Details

Handbook of Marine Macroalgae


Handbook of Marine Macroalgae

Biotechnology and Applied Phycology
1. Aufl.

von: Se-Kwon Kim

195,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.11.2011
ISBN/EAN: 9781119977650
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>The Handbook of Macroalgae: Biotechnology and Applied Phycology</i> describes the biological, biotechnological and the industrial applications of seaweeds. Vast research into the cultivation of seaweeds is currently being undertaken but there is a lack of methodological strategies in place to develop novel drugs from these sources. This book aims to rectify this situation, providing an important review of recent advances and potential new applications for macroalgae. Focusing on the chemical and structural nature of seaweeds the book brings the potentially valuable bioactive nature to the fore. Novel compounds isolated from seaweeds are reviewed to provide an invaluable reference for anyone working in the field.
<b>List of Contributors xvii</b> <p><b>Preface xxi</b></p> <p><b>Editor xxiii</b></p> <p>PART I Introduction to Algae and Their Importance</p> <p>1 Biological Importance of Marine Algae 3<br /> <i>Ali A. El Gamal</i></p> <p>1.1 Introduction 3</p> <p>1.2 Interesting natural products and their biological activities from macroalgae (seaweeds) 4</p> <p>Acknowledgment 27</p> <p>References 27</p> <p><b>2 Seaweeds: The Wealth of Oceans 36<br /> </b><i>Upadhyayula Suryanarayana Murty and Amit Kumar Banerjee</i></p> <p>2.1 Introduction 36</p> <p>2.2 Need for marine resources 36</p> <p>2.3 Various marine resources 36</p> <p>2.4 Producers in the marine environment 37</p> <p>2.5 Emergent plants 37</p> <p>2.6 Seaweed diversity 37</p> <p>2.7 Uses of seaweeds 37</p> <p>2.8 Marine farming: global scenario 39</p> <p>2.9 SEAPURA: an EU effort 39</p> <p>2.10 Seaweed farming: an Indian scenario 40</p> <p>2.11 Expanding the existing knowledge base: current research trends in exploring seaweeds 41</p> <p>2.12 Future prospects 42</p> <p>2.13 Conclusion 43</p> <p>References 43</p> <p><b>3 Eco-Biochemical Studies of Common Seaweeds in the Lower Gangetic Delta 45<br /> </b><i>Rajrupa Ghosh, Kakoli Banerjee and Abhijit Mitra</i></p> <p>3.1 Seaweeds: an overview 45</p> <p>3.2 Commercial uses of seaweeds 46</p> <p>3.3 Indian scenario 46</p> <p>3.4 Biochemical composition of seaweeds with special reference to Indian Sundarbans 51</p> <p>References 55</p> <p><b>4 Chemodiversity and Bioactivity within Red and Brown Macroalgae Along the French coasts, Metropole and Overseas Departements and Territories 58<br /> </b><i>Nathalie Bourgougnon and Valerie Stiger-Pouvreau</i></p> <p>4.1 Introduction 58</p> <p>4.2 Exploitation of marine algal resources 60</p> <p>4.3 Why a focus on red and brown seaweeds? 64</p> <p>4.4 Marine red seaweeds and biological activities 64</p> <p>4.5 Marine brown seaweeds and biological activities 68</p> <p>4.6 The use of metabolites from marine red and brown algae for their chemical defense 73</p> <p>4.7 The use of metabolites as chemomarkers for taxonomy 81</p> <p>4.8 Industrial uses of metabolites from marine red and brown algae 82</p> <p>4.9 Conclusion 89</p> <p>Acknowledgments 89</p> <p>References 90</p> <p><b>5 Physiological Basis for the use of Seaweeds as Indicators of Anthropogenic Pressures: The Case of Green Tides 106<br /> </b><i>Jesús M. Mercado</i></p> <p>5.1 Introduction 106</p> <p>5.2 Light absorption 107</p> <p>5.3 Photosynthesis at sub- and saturating irradiance 108</p> <p>5.4 Inorganic carbon acquisition 110</p> <p>5.5 Does the high capacity for using bicarbonate favor the development of green tides? 111</p> <p>5.6 Conclusions 111</p> <p>Acknowledgments 112</p> <p>References 112</p> <p><b>6 Significance of the Presence of Trace and Ultratrace Elements in Seaweeds 116<br /> </b><i>Antonio Moreda-Piñeiro, Elena Peña-V´azquez and Pilar Bermejo-Barrera</i></p> <p>6.1 Introduction 116</p> <p>6.2 Mineral content in seaweed 117</p> <p>6.3 Trace and ultratrace elements in seaweeds 117</p> <p>6.5 Chemical speciation 154</p> <p>References 164</p> <p><b>PART II Isolation and Chemical Properties of Molecules Derived from Seaweeds</b></p> <p><b>7 Chemical Composition of Seaweeds 173<br /> </b><i>Ladislava Mišurcová</i></p> <p>7.1 Introduction 173</p> <p>7.2 Various components of seaweeds 174</p> <p>7.3 Conclusion 186</p> <p>References 186</p> <p><b>8 Structural Peculiarities of Sulfated Polysaccharides from Red Algae <i>Tichocarpus crinitus</i> (Tichocarpaceae) and <i>Chondrus pinnulatus</i> (Gigartinaceae) Collected at the Russian Pacific Coast 193<br /> </b><i>Anna O. Barabanova and Irina M. Yermak</i></p> <p>8.1 Introduction 193</p> <p>8.2 Carrageenan sources in the Russian Far East 196</p> <p>8.3 The polysaccharide composition of algae in relation to the phase of its life cycle 197</p> <p>8.4 The rheological and viscosity properties of carrageenan from <i>C. pinnulatus</i> and <i>T. crinitus</i> 200</p> <p>References 201</p> <p><b>9 Extraction and Characterization of Seaweed Nanoparticles for Application on Cotton Fabric 205<br /> </b><i>Sivalingam Thambidurai</i></p> <p>9.1 Introduction 205</p> <p>9.2 Textile materials 205</p> <p>9.3 Antimicrobial agents 208</p> <p>9.4 Seaweeds 211</p> <p>9.5 Extraction and characterization 212</p> <p>9.6 Antibacterial finishing 216</p> <p>9.7 Permanent finish 217</p> <p>Acknowledgments 217</p> <p>References 218</p> <p><b>10 Enzyme-assisted Extraction and Recovery of Bioactive Components from Seaweeds 221<br /> </b><i>You-Jin Jeon, W.A.J.P Wijesinghe and Se-Kwon Kim</i></p> <p>10.1 Introduction 221</p> <p>10.2 Extraction of bioactive compounds from seaweeds 222</p> <p>10.3 Role of cell wall degrading enzymes 222</p> <p>10.4 Importance of enzyme treatment prior to extraction of bioactive compounds 222</p> <p>10.5 Selection of the enzyme/s and the extraction conditions 222</p> <p>10.6 Bioactive peptides from seaweeds 223</p> <p>10.7 Conclusions 226</p> <p>References 226</p> <p><b>11 Structure and Use of Algal Sulfated Fucans and Galactans 229<br /> </b><i>Vitor H. Pomin</i></p> <p>11.1 Introduction 229</p> <p>11.2 Phylogenetic distribution 230</p> <p>11.3 Common methods for extraction and structural analyses 230</p> <p>11.4 General structural features related to phylogenetic occurrence 239</p> <p>11.5 Industrial applications 242</p> <p>11.6 Pharmacological properties 247</p> <p>11.6.7 Effects on cellular growth, migration and adhesion 254</p> <p>11.7 Major conclusions 255</p> <p>Acknowledgments 255</p> <p>References 255</p> <p><b>12 Bioactive Metabolites from Seaweeds 262<br /> </b><i>Jing Hu, Bin Yang, Xiuping Lin, Xue-Feng Zhou, Xian-Wen Yang, and Yonghong Liu</i></p> <p>12.1 Introduction 262</p> <p>12.2 Chemical constituents 263</p> <p>12.3 Conclusions 280</p> <p>References 281</p> <p><b>13 Seaweed Digestibility and Methods Used for Digestibility Determination 285<br /> </b><i>Ladislava Mišurcová</i></p> <p>13.1 Digestibility 285</p> <p>13.2 Methods of seaweed digestibility assessment 287</p> <p>13.3 Factors influencing digestibility of seaweed and seaweed products 291</p> <p>13.4 Evaluation of seaweed digestibility 295</p> <p>13.5 Contribution of seaweed to food and feed digestibility 296</p> <p>13.6 Conclusion 297</p> <p>References 297</p> <p><b>14 Metallation of Seaweed <i>Fucus vesiculosus</i> Metallothionein: As3+ and Cd2+ binding 302<br /> </b><i>Thanh T. Ngu and Martin J. Stillman</i></p> <p>14.1 Introduction 302</p> <p>14.2 Characterization of the rfMT 303</p> <p>14.3 Equilibrium metallation studies of rfMT studied using ESI-MS and UV-visible absorption techniques 304</p> <p>14.4 Dynamic metallation studies of rfMT studied using ESI-MS techniques 306</p> <p>14.5 Conclusions 315</p> <p>Acknowledgments 315</p> <p>References 315</p> <p><b>PART III Biological Properties of Molecules Derived from Seaweeds</b></p> <p><b>15 <i>In Vivo</i> and <i>in Vitro</i> Toxicity Studies of Fucoxanthin, a Marine Carotenoid 321<br /> </b><i>Yoshimi Niwano and Fumiaki Beppu</i></p> <p>15.1 Introduction 321</p> <p>15.2 <i>In vivo</i> oral toxicity study 321</p> <p>15.3 <i>In vitro</i> and <i>in vivo</i> mutagenicity study 324</p> <p>15.4 Conclusion 327</p> <p>References 327</p> <p><b>16 Brown Seaweed Lipids as Potential Source of Omega-3 PUFA in Biological Systems 329<br /> </b><i>Kazuo Miyashita, Bhaskar Narayan, Takayuki Tsukui, Hiroyuki Kamogawa, Masayuki Abe, and Masashi Hosokawa</i></p> <p>16.1 Introduction 329</p> <p>16.2 Omega-3 and omega-6 PUFA 330</p> <p>16.3 Importance of omega-3 PUFA on human health 331</p> <p>16.4 Brown seaweed lipids 332</p> <p>16.5 Bioconversion of LN to DHA 333</p> <p>16.6 Hepatic DHA enhancement in mice by fucoxanthin 333</p> <p>16.7 Conclusion 335</p> <p>References 335</p> <p><b>17 Immune Regulatory Effects of Phlorotannins Derived From Marine Brown Algae (<i>Phaeophyta</i>) 340<br /> </b><i>Phuong Hong Nguyen, il-Whan Choi, Se-Kwon Kim and Won-Kyo Jung</i></p> <p>17.1 Introduction 340</p> <p>17.2 Anti-inflammatory effects of phlorotannins on RAW264.7 macrophage cells 343</p> <p>17.3 Neuroprotective effects of phlorotannins on BV2 microglial cells 344</p> <p>17.4 Anti-allergic effects of phlorotannins 344</p> <p>17.5 Conclusion 346</p> <p>Acknowledgments 346</p> <p>References 346</p> <p><b>18 <i>In Vivo</i> and <i>In Vitro</i> Studies of Seaweed Compounds 348<br /> </b><i>Raquel Dom´ınguez Gonzalez, Vanessa Romaris Hortas and Pilar Bermejo Barrera</i></p> <p>18.1 Introduction 348</p> <p>18.2 Methods to study compound bioaccessibility 349</p> <p>18.3 <i>In vivo</i> versus <i>in vitro</i> methods 352</p> <p>18.4 Methods with cell culture models 352</p> <p>18.5 Conclusions 352</p> <p>References 352</p> <p><b>19 Brown Seaweed-Derived Phenolic Phytochemicals and Their Biological Activities for Functional Food Ingredients with Focus on <i>Ascophyllum nodosum</i> 356<br /> </b><i>Emmanouil Apostolidis and Chong M. Lee</i></p> <p>19.1 Introduction: seaweed-derived functional food ingredients 356</p> <p>19.2 Major commercial brown seaweeds 357</p> <p>19.3 Brown seaweeds and phenolic phytochemicals 359</p> <p>19.4 <i>Ascophyllum nodosum</i>: importance and health benefits 361</p> <p>19.5 Conclusions 365</p> <p>References 366</p> <p><b>20 Antiobesity and Antidiabetic Effects of Seaweeds 371<br /> </b><i>Chang-Suk Kong and Se-Kwon Kim</i></p> <p>20.1 Introduction 371</p> <p>20.2 Antiobesity and antidiabetic effects of seaweed 372</p> <p>20.3 Conclusions 375</p> <p>References 375</p> <p><b>21 Health Beneficial Aspects of Phloroglucinol Derivatives from Marine Brown Algae 378<br /> </b><i>Noel Vinay Thomas and Se-Kwon Kim</i></p> <p>21.1 Introduction 378</p> <p>21.2 Phloroglucinol derivatives (phlorotannins) from marine brown algae 378</p> <p>21.3 Health beneficial aspects of brown algal phlorotannins 381</p> <p>21.4 Conclusions and future prospects 385</p> <p>References 385</p> <p><b>22 Biological Effects of Proteins Extracted from Marine Algae 387<br /> </b><i>Taek-Jeong Nam</i></p> <p>22.1 Introduction 387</p> <p>22.2 Stimulatory effect of a glycoprotein from <i>LAMINARIA Japonica</i> on cell proliferation 387</p> <p>22.3 Chemoprotective effect of marine algae extracts against acetaminophen toxicity 389</p> <p>References 396</p> <p><b>23 Functional Ingredients from Marine Algae as Potential Antioxidants in the Food Industry 398<br /> </b><i>Isuru Wijesekara, Mahinda Senevirathne, Yong-Xin Li and Se-Kwon Kim</i></p> <p>23.1 Introduction 398</p> <p>23.2 Marine algae-derived functional ingredients and their antioxidant effect 399</p> <p>23.3 Conclusion 401</p> <p>References 401</p> <p><b>24 Algal Carotenoids as Potent Antioxidants 403<br /> </b><i>Kazuo Miyashita, M. Airanthi K. Widjaja-Adhi, Masayuki Abe, and Masashi Hosokawa</i></p> <p>24.1 Introduction 403</p> <p>24.2 Algal carotenoids 404</p> <p>24.3 Carotenoids as dietary antioxidants 405</p> <p>24.4 Brown seaweeds as rich source of antioxidants 406</p> <p>24.5 Antioxidant activity of algal carotenoids 408</p> <p>24.6 Antiobesity and antidiabetic effect of fucoxanthin 409</p> <p>24.7 Conclusion 410</p> <p>References 410</p> <p><b>PART IV Biotechnology of Seaweeds</b></p> <p><b>25 Anti-HIV Activities of Marine Macroalgae 417<br /> </b><i>Thanh-Sang Vo, Dai-Hung Ngo and Se-Kwon Kim</i></p> <p>25.1 Introduction 417</p> <p>25.2 Potential anti-HIV agents from marine macroalgae 417</p> <p>25.3 Conclusion 421</p> <p>References 421</p> <p><b>26 Biotechnology of Seaweeds: Facing the Coming Decade 424<br /> </b><i>Lin Hanzhi, Qin Song and Jiang Peng</i></p> <p>26.1 Introduction 424</p> <p>26.2 Biotechnology of seaweeds in ‘blue farming’ 424</p> <p>26.3 Biotechnology of seaweeds in the chemical industry and pharmacy 425</p> <p>26.4 Biotechnology of seaweeds in a changing world: their role in bioremediation and bioenergy 426</p> <p>Acknowledgment 427</p> <p>References 427</p> <p><b>27 Current Trends and Future Prospects of Biotechnological Interventions Through Plant Tissue Culture in Seaweeds 431<br /> </b><i>Abdul Bakrudeen Ali Ahmed and Rosna Mat Taha</i></p> <p>27.1 Introduction 431</p> <p>27.2 Explants, sterilization and methods used in seaweed production 432</p> <p>27.3 Micropropagation of seaweeds 434</p> <p>27.4 Callus and cell suspension culture in seaweed production 435</p> <p>27.5 Bioprocess technology and cell culture in seaweed production 436</p> <p>27.6 Remarks and conclusion 438</p> <p>References 438</p> <p><b>28 Detoxification Mechanisms of Heavy Metals by Algal–Bacteria Consortia 441<br /> </b><i>Enrique J. Peña-Salamanca, Ana Lucia Rengifo-Gallego and Neyla Benitez-Campo</i></p> <p>28.1 Introduction 441</p> <p>28.2 Mechanisms used by algae in heavy metals tolerance and removal 442</p> <p>28.3 Algal–bacterial mechanisms involved in heavy metal detoxification 444</p> <p>28.4 Algal–bacteria consortia in the red alga <i>Bostrychia calliptera</i> (Rhodomelaceae) 445</p> <p>28.5 Biological treatment of heavy metals 446</p> <p>28.6 Biotechnological applications 447</p> <p>28.7 Conclusions and future remarks 448</p> <p>References 448</p> <p><b>PART V Natural Resource Management and Industrial Applications of Seaweeds 29 Manufacturing Technology of Bioenergy Using Algae 453<br /> </b><i>Gyung-Soo Kim</i></p> <p>29.1 Introduction 453</p> <p>29.2 Bioethanol types and characteristics 453</p> <p>29.3 Foreign and domestic bioethanol industries and technologies 454</p> <p>29.4 Algal biomass characteristics 455</p> <p>29.5 Red algae bioethanol production technology 455</p> <p>29.6 Future technology outlook 459</p> <p>Acknowledgments 459</p> <p>References 459</p> <p><b>30 Seaweed as an Adsorbent to Treat Cr(VI)-Contaminated Wastewater 461<br /> </b><i>Saroj Sundar Baral</i></p> <p>30.1 Importance of chromium 461</p> <p>30.2 Harmful effects of Cr(VI) 461</p> <p>30.3 Different methods of treatment 462</p> <p>30.4 Case study on adsorptive removal of Cr(VI) from aqueous solution using seaweed <i>Hydrilla verticillata</i> 465</p> <p>References 475</p> <p><b>31 Using the Biomass of Seaweeds in the Production of Components of Feed and Fertilizers 478<br /> </b><i>Katarzyna Chojnacka</i></p> <p>31.1 Introduction 478</p> <p>31.2 Seaweeds in fertilizers 478</p> <p>31.3 Seaweeds in feeds for animals 481</p> <p>31.4 Using the biomass of seaweeds enriched with microelements by biosorpion in nutrition of plants and animals 484</p> <p>31.5 Conclusions 486</p> <p>Acknowledgments 487</p> <p>References 487</p> <p><b>32 Applications of Seaweed in Meat-Based Functional Foods 491<br /> </b><i>Susana Cofrades, In´es López-López and Francisco Jiménez-Colmenero</i></p> <p>32.1 Introduction 491</p> <p>32.2 Meat-based functional foods 491</p> <p>32.3 Seaweed as a functional food ingredient in meat products 492</p> <p>32.4 Conclusions 495</p> <p>Acknowledgment 496</p> <p>References 496</p> <p><b>33 Industrial Applications of Macroalgae 500<br /> </b><i>A. Malshani Samaraweera, Janak K. Vidanarachchi and Maheshika S. Kurukulasuriya</i></p> <p>33.1 Introduction 500</p> <p>33.2 Composition of seaweeds 500</p> <p>33.3 Seaweeds as vegetables: their nutritive value 503</p> <p>33.4 Applications as functional foods 505</p> <p>33.5 Application of seaweeds as antioxidants in the food industry 506</p> <p>33.6 Industrial applications of phycocolloids 508</p> <p>33.7 Biomedical applications 510</p> <p>33.8 Macroalgal-derived cosmeceuticals 513</p> <p>33.9 Applications in agriculture 514</p> <p>33.10 Applications in pollution detection and control 515</p> <p>33.11 Utilization of macroalgae for energy production 515</p> <p>33.12 Conclusions 516</p> <p>References 516</p> <p><b>34 Application of Seaweeds in the Food Industry 522<br /> </b><i>Cristina García Sartal, María Carmen Barciela Alonso and Pilar Bermejo Barrera</i></p> <p>34.1 Introduction 522</p> <p>34.2 Compounds extracted from algae of interest to the human nutrition industry 522</p> <p>34.3 Animal feeding 527</p> <p>34.4 Fertilizers 528</p> <p>34.5 Conclusion 529</p> <p>References 529</p> <p><b>35 A Dimensional Investigation on Seaweeds: Their Biomedical and Industrial Applications 532<br /> </b><i>Sudha Narayanan Parapurath, Hebsibah Elsie Bernard, Dhanarajan Malli Subramaniamc and Ramya Ramamurthy</i></p> <p>35.1 Introduction 532</p> <p>35.2 Biomedical applications of seaweeds 534</p> <p>35.3 Industrial applications of seaweeds 537</p> <p>35.4 Conclusion 538</p> <p>Acknowledgment 538</p> <p>References 538</p> <p><b>36 Seaweed Polysaccharides – Food Applications 541<br /> </b><i>Vazhiyil Venugopal Menon</i></p> <p>36.1 Introduction 541</p> <p>36.2 Major functions of polysaccharides in a food system 541</p> <p>36.3 Interactions of polysaccharides with food components 542</p> <p>36.4 Major food applications of polysaccharides 542</p> <p>36.5 Regulatory and commercial aspects 551</p> <p>References 552</p> <p>Index 557</p>
<b>Professor Se-Kwon Kim</b> is the Director of the Marine Bioprocess Research Center, Department of Chemistry, Pukyong National University, in Busan, South Korea.
<i>Handbook of Marine Macroalgae: Biotechnology and Applied Phycology</i> describes the biological, biotechnological and industrial applications of seaweeds. Vast research into the cultivation of seaweeds is currently being undertaken but there is a lack of methodological strategies in place to develop novel drugs from these sources. This book aims to rectify this situation, providing an important review of recent advances and potential new applications for macroalgae. Focussing on the chemical and structural nature of seaweeds the book brings the potentially valuable bioactive nature to the fore. Novel compounds isolated from seaweeds are reviewed to provide an invaluable reference for anyone working in the field. <ul> <li>Comprehensive handbook covering current applications of macroalgae to biotechnology</li> <li>Covers recent advances as well as future research trends</li> <li>Authored by an international team of experts</li> <li>Describes the barriers and opportunities for commercialization of macroalgae biotechnology</li> <li>Includes applications of macroalgae biotechnology to a wide range of disciplines, including immunology, neurobiology, agriculture, nutrition and industry.</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €