p> <p>Tyler, Texas 315</p> <p>Uxbridge 315</p> <p>Amosite Summary 316</p> <p>Chrysotile Mining and Milling Cohort Exposures 317</p> <p>Quebec, Canada 318</p> <p>Balangero, Italy 318</p> <p>Qinghai, China 319</p> <p>Uralasbest, Russia 321</p> <p>Chrysotile Mining Summary 322</p> <p>Chrysotile Textiles 322</p> <p>South Carolina Textile Workers 324</p> <p>North Carolina Textile Workers 325</p> <p>Chongqing Chrysotile Cohort 327</p> <p>Chrysotile Textiles Summary 328</p> <p>Other Chrysotile Cohorts 328</p> <p>Discussion and Outlook 330</p> <p>Acknowledgement 333</p> <p>References 333</p> <p><b>11 Mathematical Modeling of Cancer Potency for Various Fibrous Minerals 344<br /> </b><i>Andrey Korchevskiy, James Rasmuson, and Eric Rasmuson</i></p> <p>References 360</p> <p><b>12 Theoretical and Practical Aspects of Asbestos Dose–Response Assessment 366<br /> </b><i>Andrey Korchevskiy and James Rasmuson</i></p> <p>General Considerations and Model of Asbestos Dose–Response Assessment 366</p> <p>Linear Model 367</p> <p>Nonlinear Model 368</p> <p>Relationship Between Different Estimation of Mesothelioma and Lung Cancer Potency Factors 371</p> <p>Life Tables and Life Expectancy of the Exposed Population 374</p> <p>Linearity and Nonlinearity of the Dose–Response Curves 375</p> <p>Threshold and Benchmark Dose Response in Asbestos Risk Assessment 376</p> <p>Community and Occupational Risk Assessment 378</p> <p>Peritoneal Mesothelioma 378</p> <p>Other Types of Cancer 380</p> <p>Inhalation Unit Risk (IUR) for Asbestos Fibers 383</p> <p>Asbestos Dose–Response and Tobacco Smoking 385</p> <p>Other Factors Impacting the Dose–Response Relationship for Elongate Mineral Particles 387</p> <p>References 388</p> <p><b>Part IV Risk Characterization 393</b></p> <p><b>13 Risk Characterization for Occupational and Environmental Exposure to Asbestos: Case Studies 395<br /> </b><i>James Rasmuson, Andrey Korchevskiy, and Eric Rasmuson</i></p> <p>References 408</p> <p><b>14 Asbestos in Soil: Risk Characterization for Occupational and Environmental Exposures 412<br /> </b><i>Andrey Korchevskiy and Robert Strode</i></p> <p>References 424</p> <p><b>15 Asbestos in Brakes: Risk Assessment for Exposure Patterns with Nonlinear Dynamics 427<br /> </b><i>Andrey Korchevskiy, Robert Strode, and Arseniy Korchevskiy</i></p> <p>Ambient Air Emissions from the Brakes in Street Canyons 428</p> <p>Fibers in Car Brakes: Chaotic Behavior of Emissions in a Self-regulated Community 433</p> <p>Diagnosing the Chaotic Trends 439</p> <p>References 441</p> <p>Index 443</p>
<p><b>Andrey Korchevskiy,</b> PhD, DABT, CIH is a biologist, mathematician, certified toxicologist, and certified industrial hygienist. He is the Director of Research and Development at Chemistry & Industrial Hygiene, Inc. <p><b>James Rasmuson,</b> PhD, CIH, DABT, and AIHA Fellow, is the founder and senior scientist at Chemistry & Industrial Hygiene, Inc. <p><b>Eric Rasmuson,</b> MS, MHS, DABT, CIH is the President/CEO of Chemistry & Industrial Hygiene, Inc.
<p><b>Evaluates the risks and human health impacts of asbestos and other fibrous minerals</b> <p>Despite continuous efforts to eliminate asbestos from commercial use, it remains a serious occupational and environmental hazard. <i>Health Risk Assessment for Asbestos and Other Fibrous Minerals</i> provides a rigorous discussion of risk assessment methodology for elongate mineral particles, covering basics, theory, models, and practical applications, enabling readers to participate in carrying out efficient and informed health risk assessments, to estimate potential adverse effects for exposed populations, and to determine the acceptability of risks at a given level of exposure. <p>Coverage includes: <ul><li>Mineralogy, health effects, pathology, exposure assessment, modeling, and characterization of risks for asbestos and similar toxic materials</li><li>Necessary integration of epidemiology, toxicology, industrial hygiene, and environmental health expertise when performing a health risk assessment</li><li>Emerging and not-well-known hazards, e.g. erionite and other naturally occurring fibrous minerals</li><li>Contributions by Garry Burdett, Bruce Case, Lucy Darnton, Daniel Hall, Arseniy Korchevskiy, Brooke Mossman, Cassidy Strode, Robert Strode, and Ann Wylie</li><li>Case studies and examples of risk calculations</li></ul> <p><i>Health Risk Assessment for Asbestos and Other Fibrous Minerals</i> is a highly practical reference on the subject for occupational and public health professionals, industry and government regulators, industrial hygienists, and risk assessors, along with epidemiologists, biostatisticians, toxicologists, and other scientific professionals.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €