Details

Handbook of Composites from Renewable Materials, Nanocomposites


Handbook of Composites from Renewable Materials, Nanocomposites

Advanced Applications
Handbook of Composites from Renewable Materials Volume 8

von: Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler

242,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.04.2017
ISBN/EAN: 9781119224488
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials </i>comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The <i>Handbook</i> comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials.</p> <p>Volume 8 is solely focused on the <i>Nanocomposites: Advanced Applications</i>. Some of the important topics include but not limited to: Virgin and recycled polymers applied to advanced nanocomposites; biodegradable polymer–carbon nanotube composites for water and wastewater treatment; eco-friendly nanocomposites of chitosan with natural extracts, antimicrobial agents, and nanometals; controllable generation of renewable nanofibrils from green materials and their application in nanocomposites; nanocellulose and nanocellulose composites; poly(lactic acid) biopolymer composites and nanocomposites for biomedical and biopackaging applications; impact of nanotechnology in water treatment: carbon nanotube and graphene; nanomaterials in energy generation; sustainable green nanocomposites from bacterial bioplastics for food-packaging applications; PLA nanocomposites: a promising material for future from renewable resources; biocomposites from renewable resources: preparation and applications of chitosan–clay nanocomposites; nanomaterials: an advanced and versatile nanoadditive for kraft and paper industries; composites and nanocomposites based on polylactic acid obtaining; cellulose-containing scaffolds fabricated by electrospinning: applications in tissue engineering and drug delivery; biopolymer-based nanocomposites for environmental applications; calcium phosphate nanocomposites for biomedical and dental applications: recent developments; chitosan–metal nanocomposites: synthesis, characterization, and applications; multi-carboxyl functionalized nanocellulose/nanobentonite composite for the effective removal and recovery of metal ions; biomimetic gelatin nanocomposite as a scaffold for bone tissue repair; natural starches-blended ionotropically gelled microparticles/beads for sustained drug release and ferrogels: smart materials for biomedical and remediation applications.</p>
<p>Preface xxi</p> <p><b>1 Virgin and Recycled Polymers Applied to Advanced Nanocomposites 1<br /></b><i>Luis Claudio Mendes and Sibele Piedade Cestari</i></p> <p>1.1 Introduction 1</p> <p>References 12</p> <p><b>2 Biodegradable Polymer–Carbon Nanotube Composites for Water and Wastewater Treatments 15<br /></b><i>Geoffrey S. Simate</i></p> <p>2.1 Introduction 15</p> <p>2.2 Synthesis of Biodegradable Polymer–Carbon Nanotube Composites 17</p> <p>2.2.1 Introduction 17</p> <p>2.2.2 Starch–Carbon Nanotube Composites 17</p> <p>2.2.3 Cellulose–Carbon Nanotube Composites 18</p> <p>2.2.4 Chitosan–Carbon Nanotubes Composites 20</p> <p>2.3 Applications of Biodegradable Polymer–Carbon Nanotube Composites in Water and Wastewater Treatments 23</p> <p>2.3.1 Removal of Heavy Metals 23</p> <p>2.3.2 Removal of Organic Pollutants 26</p> <p>2.4 Concluding Remarks 27</p> <p>References 27</p> <p><b>3 Eco-Friendly Nanocomposites of Chitosan with Natural Extracts, Antimicrobial Agents, and Nanometals 35<br /></b><i>Iosody Silva-Castro, Pablo Martín-Ramos, Petruta Mihaela Matei, Marciabela Fernandes-Correa, Salvador Hernández-Navarro and Jesús Martín-Gil</i></p> <p>3.1 Introduction 35</p> <p>3.2 Properties and Formation of Chitosan Oligosaccharides 37</p> <p>3.3 Nanomaterials from Renewable Materials 39</p> <p>3.3.1 Chitosan Combined with Biomaterials 39</p> <p>3.3.2 Chitosan Cross-Linked with Natural Extracts 41</p> <p>3.3.3 Chitosan Co-Polymerized with Synthetic Species 42</p> <p>3.4 Synthesis Methods for Chitosan-Based Nanocomposites 44</p> <p>3.4.1 Biological Methods 44</p> <p>3.4.2 Physical Methods 45</p> <p>3.4.3 Chemical Methods 47</p> <p>3.5 Analytical Techniques for the Identification of the Composite Materials 48</p> <p>3.6 Advanced Applications of Bionanomaterials Based on Chitosan 49</p> <p>3.6.1 Antimicrobial Applications 50</p> <p>3.6.2 Biomedical Applications 51</p> <p>3.6.2.1 Antimicrobial Activity of Wound Dressings 51</p> <p>3.6.2.2 Drug Delivery 51</p> <p>3.6.2.3 Tissue Engineering 51</p> <p>3.6.3 Food-Related Applications 52</p> <p>3.6.4 Environmental Applications 52</p> <p>3.6.4.1 Metal Absorption 52</p> <p>3.6.4.2 Wastewater Treatment 52</p> <p>3.6.4.3 Agricultural Crops 53</p> <p>3.6.5 Applications in Heritage Preservation 53</p> <p>3.7 Conclusions 54</p> <p>Acknowledgments 55</p> <p>References 55</p> <p><b>4 Controllable Generation of Renewable Nanofibrils from Green Materials and Their Application in Nanocomposites 61<br /></b><i>Jinyou Lin, Xiaran Miao, Xiangzhi Zhang and Fenggang Bian</i></p> <p>4.1 Introduction 61</p> <p>4.2 Generation of CNF from Jute Fibers 63</p> <p>4.2.1 Experimental Section 63</p> <p>4.2.2 Results and Discussion 64</p> <p>4.2.3 Short Summary 71</p> <p>4.3 Controllable Generation of CNF from Jute Fibers 72</p> <p>4.3.1 Experimental Section 73</p> <p>4.3.2 Results and Discussion 74</p> <p>4.3.3 Short Summary 86</p> <p>4.4 CNF Generation from Other Nonwood Fibers 86</p> <p>4.4.1 Experiments Details 86</p> <p>4.4.1 Results and Discussion 88</p> <p>4.4.3 Summary 96</p> <p>4.5 Applications in Nanocomposites 97</p> <p>4.5.1 CNF-Reinforced Polymer Composite 97</p> <p>4.5.2 Surface Coating as Barrier 100</p> <p>4.5.3 Assembled into Microfiber and Film 101</p> <p>4.6 Conclusions and Perspectives 102</p> <p>Acknowledgments 103</p> <p>References 103</p> <p><b>5 Nanocellulose and Nanocellulose Composites: Synthesis, Characterization, and Potential Applications 109<br /></b><i>Ming-Guo Ma, Yan-Jun Liu and Yan-Yan Dong</i></p> <p>5.1 Introduction 109</p> <p>5.2 Nanocellulose 110</p> <p>5.3 Nanocellulose Composites 117</p> <p>5.3.1 Hydrogels Based on Nanocellulose Composites 117</p> <p>5.3.2 Aerogels Based on Nanocellulose Composites 120</p> <p>5.3.3 Electrode Materials Based on Nanocellulose Composites 124</p> <p>5.3.4 Photocatalytic Materials Based on Nanocellulose Composites 124</p> <p>5.3.5 Antibacterial Materials Based on Nanocellulose Composites 125</p> <p>5.3.6 Sustained Release Applications Based on Nanocellulose Composites 125</p> <p>5.3.7 Sensors Based on the Nanocellulose Composites 127</p> <p>5.3.8 Mechanical Properties 127</p> <p>5.3.9 Biodegradation Properties 128</p> <p>5.3.10 Virus Removal 129</p> <p>5.3.11 Porous Materials 129</p> <p>5.4 Summary 130</p> <p>Acknowledgments 131</p> <p>References 131</p> <p><b>6 Poly(Lactic Acid) Biopolymer Composites and Nanocomposites for Biomedicals and Biopackaging Applications 135<br /></b><i>S.C. Agwuncha, E.R. Sadiku, I.D. Ibrahim, B.A. Aderibigbe, S.J. Owonubi O. Agboola, A. Babul Reddy, M. Bandla, K. Varaprasad, B.L. Bayode and S.S. Ray</i></p> <p>6.1 Introduction 135</p> <p>6.2 Preparations of PLA 137</p> <p>6.3 Biocomposite 138</p> <p>6.4 PLA Biocomposites 139</p> <p>6.5 Nanocomposites 140</p> <p>6.6 PLA Nanocomposites 140</p> <p>6.7 Biomaterials 141</p> <p>6.8 PLA Biomaterials 142</p> <p>6.9 Processing Advantages of PLA Biomaterials 143</p> <p>6.10 PLA as Packaging Materials 145</p> <p>6.11 Biomedical Application of PLA 146</p> <p>6.12 Medical Implants 146</p> <p>6.13 Some Clinical Applications of PLA Devices 147</p> <p>6.13.1 Fibers 147</p> <p>6.13.2 Meshes 149</p> <p>6.13.3 Bone Fixation Devices 150</p> <p>6.13.4 Stress-Shielding Effect 151</p> <p>6.13.5 Piezoelectric Effect 151</p> <p>6.13.6 Screws, Pins, and Rods 152</p> <p>6.13.7 Plates 153</p> <p>6.13.8 Microspheres, Microcapsules, and Thin Coatings 154</p> <p>6.14 PLA Packaging Applications 155</p> <p>6.15 Conclusion 156</p> <p>References 157</p> <p><b>7 Impact of Nanotechnology on Water Treatment: Carbon Nanotube and Graphene 171<br /></b><i>Mohd Amil Usmani, Imran Khan, Aamir H. Bhat and M.K. Mohamad Haafiz</i></p> <p>7.1 Introduction 171</p> <p>7.2 Threats to Water Treatment 173</p> <p>7.3 Nanotechnology in Water Treatment 173</p> <p>7.3.1 Nanomaterials for Water Treatment 175</p> <p>7.3.2 Nanomaterials and Membrane Filtration 176</p> <p>7.3.3 Metal Nanostructured Materials 178</p> <p>7.3.4 Naturally Occurring Materials 179</p> <p>7.3.5 Carbon Nano Compounds 180</p> <p>7.3.5.1 Carbon Nanotube Membranes for Water Purification 181</p> <p>7.3.5.2 Carbon Nanotubes as Catalysts or Co-Catalysts 185</p> <p>7.3.5.3 Carbon Nanotubes in Photocatalysis 186</p> <p>7.3.5.4 Carbon Nanotube Filters as Anti-Microbial Materials 188</p> <p>7.3.5.5 Carbon Nanotube Membranes for Seawater Desalination 191</p> <p>7.4 Polymer Nanocomposites 192</p> <p>7.4.1 Graphene-Based Nanomaterials for Water Treatment Membranes 192</p> <p>7.4.2 Dendrimers 193</p> <p>7.5 Global Impact of Nanotechnology and Human Health 195</p> <p>7.6 Conclusions 196</p> <p>Acknowledgments 196</p> <p>References 197</p> <p><b>8 Nanomaterials in Energy Generation 207<br /></b><i>Paulraj Manidurai and Ramkumar Sekar</i></p> <p>8.1 Introduction 207</p> <p>8.1.1 Increasing of Surface Energy and Tension 209</p> <p>8.1.2 Decrease of Thermal Conductivity 209</p> <p>8.1.3 The Blue Shift Effect 210</p> <p>8.2 Applications of Nanotechnology in Medicine and Biology 211</p> <p>8.3 In Solar Cells 211</p> <p>8.3.1 Dye-Sensitized Solar Cell 212</p> <p>8.3.2 Composites from Renewable Materials for Photoanode 213</p> <p>8.3.3 Composites from Renewable Materials for Electrolyte 214</p> <p>8.3.4 Composites from Renewable Materials for Organic Solar Cells 215</p> <p>8.4 Visible-Light Active Photocatalyst 216</p> <p>8.5 Energy Storage 217</p> <p>8.5.1 Thermal Energy Storage 217</p> <p>8.5.2 Electrochemical Energy Storage 217</p> <p>8.6 Biomechanical Energy Harvest and Storage Using Nanogenerator 218</p> <p>8.7 Nanotechnology on Biogas Production 220</p> <p>8.7.1 Impact of Metal Oxide Nanoadditives on the Biogas Production 223</p> <p>8.8 Evaluation of Antibacterial and Antioxidant Activities Using Nanoparticles 223</p> <p>8.8.1 Antibacterial Activity 223</p> <p>8.8.2 Antioxidant Activity 224</p> <p>8.9 Conclusion 224</p> <p>References 224</p> <p><b>9 Sustainable Green Nanocomposites from Bacterial Bioplastics for Food-Packaging Applications 229<br /></b><i>Ana M. Díez-Pascual</i></p> <p>9.1 Introduction 229</p> <p>9.2 Polyhydroxyalkanoates: Synthesis, Structure, Properties, and Applications 231</p> <p>9.2.1 Synthesis 231</p> <p>9.2.2 Structure 232</p> <p>9.2.3 Properties 233</p> <p>9.2.4 Applications 234</p> <p>9.3 ZnO Nanofillers: Structure, Properties, Synthesis, and Applications 235</p> <p>9.3.1 Structure 235</p> <p>9.3.2 Properties 235</p> <p>9.3.3 Synthesis 236</p> <p>9.3.4 Applications 237</p> <p>9.4 Materials and Nanocomposite Processing 239</p> <p>9.5 Characterization of PHA-Based Nanocomposites 239</p> <p>9.5.1 Morphology 239</p> <p>9.5.2 Crystalline Structure 241</p> <p>9.5.3 FTIR Spectra 242</p> <p>9.5.4 Crystallization and Melting Behavior 243</p> <p>9.5.5 Thermal Stability 244</p> <p>9.5.6 Dynamic Mechanical Properties 245</p> <p>9.5.7 Static Mechanical Properties 247</p> <p>9.5.8 Barrier Properties 249</p> <p>9.5.9 Migration Properties 250</p> <p>9.5.10 Antibacterial Properties 251</p> <p>9.6 Conclusions and Outlook 253</p> <p>References 253</p> <p><b>10 PLA Nanocomposites: A Promising Material for Future from Renewable Resources 259<br /></b><i>Selvaraj Mohana Roopan, J. Fowsiya, D. Devi Priya and G. Madhumitha</i></p> <p>10.1 Introduction 259</p> <p>10.1.1 Nanotechnology 259</p> <p>10.1.2 Nanocomposites 260</p> <p>10.2 Biopolymers 260</p> <p>10.2.1 Structural Formulas of Few Biopolymers 261</p> <p>10.2.2 Polylactide Polymers 261</p> <p>10.3 PLA Production 262</p> <p>10.3.1 PLA Properties 263</p> <p>10.3.1.1 Rheological Properties 263</p> <p>10.3.1.2 Mechanical Properties 263</p> <p>10.4 PLA-Based Nanocomposites 264</p> <p>10.4.1 Preparation of PLA Nanocomposites 264</p> <p>10.4.2 Recent Research on PLA Nanocomposites 264</p> <p>10.4.3 Application of PLA Nanocomposites 265</p> <p>10.5 PLA Nanocomposites 265</p> <p>10.5.1 PLA/Layered Silicate Nanocomposite 266</p> <p>10.5.2 PLA/Carbon Nanotubes Nanocomposites 268</p> <p>10.5.3 PLA/Starch Nanocomposites 268</p> <p>10.5.4 PLA/Cellulose Nanocomposites 270</p> <p>10.6 Conclusion 271</p> <p>References 271</p> <p><b>11 Biocomposites from Renewable Resources: Preparation and Applications of Chitosan–Clay Nanocomposites 275<br /></b><i>A. Babul Reddy, B. Manjula, T. Jayaramudu, S.J. Owonubi, E.R. Sadiku, O. Agboola, V. Sivanjineyulu and Gomotsegang F. Molelekwa</i></p> <p>11.1 Introduction 276</p> <p>11.2 Structure, Properties, and Importance of Chitosan and its Nanocomposites 278</p> <p>11.3 Structure, Properties, and Importance of Montmorillonite 283</p> <p>11.4 Chitosan–Clay Nanocomposites 284</p> <p>11.5 Preparation Chitosan–Clay Nanocomposites 286</p> <p>11.6 Applications of Chitosan–Clay Nanocomposites 290</p> <p>11.6.1 Food-Packaging Applications 290</p> <p>11.6.2 Electroanalytical Applications 291</p> <p>11.6.3 Tissue-Engineering Applications 292</p> <p>11.6.4 Electrochemical Sensors Applications 292</p> <p>11.6.5 Wastewater Treatment Applications 293</p> <p>11.6.6 Drug Delivery Systems 294</p> <p>11.7 Conclusions 295</p> <p>Acknowledgment 296</p> <p>References 296</p> <p><b>12 Nanomaterials: An Advanced and Versatile Nanoadditive for Kraft and Paper Industries 305<br /></b><i>Nurhidayatullaili Muhd Julkapli, Samira Bagheri and Negar Mansouri</i></p> <p>12.1 An Overview: Paper Industries 305</p> <p>12.1.1 Manufacturing: Paper Industries 306</p> <p>12.1.2 Nanotechnology 306</p> <p>12.1.3 Nanotechnology: Paper Industries 307</p> <p>12.2 Nanobleaching Agents: Paper Industries 307</p> <p>12.2.1 Nano Calcium Silicate Particle 307</p> <p>12.3 Nanosizing Agents: Paper Industries 308</p> <p>12.3.1 Nanosilica/Hybrid 308</p> <p>12.3.2 Nano Titanium Oxide/Hybrid 308</p> <p>12.4 Nano Wet/Dry Strength Agents: Paper Industries 309</p> <p>12.4.1 Nanocellulose 309</p> <p>12.5 Nanopigment: Paper Industries 311</p> <p>12.5.1 Nanokaolin 312</p> <p>12.5.2 Nano ZnO/Hybrid 312</p> <p>12.5.3 Nanocarbonate 313</p> <p>12.6 Nanoretention Agents: Paper Industries 313</p> <p>12.6.1 Nanozeolite 313</p> <p>12.6.2 Nano TiO<sub>2</sub> 313</p> <p>12.7 Nanomineral Filler: Paper Industries 314</p> <p>12.7.1 Nanoclay 315</p> <p>12.7.2 Nano Calcium Carbonate 315</p> <p>12.7.3 Nano TiO<sub>2</sub>/Hybrid 315</p> <p>12.8 Nano Superconductor Agents: Paper Industries 315</p> <p>12.8.1 Nano ZnO 315</p> <p>12.9 Nanodispersion Agents: Paper Industries 316</p> <p>12.9.1 Nanopolymer 316</p> <p>12.10 Certain Challenges Associated with Nanoadditives 317</p> <p>12.11 Conclusion and Future Prospective 317</p> <p>Acknowledgments 318</p> <p>Conflict of Interests 318</p> <p>References 318</p> <p><b>13 Composites and Nanocomposites Based on Polylactic Acid 327<br /></b><i>Mihai Cosmin Corobea, Zina Vuluga, Dorel Florea, Florin Miculescu and Stefan Ioan Voicu</i></p> <p>13.1 Introduction 327</p> <p>13.2 Obtaining Composites and Nanocomposite Based on PLA 329</p> <p>13.2.1 Obtaining-Properties Aspects for Composites Based on PLA 332</p> <p>13.2.2 Obtaining-Properties Aspects for Nanocomposite Based on PLA 336</p> <p>13.2.3 Applications 351</p> <p>13.3 Conclusions 352</p> <p>Acknowledgment 353</p> <p>References 353</p> <p><b>14 Cellulose-Containing Scaffolds Fabricated by Electrospinning: Applications in Tissue Engineering and Drug Delivery 361<br /></b><i>Alex López-Córdoba, Guillermo R. Castro and Silvia Goyanes</i></p> <p>14.1 Introduction 361</p> <p>14.2 Cellulose: Structure and Major Sources 362</p> <p>14.3 Cellulose Nanofibers Fabricated by Electrospinning 364</p> <p>14.3.1 Electrospinning Set-Up 364</p> <p>14.3.2 Modified Electrospinning Processes 365</p> <p>14.3.3 Electrospinnability of Cellulose and its Derivatives 366</p> <p>14.4 Cellulose-Containing Nanocomposite Fabricated by Electrospinning 369</p> <p>14.4.1 Electrospun Nanocomposites Reinforced with Nanocellulosic Materials 370</p> <p>14.4.2 Electrospun Nanocomposites Based on Blends of Cellulose or its Derivatives with Nanoparticles 370</p> <p>14.4.3 Electrospun Nanocomposites Based on Cellulose/Polymer Blends 373</p> <p>14.4.4 Electrospun All-Cellulose Composites 374</p> <p>14.5 Applications of Cellulose-Containing Electrospun Scaffolds in Tissue Engineering 375</p> <p>14.6 Cellulose/Polymer Electrospun Scaffolds for Drug Delivery 379</p> <p>14.7 Concluding Remarks and Future Perspectives 382</p> <p>Acknowledgments 382</p> <p>References 382</p> <p><b>15 Biopolymer-Based Nanocomposites for Environmental Applications 389<br /></b><i>Ibrahim M. El-Sherbiny and Isra H. Ali</i></p> <p>15.1 Introduction 389</p> <p>15.1.1 Classification of Biopolymers According to Their Origin 390</p> <p>15.1.2 Classification of Biopolymers According to Their Structure 390</p> <p>15.1.3 Biopolymers as Promising Eco-Friendly Materials 390</p> <p>15.2 Biopolymers: Chemistry and Properties 391</p> <p>15.2.1 Polysaccharides 391</p> <p>15.2.1.1 Starch 391</p> <p>15.2.1.2 Cellulose 393</p> <p>15.2.1.3 Chitin 395</p> <p>15.2.2 Alginate 397</p> <p>15.2.2.1 Origin 397</p> <p>15.2.3 Proteins 398</p> <p>15.2.3.1 Albumin 398</p> <p>15.2.3.2 Collagen 398</p> <p>15.2.3.3 Gelatin 399</p> <p>15.2.3.4 Silk Proteins 399</p> <p>15.2.3.5 Keratin 400</p> <p>15.2.4 Microbial Polyesters 400</p> <p>15.2.4.1 Polyhydroxylalkanoates 400</p> <p>15.3 Preparation Techniques of Polymer Nanocomposites 400</p> <p>15.3.1 Direct Compounding 400</p> <p>15.3.2 <i>In Situ </i>Synthesis 401</p> <p>15.3.3 Other Techniques 402</p> <p>15.3.3.1 Electrospinning 403</p> <p>15.3.3.2 Self-Assembly 403</p> <p>15.3.3.3 Phase Separation 403</p> <p>15.3.3.4 Template Synthesis 403</p> <p>15.4 Characterization of Polymer Nanocomposites 403</p> <p>15.5 Environmental Application of Biopolymers-Based Nanocomposites 404</p> <p>15.5.1 Pollutants Removal: Catalytic and Redox Degradation 404</p> <p>15.5.1.1 Semiconductor Nanoparticles 405</p> <p>15.5.1.2 Zero-Valent Metals Nanoparticles 405</p> <p>15.5.1.3 Bimetallic Nanoparticles 406</p> <p>15.5.2 Pollutants Removal: Adsorption 406</p> <p>15.5.3 Pollutants Sensing 407</p> <p>15.5.4 Biopolymers-Based Nanocomposites in Green Chemistry 407</p> <p>15.6 Conclusion and Future Aspects 409</p> <p>References 409</p> <p><b>16 Calcium Phosphate Nanocomposites for Biomedical and Dental Applications: Recent Developments 423<br /></b><i>Andy H. Choi and Besim Ben-Nissan</i></p> <p>16.1 Introduction 423</p> <p>16.2 Hydroxyapatite 426</p> <p>16.3 Calcium Phosphate-Based Nanocomposite Coatings 428</p> <p>16.3.1 Collagen 428</p> <p>16.3.2 Chitosan 429</p> <p>16.3.3 Liposomes 430</p> <p>16.3.4 Synthetic Polymers 430</p> <p>16.4 Calcium Phosphate-Based Nanocomposite Scaffolds for Tissue Engineering 431</p> <p>16.4.1 Calcium Phosphate–Chitosan Nanocomposites 433</p> <p>16.4.2 Calcium Phosphate–Collagen Nanocomposites 434</p> <p>16.4.3 Calcium Phosphate–Silk Fibroin Nanocomposites 436</p> <p>16.4.4 Calcium Phosphate–Cellulose Nanocomposites 437</p> <p>16.4.5 Calcium Phosphate–Synthetic Polymer Nanocomposites 437</p> <p>16.5 Calcium Phosphate-Based Nanocomposite Scaffolds for Drug Delivery 438</p> <p>16.6 Concluding Remarks 443</p> <p>References 444</p> <p><b>17 Chitosan–Metal Nanocomposites: Synthesis, Characterization, and Applications 451<br /></b><i>Vinod Saharan, Ajay Pal, Ramesh Raliya and Pratim Biswas</i></p> <p>17.1 Introduction 451</p> <p>17.2 Chitosan: A Promising Biopolymer 452</p> <p>17.2.1 Degree of Deacetylation 453</p> <p>17.2.2 Chitosan Depolymerization 453</p> <p>17.3 Chitosan-Based Nanomaterials 454</p> <p>17.3.1 Synthesis of Chitosan-Based Nanomaterials 455</p> <p>17.3.1.1 Ionic Gelation Method 455</p> <p>17.4 Chitosan–Metal Nanocomposites 456</p> <p>17.4.1 Chitosan–Zn Nanocomposite 456</p> <p>17.4.2 Chitosan–Cu Nanocomposite 456</p> <p>17.4.3 Application of Cu and Zn–Chitosan–Cu Nanocomposite 459</p> <p>17.5 Other Natural Biopolymer in Comparison with Chitosan 461</p> <p>17.6 Conclusion 462</p> <p>References 462</p> <p><b>18 Multicarboxyl-Functionalized Nanocellulose/Nanobentonite Composite for the Effective Removal and Recovery of Uranium (VI), Thorium (IV), and Cobalt (II) from Nuclear Industry Effluents and Sea Water 465<br /></b><i>T.S. Anirudhan and J.R. Deepa</i></p> <p>18.1 Introduction 465</p> <p>18.2 Materials and Methods 468</p> <p>18.2.1 Materials 468</p> <p>18.2.2 Equipment and Methods of Characterization 468</p> <p>18.2.3 Preparation of Adsorbent 468</p> <p>18.2.4 Adsorption Experiments 469</p> <p>18.2.5 Desorption Experiments 470</p> <p>18.2.6 Grafting Density 470</p> <p>18.2.7 Determination of Functional Groups 470</p> <p>18.2.8 Point of Zero Charge 471</p> <p>18.3 Results and Discussion 471</p> <p>18.3.1 FTIR Analysis 471</p> <p>18.3.2 XRD Analysis 473</p> <p>18.3.3 Point of Zero Charge, Degree of Grafting, and –COOH</p> <p>Determination 474</p> <p>18.3.4 Thermogravimetric Analysis 475</p> <p>18.3.5 Effect of pH on Metal Ions Adsorption 475</p> <p>18.3.6 Adsorption Kinetics 477</p> <p>18.3.7 Adsorption Isotherm 479</p> <p>18.3.8 Adsorption Thermodynamics 480</p> <p>18.3.9 Reuse of the Adsorbent 481</p> <p>18.3.10 Test of the Adsorbent with Nuclear Industry Wastewater and Sea Water 482</p> <p>18.4 Conclusions 483</p> <p>Acknowledgments 483</p> <p>References 483</p>
<p><b>Vijay Kumar Thakur </b>is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.</p> <p><b>Manju Kumar Thakur </b>has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials. <p><b>Michael R. Kessler </b>is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials </i>comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The <i>Handbook</i> comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials.</p> <p>Volume 8 is solely focused on the <i>Nanocomposites: Advanced Applications</i>. Some of the important topics include but not limited to: Virgin and recycled polymers applied to advanced nanocomposites; biodegradable polymer–carbon nanotube composites for water and wastewater treatment; eco-friendly nanocomposites of chitosan with natural extracts, antimicrobial agents, and nanometals; controllable generation of renewable nanofibrils from green materials and their application in nanocomposites; nanocellulose and nanocellulose composites; poly(lactic acid) biopolymer composites and nanocomposites for biomedical and biopackaging applications; impact of nanotechnology in water treatment: carbon nanotube and graphene; nanomaterials in energy generation; sustainable green nanocomposites from bacterial bioplastics for food-packaging applications; PLA nanocomposites: a promising material for future from renewable resources; biocomposites from renewable resources: preparation and applications of chitosan–clay nanocomposites; nanomaterials: an advanced and versatile nanoadditive for kraft and paper industries; composites and nanocomposites based on polylactic acid obtaining; cellulose-containing scaffolds fabricated by electrospinning: applications in tissue engineering and drug delivery; biopolymer-based nanocomposites for environmental applications; calcium phosphate nanocomposites for biomedical and dental applications: recent developments; chitosan–metal nanocomposites: synthesis, characterization, and applications; multi-carboxyl functionalized nanocellulose/nanobentonite composite for the effective removal and recovery of metal ions; biomimetic gelatin nanocomposite as a scaffold for bone tissue repair; natural starches-blended ionotropically gelled microparticles/beads for sustained drug release and ferrogels: smart materials for biomedical and remediation applications.</p> <p><b>Audience</b><br />This valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €