Details

Handbook of Ecological and Ecosystem Engineering


Handbook of Ecological and Ecosystem Engineering


1. Aufl.

von: Majeti Narasimha Vara Prasad

162,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.05.2021
ISBN/EAN: 9781119678502
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn from this integrated approach to the management and restoration of ecosystems edited by an international leader in the field </b></p> <p>The<i> Handbook of Ecological and Ecosystem Engineering</i> delivers a comprehensive overview of the latest research and practical developments in the rapidly evolving fields of ecological and ecosystem engineering. Beginning with an introduction to the theory and practice of ecological engineering and ecosystem services, the book addresses a wide variety of issues central to the restoration and remediation of ecological environments. </p> <p>The book contains fulsome analyses of the restoration, rehabilitation, conservation, sustainability, reconstruction, remediation, and reclamation of ecosystems using ecological engineering techniques. Case studies are used to highlight practical applications of the theory discussed within. </p> <p>The material in the <i>Handbook of Ecological and Ecosystem Engineering</i> is particularly relevant at a time when the human population is dramatically rising, and the exploitation of natural resources is putting increasing pressure on planetary ecosystems. The book demonstrates how modern scientific ecology can contribute to the greening of the environment through the inclusion of concrete examples of successful applied management. The book also includes: </p> <ul> <li>A thorough discussion of ecological engineering and ecosystem services theory and practice </li> <li>An exploration of ecological and ecosystem engineering economic and environmental revitalization </li> <li>An examination of the role of soil meso and macrofauna indicators for restoration assessment success in a rehabilitated mine site </li> <li>A treatment of the mitigation of urban environmental issues by applying ecological and ecosystem engineering </li> <li>A discussion of soil fertility restoration theory and practice </li> </ul> <p>Perfect for academic researchers, industry scientists, and environmental engineers working in the fields of ecological engineering, environmental science, and biotechnology, the <i>Handbook of Ecological and Ecosystem Engineering </i>also belongs on the bookshelves of environmental regulators and consultants, policy makers, and employees of non-governmental organizations working on sustainable development. </p> <p> </p>
<p>List of Contributors xvii</p> <p>Preface xxi</p> <p><b>1 Ecological Engineering and Ecosystem Services – Theory and Practice </b><b>1<br /></b><i>Fábio Carvalho Nunes, Thaís de Marchi Soares, Lander de Jesus Alves, José Rodrigues de Souza Filho, Cláudia Cseko Nolasco de Carvalho, and Majeti Narasimha Vara Prasad</i></p> <p>1.1 Introduction 1</p> <p>1.2 Ecological Engineering: History and Definition 3</p> <p>1.3 Ecosystem Services: History, Concepts, and Dimensions 7</p> <p>1.3.1 Sizing Ecosystem Services 10</p> <p>1.3.2 Agriculture and Ecosystem Services 15</p> <p>1.4 Final Considerations: Challenges for the Future 19</p> <p>Notes 20</p> <p>References 20</p> <p><b>2 Ecological and Ecosystem Engineering for Economic-Environmental Revitalization </b><b>25<br /></b><i>Bruno Barbosa and Ana Luísa Fernando</i></p> <p>2.1 Introduction 25</p> <p>2.2 Revitalization of Physical/Environmental Factors 27</p> <p>2.2.1 Low Temperature 27</p> <p>2.2.2 Limited Soil Drainage and Shallow Rooting Depth 28</p> <p>2.2.3 Unfavorable Texture and Stoniness 29</p> <p>2.2.4 Sloping Areas 30</p> <p>2.2.5 Dryness 30</p> <p>2.2.6 Waterlogging 31</p> <p>2.3 Revitalization of Chemical Factors 32</p> <p>2.3.1 Acidity 32</p> <p>2.3.2 Heavy Metals and Organic Contaminants 33</p> <p>2.3.3 Salinity and Sodicity 34</p> <p>2.4 Economic Revitalization of Degraded Soil Ecosystems 35</p> <p>2.5 Conclusions 36</p> <p>References 37</p> <p><b>3 Environmental Issues and Priority Areas for Ecological Engineering Initiatives </b><b>47<br /></b><i>Sanchayita Rajkhowa, Nazmun Ara Khanom, and Jyotirmoy Sarma</i></p> <p>3.1 Introduction 47</p> <p>3.2 Basic Concepts of Ecological Engineering 50</p> <p>3.3 Practice and Implication of Ecological Engineering 53</p> <p>3.4 Priority Areas for Ecological Engineering 54</p> <p>3.4.1 Coastal Ecosystem Restoration 55</p> <p>3.4.2 Mangrove Restoration 56</p> <p>3.4.3 River and Wetland Restoration 57</p> <p>3.4.4 Ecological Engineering in Soil Restoration and Agriculture 59</p> <p>3.5 Conclusion 61</p> <p>Notes 62</p> <p>References 63</p> <p><b>4 Soil Meso- and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites </b><b>67<br /></b><i>Sara Pelaez Sanchez, Ronan Courtney, and Olaf Schmidt</i></p> <p>4.1 Introduction 67</p> <p>4.2 Restoration to Combat Land Degradation 67</p> <p>4.3 Mine Rehabilitation 68</p> <p>4.3.1 Mine Tailings 68</p> <p>4.3.2 Rehabilitation of Mine Tailings 68</p> <p>4.3.3 The Challenge of Metal Mine Rehabilitation 68</p> <p>4.4 Restoration Success Assessment: Monitoring Diversity, Vegetation, and Ecological Processes 69</p> <p>4.4.1 Monitoring Diversity 70</p> <p>4.4.2 Vegetation 70</p> <p>4.4.3 Ecological Processes 71</p> <p>4.5 Gaps in the Assessment of Restoration Success in Mine Sites 72</p> <p>4.6 Increasing Restoration Success by Enhancing Soil Biodiversity and Soil Multifunctionality 73</p> <p>4.7 Using Keystone Species and Ecosystem Engineers in Restoration 74</p> <p>4.7.1 Earthworms 83</p> <p>4.7.2 Ants 84</p> <p>4.7.3 Termites 85</p> <p>4.7.4 Collembola and Mites 85</p> <p>4.8 Conclusions and Further Perspective for the Restoration of Metalliferous Tailings 85</p> <p>Acknowledgements 86</p> <p>References 86</p> <p><b>5 Ecological Engineering and Green Infrastructure in Mitigating Emerging Urban Environmental Threats </b><b>95<br /></b><i>Florin-Constantin Mihai, Petra Schneider, and Mihail Eva</i></p> <p>5.1 Dimensions of Ecological Engineering in the Frame of Ecosystem Service Provision 95</p> <p>5.2 Landfill Afteruse Practices Based on Ecological Engineering and Green Infrastructure 97</p> <p>5.2.1 Old Landfill Closure and Rehabilitation Procedures 97</p> <p>5.2.2 Landfill Restoration Examples Around the World 98</p> <p>5.2.2.1 Conventional Landfill Closure (Campulung, Romania) 98</p> <p>5.2.2.2 Elbauenpark Including Am Cracauer Anger Landfill (Magdeburg, Germany) 99</p> <p>5.2.2.3 World Cup Park (Nanjido Landfill, Seoul, South Korea) 99</p> <p>5.2.2.4 Fudekeng Environmental Restoration Park (Taiwan) 100</p> <p>5.2.2.5 Hong Kong 100</p> <p>5.2.2.6 Hyria Landfill Site (Tel Aviv, Israel) 101</p> <p>5.2.2.7 Valdemingomez Forest Park (Madrid, Spain) 102</p> <p>5.2.2.8 Freshkills Park – A Mega Restoration Project in the US 103</p> <p>5.3 Role of Ecological Engineering in Transforming Brownfields into Greenfields 104</p> <p>5.3.1 UGI Options for Brownfield Recycling 107</p> <p>5.3.2 Pilot Case: Restoration of a Brownfield to Provide ES – Albert Railway Station (Dresden, Germany) Transformation into the Weißeritz Greenbelt 107</p> <p>5.4 Green Infrastructures for Mitigating Urban Transport-Induced Threats 112</p> <p>5.4.1 Transportation Heritage from the Industrial Period 112</p> <p>5.4.2 The Cases of the Rose Kennedy Greenway and Cheonggyecheon River Restoration 113</p> <p>5.4.2.1 The Concept: Expressway-to-Greenway Conversion 113</p> <p>5.4.2.2 Environmental Efficiency and Effectiveness 114</p> <p>5.4.2.3 Social Impact 116</p> <p>5.4.2.4 Economic Efficiency 116</p> <p>5.5 Conclusions 117</p> <p>References 118</p> <p><b>6 Urban Environmental Issues and Mitigation by Applying Ecological and Ecosystem Engineering </b><b>123<br /></b><i>Shailendra Yadav, Suvha Lama, and Atya Kapley</i></p> <p>6.1 Urbanization 123</p> <p>6.2 Global Trends of Urbanization and Its Consequences 124</p> <p>6.3 Urban Environmental Issues 125</p> <p>6.3.1 Physical Urban Environmental Issues 126</p> <p>6.3.1.1 Urban Heat Islands 126</p> <p>6.3.1.2 Urban Flooding 127</p> <p>6.3.1.3 Urban Pollution (Air, Water, Noise) and Waste Management 128</p> <p>6.3.2 Biological Urban Environmental Issues 130</p> <p>6.3.2.1 Declining Urban Ecosystem Services Due to Loss of Biodiversity 130</p> <p>6.3.2.2 Increasing Disease Epidemiology 131</p> <p>6.4 Ecosystem Engineering 133</p> <p>6.5 Approaches for Mitigation of Urban Environmental Issues 134</p> <p>6.5.1 Nature-Based Solutions 134</p> <p>6.5.1.1 Green Infrastructure (GI) 134</p> <p>6.5.1.2 Urban Wetlands and Riparian Forests 136</p> <p>6.5.1.3 Solar Energy 136</p> <p>6.5.2 Artificial Engineering Approaches 137</p> <p>6.5.3 Landfill Gas as an Alternative Source of Energy: Waste to Wealth 137</p> <p>6.5.3.1 Wastewater/Sewage Treatment Plants as Sources of Energy 137</p> <p>6.5.3.2 Rainwater Harvesting 137</p> <p>6.5.3.3 Constructed Floating Islands for Water Treatment 138</p> <p>6.5.3.4 Microgrids 138</p> <p>6.6 Future Perspective 138</p> <p>Acknowledgments 139</p> <p>References 139</p> <p><b>7 Soil Fertility Restoration, Theory and Practice </b><b>147<br /></b><i>V. Matichenkov and E. Bocharnikova</i></p> <p>7.1 Introduction 147</p> <p>7.2 Materials and Methods 148</p> <p>7.3 Results 149</p> <p>7.4 Discussion and Conclusions 151</p> <p>Acknowledgment 155</p> <p>References 155</p> <p><b>8 Extracellular Soil Enzymes Act as Moderators to Restore Carbon in Soil Habitats </b><b>159<br /></b><i>Rupinder Kaur and Anand Narain Singh</i></p> <p>8.1 Introduction 159</p> <p>8.2 Soil Organic Matter (SOM) 161</p> <p>8.3 Soil Organic Carbon (SOC) 162</p> <p>8.4 Soil Carbon Sequestration 162</p> <p>8.5 Extracellular Soil Enzymes 164</p> <p>8.6 Interactive Role of Extracellular Soil Enzymes in Soil Carbon Transformation 166</p> <p>8.6.1 Cellulase 167</p> <p>8.6.2 β-Glucosidase 169</p> <p>8.6.3 Invertase 170</p> <p>8.6.4 Amylase 170</p> <p>8.6.5 Xylanase 171</p> <p>8.7 Conclusion 172</p> <p>References 172</p> <p><b>9 Ecological Engineering for Solid Waste Segregation, Reduction, and Resource Recovery – A Contextual Analysis in Brazil </b><b>183<br /></b><i>Luís P. Azevedo, Fernando G. da Silva Araújo, Carlos A.F. Lagarinhos, Jorge A.S. Tenório, Denise C.R. Espinosa, and Majeti Narasimha Vara Prasad</i></p> <p>9.1 Introduction 183</p> <p>9.2 Municipal Solid Waste in Brazil 188</p> <p>9.3 Compostable Waste 189</p> <p>9.4 Anaerobic Digestion 190</p> <p>9.5 Recycling 190</p> <p>9.6 Burning Waste Tires 190</p> <p>9.7 Energy Recovery 191</p> <p>9.8 Coprocessing Industrial Waste in Cement Kilns 192</p> <p>9.9 Conclusions 193</p> <p>References 195</p> <p><b>10 Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering </b><b>201<br /></b><i>Jyotirmoy Sarma and Sanchayita Rajkhowa</i></p> <p>10.1 Sustainable Ecosystems through Engineering Approaches 201</p> <p>10.2 Flooding and, Specifically, Urban Flooding as a Problem of Interest 202</p> <p>10.3 Causes and Impacts of Urban Flooding 204</p> <p>10.4 Protection Against and Mitigation of Urban Flooding in the Context of Sustainability 207</p> <p>10.4.1 Living with Floods as a Sustainable Approach 208</p> <p>10.4.2 Urban Flood Risk Management 208</p> <p>10.4.3 Integrated and Interactive Flood Management 209</p> <p>10.4.4 Structural and Nonstructural Measures for Flood Control 210</p> <p>10.4.5 River and Wetland Restoration 211</p> <p>10.4.6 Low Impact Development (LID) and Best Management Practices (BMPs) 214</p> <p>10.5 Conclusions and Future Scope 215</p> <p>References 216</p> <p><b>11 Ecological Engineering and Restoration of Mine Ecosystems </b><b>219<br /></b><i>Marcin Pietrzykowski</i></p> <p>11.1 Background and Definitions 219</p> <p>11.2 Ecological Criteria for Successful Mine Site Restoration 222</p> <p>11.3 Examples of Reclamation Technology and Afforestation in Mining Areas 223</p> <p>11.4 Selected Reclamation Practices Versus Mining Extraction and Environmental Conditions 226</p> <p>11.5 Final Comments and Remarks 227</p> <p>References 228</p> <p><b>12 Ecological Restoration of Abandoned Mine Land: Theory to Practice </b><b>231<br /></b><i>Jitendra Ahirwal and Subodh Kumar Maiti</i></p> <p>12.1 Introduction 231</p> <p>12.2 Integration of Ecology Theory, Restoration Ecology, and Ecological Restoration 233</p> <p>12.2.1 Disturbance 233</p> <p>12.2.2 Succession 233</p> <p>12.2.3 Fragmentation 233</p> <p>12.2.4 Ecosystem Functions 233</p> <p>12.2.5 Restoration 233</p> <p>12.2.6 Reclamation 234</p> <p>12.2.7 Rehabilitation 234</p> <p>12.2.8 Regeneration 234</p> <p>12.2.9 Recovery 234</p> <p>12.3 Restoration Planning 235</p> <p>12.4 Components of Restoration 236</p> <p>12.4.1 Natural Processes 236</p> <p>12.4.2 Physical and Nutritional Constraints 236</p> <p>12.4.3 Species Diversity 237</p> <p>12.5 Afforestation of Mine-Degraded Land 237</p> <p>12.5.1 Miyawaki Planting Methods 237</p> <p>12.6 Methods of Evaluating Ecological Restoration Success 239</p> <p>12.6.1 Criteria for Restoration Success 239</p> <p>12.6.2 Indicator Parameters of a Restored Ecosystem 240</p> <p>12.6.3 Soil Quality Index 241</p> <p>12.7 Development of a Post-Mining Ecosystem: A Case Study in India 242</p> <p>12.8 Conclusions and Future Research 244</p> <p>References 245</p> <p><b>13 Wetland, Watershed, and Lake Restoration </b><b>247<br /></b><i>Bhupinder Dhir</i></p> <p>13.1 Introduction 247</p> <p>13.2 Renovation of Wastewater 247</p> <p>13.2.1 Physical Methods 248</p> <p>13.2.2 Chemical Methods 248</p> <p>13.2.3 Biological Methods 248</p> <p>13.2.4 Other Methods 249</p> <p>13.3 Restoration of Bodies of Water 250</p> <p>13.3.1 Watersheds 251</p> <p>13.3.2 Wetlands 252</p> <p>13.3.2.1 Methods of Restoring Wetlands 253</p> <p>13.3.3 Rivers 253</p> <p>13.3.4 Lakes 254</p> <p>13.3.5 Streams 254</p> <p>13.3.6 Case Studies 255</p> <p>13.4 Problems Encountered in Restoration Projects 255</p> <p>13.5 Conclusion 256</p> <p>References 256</p> <p><b>14 Restoration of Riverine Health: An Ecohydrological Approach –Flow Regimes and Aquatic Biodiversity </b><b>261<br /></b><i>S.P. Biswas</i></p> <p>14.1 Introduction 261</p> <p>14.2 Habitat Ecology 261</p> <p>14.2.1 Riverine Habitats 262</p> <p>14.2.2 Linked Ecosystems 262</p> <p>14.3 Riverine Issues 262</p> <p>14.3.1 Bank Erosion, Siltation, and Aggradations of Rivers 263</p> <p>14.3.2 Deforestation in Catchment Areas 264</p> <p>14.3.3 River Pollution and Invasive Species 266</p> <p>14.3.4 Fishing Pressure 266</p> <p>14.3.5 Status of Wetlands (FPLs) 267</p> <p>14.3.6 Regulated Rivers and Their Impacts 267</p> <p>14.4 Ecorestoration of River Basins 268</p> <p>14.4.1 Environmental Flow 268</p> <p>14.4.2 Success Story of a Conservation Effort for Aquatic Fauna 268</p> <p>14.4.2.1 River Dolphins 268</p> <p>14.4.2.2 Hilsa Fishery 270</p> <p>14.4.3 Biomonitoring of Riverine Health and Ecosystem Engineering 270</p> <p>14.4.4 Integrated River Basin Management 271</p> <p>14.5 Summary and Conclusion 273</p> <p>Acknowledgments 274</p> <p>References 274</p> <p><b>15 Ecosystem Services of the Phoomdi Islands of Loktak, a Dying Ramsar Site in Northeast India </b><b>279<br /></b><i>Sijagurumayum Geetanjali Devi, Niteshwori Thongam, Maibam Dhanaraj Meitei, and Majeti Narasimha Vara Prasad</i></p> <p>15.1 What Are Ecosystem Services? 279</p> <p>15.2 <i>Phoomdi </i>Islands of Loktak 279</p> <p>15.3 Ecosystem Degradation of Loktak 280</p> <p>15.4 Ecosystem Services Provided by the <i>Phoomdi </i>Islands of Loktak 284</p> <p>15.5 <i>Phoomdi </i>and Provisioning Services 284</p> <p>15.6 <i>Phoomdi </i>as Reservoirs of Biodiversity 287</p> <p>15.7 <i>Phoomdi </i>and Fisheries 288</p> <p>15.8 <i>Phoomdi </i>and Cultural Services 288</p> <p>15.9 <i>Phoomdi </i>and Regulating Services 289</p> <p>15.10 <i>Phoomdi </i>and Supporting Services 289</p> <p>15.11 Conclusion 290</p> <p>Acknowledgments 291</p> <p>References 291</p> <p><b>16 The Application of Reefs in Shoreline Protection </b><b>295<br /></b><i>Anu Joy and Anu Gopinath</i></p> <p>16.1 General Introduction 295</p> <p>16.2 Types of Coral Reefs 296</p> <p>16.3 Global Distribution of Coral Reefs 296</p> <p>16.4 Benefits of Coral Reefs 296</p> <p>16.5 Threats to Coral Reefs 298</p> <p>16.5.1 Global Threats 298</p> <p>16.5.1.1 Ocean Acidification 299</p> <p>16.5.1.2 Coral Bleaching 299</p> <p>16.5.1.3 Cyclones 300</p> <p>16.5.2 Local Threats 300</p> <p>16.5.2.1 Over-Fishing and Destructive Fishing Methods 300</p> <p>16.5.2.2 Coastal Development 300</p> <p>16.5.2.3 Recreational Activities 300</p> <p>16.5.2.4 Sedimentation 300</p> <p>16.5.2.5 Coral Mining and Harvesting 300</p> <p>16.5.2.6 Pollution 301</p> <p>16.5.2.7 Invasive Species 301</p> <p>16.6 Important Coral Reefs of the World 301</p> <p>16.7 The Application of Reefs in Shoreline Protection 303</p> <p>16.7.1 Coral Reefs 304</p> <p>16.7.2 Oyster Reefs 307</p> <p>16.7.3 Artificial Reefs 307</p> <p>16.7.4 Coral Reef Restoration 308</p> <p>16.7.5 Oyster Reef Restoration 309</p> <p>16.8 Conclusion 310</p> <p>References 310</p> <p><b>17 Mangroves, as Shore Engineers, Are Nature-Based Solutions for Ensuring Coastal Protection </b><b>317<br /></b><i>Ajanta Dey, J.R.B. Alfred, Biswajit Roy Chowdhury, and Udo Censkowsky</i></p> <p>17.1 Introduction 317</p> <p>17.2 Sundarban: A Case Study 318</p> <p>17.3 Restoration Models 319</p> <p>17.4 Methodology 320</p> <p>17.5 Results and Analysis 326</p> <p>17.6 Conclusion 329</p> <p>Acknowledgments 330</p> <p>References 331</p> <p><b>18 Forest Degradation Prevention Through Nature-Based Solutions: An Indian Perspective </b><b>333<br /></b><i>Purabi Saikia, Akash Nag, Rima Kumari, Amit Kumar, and M.L. Khan</i></p> <p>18.1 Introduction 333</p> <p>18.2 Causes of Forests Degradation and Present Status Forests in India 335</p> <p>18.3 Effects of Forest Degradation 338</p> <p>18.4 Forest Degradation Management Strategies 339</p> <p>18.5 Policies for Preventing Forest Degradation 339</p> <p>18.6 Ecological Engineering: A Tool for Restoration of Degraded Forests 341</p> <p>18.7 Forest Landscape Restoration: A Nature-Based Solution 342</p> <p>18.8 Success Stories of ER from India 342</p> <p>18.9 Yamuna Biodiversity Park 343</p> <p>18.10 Ecological Restoration in Corbett National Park 343</p> <p>18.11 Conclusion and Recommendations 345</p> <p>References 345</p> <p><b>19 Restoring Ecosystem Services of Degraded Forests in a Changing Climate </b><b>353<br /></b><i>Smita Chaudhry, Gagan Preet Singh Sidhu, and Rashmi Paliwal</i></p> <p>19.1 Introduction 353</p> <p>19.2 Role of Forests in Maintaining Ecological Balance and Providing Services 354</p> <p>19.2.1 Forests and Rainfall 355</p> <p>19.2.2 Forests and Carbon Sequestration 355</p> <p>19.2.3 Forests and Climate 356</p> <p>19.2.4 Forests and Soil Erosion 356</p> <p>19.2.5 Forest and Water Quality 357</p> <p>19.3 Types of Forests in India 357</p> <p>19.4 Forest Degradation 357</p> <p>19.4.1 Invasive Alien Species 360</p> <p>19.4.2 Forest Fires 361</p> <p>19.4.3 Overpopulation and Exploitation of Forest Resources 361</p> <p>19.4.4 Overgrazing 361</p> <p>19.5 Impacts of Forest Degradation 362</p> <p>19.5.1 Carbon Sequestration 362</p> <p>19.6 Nutritional Status of Soil 362</p> <p>19.7 Hydrological Regimes 362</p> <p>19.8 Ecological Services 363</p> <p>19.9 Social Implications 363</p> <p>19.10 Methods for Restoring and Rehabilitating Forests 364</p> <p>19.11 Conclusion 367</p> <p>References 368</p> <p><b>20 Forest Degradation Prevention </b><b>377<br /></b><i>Marta Jaskulak and Anna Grobelak</i></p> <p>20.1 Introduction 377</p> <p>20.2 The Problem of Forest Degradation 379</p> <p>20.3 Assessing Levels of Forest Degradation 380</p> <p>20.4 Drivers of Forest Degradation 382</p> <p>20.4.1 Strategies to Address Causes of Forest Degradation 382</p> <p>20.4.2 The Hierarchy of Land Degradation Responses 383</p> <p>20.5 The Role of Forest Management in Degradation Prevention 384</p> <p>20.5.1 Sustainable Forest Management (SFM) for Prevention of Degradation and the Restoration of Degraded Areas 385</p> <p>20.6 Conclusions – Prioritization and Implementation 387</p> <p>References 387</p> <p><b>21 Use of Plants for Air Quality Improvement </b><b>391<br /></b><i>Richa Rai, Madhoolika Agrawal, and S.B. Agrawal</i></p> <p>21.1 Introduction 391</p> <p>21.2 Current Status of Air Pollutants 392</p> <p>21.3 Green Roofs, Urban Forests, and Air Pollution 393</p> <p>21.4 Traits for Phytoremediation of Air Pollution 397</p> <p>21.4.1 Physiological and Biochemical Traits 398</p> <p>21.5 Conclusions 400</p> <p>References 400</p> <p><b>22 Phylloremediation for Mitigating Air Pollution </b><b>405<br /></b><i>Majeti Narasimha Vara Prasad</i></p> <p>22.1 Introduction 405</p> <p>22.2 Significance of Tree Canopy Architecture and Types of Canopies for Mitigating Air Pollution 407</p> <p>22.3 Air-Improving Qualities of Plants 414</p> <p>22.3.1 Dust-Capturing Mechanisms Using Plants 414</p> <p>22.3.2 Environmental Factors for Efficient Dust Capture by Plants 414</p> <p>22.3.2.1 Light Intensity 414</p> <p>22.3.2.2 Moisture 414</p> <p>22.3.2.3 Wind Velocity 414</p> <p>22.4 Effects of Vegetation on Urban Air Quality 414</p> <p>22.4.1 Interception and Absorption of Pollution 414</p> <p>22.4.2 Temperature Effects 416</p> <p>22.4.3 Impact on Energy Use 416</p> <p>22.5 Urban Air Quality Improvement through Dust-Capturing Plant Species 416</p> <p>Acknowledgments 417</p> <p>References 417</p> <p><b>23 Green Belts for Sustainable Improvement of Air Quality </b><b>423<br /></b><i>S.B. Chaphekar, R.P. Madav, and Seemaa S. Ghate</i></p> <p>23.1 Introduction 423</p> <p>23.2 Tolerance of Plants to Air Pollutants 424</p> <p>23.2.1 Agro-Climates in India 425</p> <p>23.2.2 Green Belts 426</p> <p>23.2.3 Choosing Plant Species 427</p> <p>23.2.4 Designing Green Belts 427</p> <p>23.2.4.1 Ground-Level Concentration (GLC) of Emitted Pollutants 427</p> <p>23.2.4.2 Mathematical Model 429</p> <p>23.2.4.3 Two Approaches 430</p> <p>23.2.4.4 Planting Along Roadsides 430</p> <p>23.2.4.5 Choice of Plants for Roadsides 431</p> <p>23.2.4.6 Nurturing Green Belts 431</p> <p>23.3 Conclusion 433</p> <p>References 433</p> <p><b>24 Air Quality Improvement Using Phytodiversity and Plant Architecture </b><b>437<br /></b><i>D.N. Magana-Arachchi and R.P. Wanigatunge</i></p> <p>24.1 Introduction 437</p> <p>24.2 Phytodiversity 438</p> <p>24.3 Plant Architecture 438</p> <p>24.3.1 Leaf Architecture – Regulation of Leaf Position 439</p> <p>24.3.2 Development of Internal Leaf Architecture 439</p> <p>24.4 Phytoremediation 440</p> <p>24.4.1 Role of Plants During Particulate Matter and Gaseous Phytoremediation 440</p> <p>24.4.2 Ways of Improving Air Quality 442</p> <p>24.4.2.1 Outdoor Air Pollutants 442</p> <p>24.4.2.2 Indoor Air Pollutants 444</p> <p>24.4.2.3 Phyllosphere Microorganisms 444</p> <p>24.5 Conclusion 446</p> <p>Acknowledgment 446</p> <p>References 446</p> <p><b>25 Information Explosion in Digital Ecosystems and Their Management </b><b>451<br /></b><i>Chanchal Kumar Mitra and Majeti Narasimha Vara Prasad</i></p> <p>25.1 Introduction 451</p> <p>25.1.1 Digital Computers 452</p> <p>25.1.2 Modern Architectures for Computer Systems 452</p> <p>25.1.3 Microprocessors 454</p> <p>25.1.4 Networks of Computers 454</p> <p>25.1.5 Development of Databases 455</p> <p>25.1.6 Data as Knowledge 456</p> <p>25.2 Growth 456</p> <p>25.2.1 Traditional Models for Growth 456</p> <p>25.2.2 Growth Curves 457</p> <p>25.2.3 Limits of Growth 458</p> <p>25.2.4 Growth vs. Life 459</p> <p>25.3 Sustainability 459</p> <p>25.3.1 Production vs. Consumption 459</p> <p>25.4 Knowledge vs. Information 460</p> <p>25.5 Circulation of Information 460</p> <p>25.6 Quality vs. Quantity 461</p> <p>25.6.1 Case Study 1: Facebook and Cambridge Analytica Scandal 461</p> <p>25.6.2 Case Study 2: Aarogya Setu Mobile App by National Informatics Centre (NIC) of the GoI 462</p> <p>25.7 How Does the Digital Ecosystem Work? 462</p> <p>25.7.1 Digital Ecosystem and Sustainable Development 463</p> <p>25.7.2 SDG 4: Quality Education 465</p> <p>25.7.3 SDG 8: Decent Work and Economic Growth 465</p> <p>25.7.4 SDG 9: Industry, Innovation, and Infrastructure 465</p> <p>25.7.5 SDG 11: Sustainable Cities and Communities 466</p> <p>25.7.6 SDG 12: Responsible Consumption and Production 466</p> <p>25.8 Conclusions 466</p> <p>References 466</p> <p><b>26 Nanotechnology in Ecological and Ecosystem Engineering </b><b>469<br /></b><i>L.R. Sendanayake, H.A.D.B. Amarasiri, and Nadeesh M. Adassooriya</i></p> <p>26.1 Ecology, Ecosystem, and Ecosystem Engineering 469</p> <p>26.2 Nanomaterials, Nanotechnology, and Nanoscience 469</p> <p>26.3 Nanotechnology in Ecological and Ecosystem-Engineering 470</p> <p>26.4 Nanotechnology to Remediate Environmental Pollution 470</p> <p>26.5 Environmental Remediation 471</p> <p>26.6 Surface Water Remediation 471</p> <p>26.6.1 Adsorption 472</p> <p>26.6.2 Photocatalysis 473</p> <p>26.6.3 Disinfection 474</p> <p>26.6.4 Nanomembranes 475</p> <p>26.7 Groundwater Remediation and Soil Remediation 475</p> <p>26.8 Air Remediation 478</p> <p>26.9 Future Scope of Nanotechnology and Nanoscience in Ecological and Ecosystem Engineering 479</p> <p>References 480</p> <p>Index 487</p>
<p><b>Majeti Narasimha Vara Prasad</b> is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).</p>
<p><b>Learn from this integrated approach to the management and restoration of ecosystems edited by an international leader in the field</b></p><p>The <i>Handbook of Ecological and Ecosystem Engineering</i> delivers a comprehensive overview of the latest research and practical developments in the rapidly evolving fields of ecological and ecosystem engineering. Beginning with an introduction to the theory and practice of ecological engineering and ecosystem services, the book addresses a wide variety of issues central to the restoration and remediation of ecological environments.</p><p>The book contains fulsome analyses of the restoration, rehabilitation, conservation, sustainability, reconstruction, remediation, and reclamation of ecosystems using ecological engineering techniques. Case studies are used to highlight practical applications of the theory discussed within.</p><p>The material in the <i>Handbook of Ecological and Ecosystem Engineering</i> is particularly relevant at a time when the human population is dramatically rising, and the exploitation of natural resources is putting increasing pressure on planetary ecosystems. The book demonstrates how modern scientific ecology can contribute to the greening of the environment through the inclusion of concrete examples of successful applied management. The book also includes:</p><ul><li>A thorough discussion of ecological engineering and ecosystem services theory and practice</li><li>An exploration of ecological and ecosystem engineering economic and environmental revitalization</li><li>An examination of the role of soil meso and macrofauna indicators for restoration assessment success in a rehabilitated mine site</li><li>A treatment of the mitigation of urban environmental issues by applying ecological and ecosystem engineering</li><li>A discussion of soil fertility restoration theory and practice</li></ul><p>Perfect for academic researchers, industry scientists, and environmental engineers working in the fields of ecological engineering, environmental science, and biotechnology, the <i>Handbook of Ecological and Ecosystem Engineering</i> also belongs on the bookshelves of environmental regulators and consultants, policy makers, and employees of non-governmental organizations working on sustainable development.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €