Details

Handbook of Composites from Renewable Materials, Nanocomposites


Handbook of Composites from Renewable Materials, Nanocomposites

Science and Fundamentals
Handbook of Composites from Renewable Materials Volume 7

von: Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler

242,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 06.04.2017
ISBN/EAN: 9781119224464
Sprache: englisch
Anzahl Seiten: 736

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials</i> comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials.</p> <p>Volume 7 is solely focused on the "<i>Nanocomposites: Science and Fundamentals</i>" of renewable materials. Some of the important topics include but not limited to: Preparation, characterization, and applications of nanomaterials from renewable resources; hydrogels and its nanocomposites from renewable resources: preparation of chitin-based nanocomposite materials through gelation with ionic liquid; starch-based bionanocomposites; biorenewable nanofiber and nanocrystal; investigation of wear characteristics of dental composite reinforced with rice husk-derived nanosilica filler particles; performance of regenerated cellulose/vermiculite nanocomposites fabricated via ionic liquid; preparation, structure, properties, and interactions of the PVA/cellulose composites; green composites with cellulose nanoreinforcements; biomass composites from bamboo-based micro/nanofibers; synthesis and medicinal properties of polycarbonates and resins from renewable sources; nanostructured polymer composites with modified carbon nanotubes; organic–inorganic nanocomposites derived from polysaccharides; natural polymer-based nanocomposites; cellulose whisker-based green polymer composites; poly (lactic acid) nanocomposites reinforced with different additives; nanocrystalline cellulose; halloysite-based bionanocomposites; nanostructurated composites based on biodegradable polymers and silver nanoparticles; starch-based biomaterials and nanocomposites; green nanocomposites based on PLA and natural organic fillers; and chitin and chitosan-based nanocomposites.</p>
<p>Preface xxi</p> <p><b>1 Preparation, Characterization, and Applications of Nanomaterials (Cellulose, Lignin, and Silica) from Renewable (Lignocellulosic) Resources 1<br /></b><i>K.G. Satyanarayana, Anupama Rangan, V.S. Prasad and Washington Luiz Esteves Magalhaes</i></p> <p>1.1 Introduction 2</p> <p>1.1.1 Cellulose and Nanocellulose 3</p> <p>1.1.1.1 Types of Nanocellulose 5</p> <p>1.1.2 Lignin and Nanolignin 7</p> <p>1.1.3 Silica and Nanosilica 7</p> <p>1.2 Preparation of Nanomaterials 10</p> <p>1.2.1 Nanocellulose from Lignocellulosic Materials 10</p> <p>1.2.1.1 Mechanical Shearing and Grinding 11</p> <p>1.2.1.2 Steam Explosion/High-Pressure Homogenization 12</p> <p>1.2.1.3 Chemical Methods (Acid Hydrolysis, Alkaline Treatment and Bleaching) 16</p> <p>1.2.1.4 Ultrasonication 17</p> <p>1.2.1.5 Other Methods 18</p> <p>1.2.1.6 Functionalized Nanocellulose from Fibers 20</p> <p>1.2.2 Nanolignin 21</p> <p>1.2.2.1 Precipitation Method 22</p> <p>1.2.2.2 Chemical Modification 22</p> <p>1.2.2.3 Electro Spinning Followed by Surface Modification 22</p> <p>1.2.2.4 Freeze Drying Followed by Thermal Stabilization and Carbonization 22</p> <p>1.2.2.5 Supercritical Antisolvent Technology 23</p> <p>1.2.2.6 Chemomechanical Methods 23</p> <p>1.2.2.7 Nanolignin by Self-Assembly 23</p> <p>1.2.2.8 Lignin Nanocontainers by Miniemulsion Method 23</p> <p>1.2.2.9 Template-Mediated Synthesis 24</p> <p>1.2.3 Nanosilica 25</p> <p>1.2.3.1 Nanosilica Obtained from Plants 25</p> <p>1.2.3.2 Enzymatic Crystallization of Amorphous Nanosilica 27</p> <p>1.3 Characterization of Nanomaterials 27</p> <p>1.3.1 Characterization of Nanocellulose 29</p> <p>1.3.1.1 Structure and Morphology of NC 29</p> <p>1.3.1.2 Physical Properties (Dimensions, Density, Electrical, Crystallinity, and Any Other) 33</p> <p>1.3.1.3 Mechanical Properties 36</p> <p>1.3.2 Characterization of Lignin Nanoparticles 37</p> <p>1.3.2.1 Morphology of Lignin Nanoparticles 38</p> <p>1.3.2.2 Thermal Analysis 39</p> <p>1.3.3 Other Methods 39</p> <p>1.3.4 Characterization of Nanosilica 39</p> <p>1.4 Applications and Market Aspects 45</p> <p>1.4.1 Nanocellulose 45</p> <p>1.4.1.1 Biomedical Applications 46</p> <p>1.4.1.2 Dielectric Materials 46</p> <p>1.4.1.3 In Composite Manufacturing for Various Applications 46</p> <p>1.4.1.4 Advanced Functional Materials 47</p> <p>1.4.2 Nanolignin 49</p> <p>1.4.3 Nanosilica 51</p> <p>1.4.3.1 In Composites 51</p> <p>1.4.3.2 Nanosilica in Nacre Composite 52</p> <p>1.4.3.3 Encapsulation of Living Cells by Nanosilica 52</p> <p>1.5 Concluding Remarks and Challenges Ahead 54</p> <p>Acknowledgments 55</p> <p>References 55</p> <p><b>2 Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications 67<br /></b><i>B. Manjula, A. Babul Reddy, T. Jayaramudu, E.R. Sadiku, S.J. Owonubi, Oluranti Agboola and Tauhami Mokrani</i></p> <p>2.1 Introduction 67</p> <p>2.2 Hydrogels from Renewable Resources 71</p> <p>2.3 Hydrogel Technical Features 72</p> <p>2.4 Nanocomposite Hydrogels 72</p> <p>2.4.1 Polymer-Clay-Based Nanocomposite Hydrogels 75</p> <p>2.4.2 Poly(ethylene Oxide)–Silicate Nanocomposite Hydrogels 76</p> <p>2.4.3 Poly(acryl Amide) and Poly(vinyl Alcohol)–Silicate-Based Nanocomposite Hydrogels 77</p> <p>2.5 Nanocomposite Hydrogels with Natural Polymers 79</p> <p>2.6 Classifications of Hydrogels 80</p> <p>2.7 Applications of Hydrogels as Biomaterials 82</p> <p>2.7.1 Hydrogels for Drug Delivery Applications 82</p> <p>2.7.2 Hydrogels for Tissue-Engineering Scaffolds 84</p> <p>2.7.3 Hydrogels for Contact Lens 85</p> <p>2.7.4 Hydrogels for Cell Encapsulation 85</p> <p>2.7.5 Artificial Muscles and Nerve Regeneration 86</p> <p>2.8 Conclusions 87</p> <p>Acknowledgment 88</p> <p>References 88</p> <p><b>3 Preparation of Chitin-Based Nanocomposite Materials Through Gelation with Ionic Liquid 97<br /></b><i>Kazuya Yamamoto and Jun-ichi Kadokawa</i></p> <p>3.1 Introduction 98</p> <p>3.2 Dissolution and Gelation of Chitin with Ionic Liquid 100</p> <p>3.3 Fabrication of Self-Assembled Chitin Nanofibers by Regeneration from the Chitin Ion Gels 103</p> <p>3.4 Preparation of Nanocomposite Materials from Chitin Nanofibers 104</p> <p>3.5 Conclusion 114</p> <p>References 115</p> <p><b>4 Starch-Based Bionanocomposites 121<br /></b><i>Abbas Dadkhah Tehrani, Masoumeh Parsamanesh and Ali Bodaghi</i></p> <p>4.1 Introduction 121</p> <p>4.2 Nanocomposites 122</p> <p>4.3 Starch Structural Features 123</p> <p>4.4 Starch-Based Bionanocomposites 124</p> <p>4.4.1 Starch Silicate Nanocomposites 125</p> <p>4.4.2 Starch/Chitosan Composites 126</p> <p>4.4.3 Starch Cellulose Nanocomposites 128</p> <p>4.4.4 Starch Nanocomposites with Other Nanofillers 129</p> <p>4.5 Starch Nanocrystal, Nanoparticle, and Nanocolloid Preparation and Modification Methods 131</p> <p>4.5.1 Starch Nanocrystals Preparation by Acid Hydrolysis Method 131</p> <p>4.5.2 Starch Nanocrystal Modification Methods 133</p> <p>4.5.2.1 Starch Nanocrystals Chemical Modification by Molecules with Low Molecular Weight 133</p> <p>4.5.2.2 Modification of Starch Nanocrystals via Surface Grafting of Polymers 133</p> <p>4.5.3 Starch Nanoparticle and Nanocolloid Preparation and Modification Methods 135</p> <p>4.6 Nano Starch as Fillers in Other Nanocomposites 140</p> <p>4.7 Biomedical Application 143</p> <p>4.8 Conclusion 144</p> <p>References 145</p> <p><b>5 Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites 155<br /></b><i>Linxin Zhong and Xinwen Peng</i></p> <p>5.1 Nanocellulose-Based and Nanocellulose-Reinforced Nanocomposite Hydrogels 156</p> <p>5.1.1 Gelling Performances of Nanocelluloses 157</p> <p>5.1.2 Nanocelluloses-Reinforced Nanocomposite Hydrogels 159</p> <p>5.2 Nanocellulose-Based Aerogels 166</p> <p>5.2.1 Preparation and Properties of Nanocellulose Aerogels 166</p> <p>5.2.2 Nanocellulose–Polymer Composite Aerogels 171</p> <p>5.2.3 Nanocellulose–Inorganic Nanocomposite Aerogels 176</p> <p>5.2.4 Nanocellulose–Nanocarbon Hybrid Aerogels 179</p> <p>5.3 Nanocellulose-Based Biomimetic and Conductive Nanocomposite Films 183</p> <p>5.3.1 Nanocellulose–Polymer Biomimetic Nanocomposite Films 183</p> <p>5.3.2 Nanocellulose–Inorganic Biomimetic Nanocomposite Films 187</p> <p>5.3.3 Nanocellulose–Nanocarbon Conductive Nanocomposite Films 190</p> <p>5.4 Chiral Nematic Liquid Crystal and its Nanocomposites with Unique Optical Properties 196</p> <p>5.4.1 CNC Chiral Nematic Performances 196</p> <p>5.4.2 CNC–Polymer Photonic Nanocomposites 199</p> <p>5.4.3 CNC–Inorganic Photonic Nanocomposites 202</p> <p>5.4.4 CNC-Templated Chiral Nematic Nanomaterials 204</p> <p>5.5 Spun Fibers from Nanocelluloses 207</p> <p>5.5.1 Spinning Performances of Nanocelluloses and Properties 207</p> <p>5.5.2 Nanocellulose–Polymer Spinning Nanocomposite Fibers 210</p> <p>5.5.3 Nanocellulose–Nanocarbons Spinning Nanocomposite Fibers 212</p> <p>5.6 Summary and Outlook 213</p> <p>References 215</p> <p><b>6 Investigation of Wear Characteristics of Dental Composite Reinforced with Rice Husk–Derived Nanosilica Filler Particles 227<br /></b><i>I.K. Bhat, Amar Patnaik and Shiv Ranjan Kumar</i></p> <p>6.1 Introduction 227</p> <p>6.2 Materials and Method 229</p> <p>6.2.1 Synthesis of Nanosilica Powder 229</p> <p>6.2.2 Materials and Fabrication Details 230</p> <p>6.2.3 Determination of Hardness 230</p> <p>6.2.4 Determination of Flexural Strength 231</p> <p>6.2.5 Determination of Wear 231</p> <p>6.2.6 Field Emission Scanning Electron Microscope 232</p> <p>6.3 Results and Discussion 232</p> <p>6.3.1 Effect of Vickers Hardness on the Dental Composite Filled with Silane-Treated Nanosilica 232</p> <p>6.3.2 Effect of Flexural Strength on the Dental Composite Filled with Silane-Treated Nanosilica 233</p> <p>6.3.3 Steady-State Condition for Wear Characterization in Food Slurry and Acidic Medium 233</p> <p>6.3.3.1 Effect of Chewing Load on Volumetric Wear Rate on Dental Composite 233</p> <p>6.3.3.2 Effect of Profile Speed on Volumetric Wear Rate of Dental Composite 235</p> <p>6.3.3.3 Effect of Chamber Temperature on Volumetric Wear Rate of Dental Composite 236</p> <p>6.3.4 Wear Analysis of Experimental Results by Taguchi Method and ANOVA Analysis 237</p> <p>6.3.4.1 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Food Slurry Using Taguchi and ANOVA 237</p> <p>6.3.4.2 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Citric Acid Using Taguchi and ANOVA 240</p> <p>6.3.5 Surface Morphology of Worn Surfaces Under Food Slurry and Citric Acid Condition 241</p> <p>6.3.6 Confirmation Experiment of Proposed Composites 243</p> <p>6.4 Conclusions 244</p> <p>Acknowledgments 245</p> <p>Nomenclature 245</p> <p>References 245</p> <p><b>7 Performance of Regenerated Cellulose Nanocomposites Fabricated via Ionic Liquid Based on Halloysites and Vermiculite 249<br /></b><i>Nurbaiti Abdul Hanid, Mat Uzir Wahit and Qipeng Guo</i></p> <p>7.1 Introduction 250</p> <p>7.1.1 Overview 250</p> <p>7.1.2 Cellulose Structure and Properties 250</p> <p>7.1.3 Regenerated Cellulose 251</p> <p>7.1.4 Conventional Solvent for Cellulose 251</p> <p>7.1.5 Dissolution of Cellulose in NMMO 252</p> <p>7.1.6 Cellulose Dissolution in Ionic Liquid 253</p> <p>7.1.7 Regenerated Cellulose Nanocomposites 255</p> <p>7.1.8 Halloysites 255</p> <p>7.1.9 Vermiculite 255</p> <p>7.2 Experimental 256</p> <p>7.2.1 Materials 256</p> <p>7.2.2 Sample Preparation 257</p> <p>7.2.2.1 The Preparation of Regenerated Cellulose via Ionic Liquid 257</p> <p>7.2.2.2 Preparation of Regenerated Cellulose Nanocomposites via Ionic Liquids 257</p> <p>7.2.3 Characterization of the Nanocomposites Films 257</p> <p>7.3 Results and Discussions 258</p> <p>7.3.1 XRD Patterns of RC Nanocomposites 258</p> <p>7.3.2 FTIR Spectra of RC Nanocomposites 259</p> <p>7.3.3 Mechanical Properties of RC Nanocomposites 261</p> <p>7.3.4 Morphology Analysis of the RC Nanocomposites 263</p> <p>7.3.4.1 Transmission Electron Micrographs Images Analysis 263</p> <p>7.3.4.2 Scanning Electron Microscopy Images Analysis 264</p> <p>7.3.5 Thermal Stability Analysis of RC Nanocomposites 265</p> <p>7.3.6 Water Absorption of RC Nanocomposites 267</p> <p>7.4 Conclusion 268</p> <p>Acknowledgments 269</p> <p>References 269</p> <p><b>8 Preparation, Structure, Properties, and Interactions of the PVA/Cellulose Composites 275<br /></b><i>Bai Huiyu</i></p> <p>8.1 PVA and Cellulose 275</p> <p>8.1.1 Polyvinyl Alcohol 275</p> <p>8.1.1.1 Molecular Weight and the Degree of Alcoholysis 275</p> <p>8.1.1.2 The Advantages and Disadvantages of PVA 276</p> <p>8.1.2 Cellulose 277</p> <p>8.1.2.1 Structure and Chemistry of Cellulose 277</p> <p>8.1.2.2 Source of Cellulose 278</p> <p>8.1.2.3 The Particle Types of Cellulose 278</p> <p>8.1.2.4 Properties of Cellulose 279</p> <p>8.1.2.5 Application of Cellulose 280</p> <p>8.1.3 PVA/Cellulose Composites 280</p> <p>8.1.3.1 The Properties of PVA/Cellulose Composites 280</p> <p>8.1.3.2 Application of PVA/Cellulose Composites 281</p> <p>8.2 The Bulk and Surface Modification of Cellulose Particles 281</p> <p>8.2.1 The Bulk Modification of Cellulose Particles 281</p> <p>8.2.1.1 Complex Modification 281</p> <p>8.2.1.2 Graft Polymerization 282</p> <p>8.2.2 The Surface Modification of Cellulose 283</p> <p>8.2.2.1 Chemical Surface Modification 283</p> <p>8.2.2.2 Physical Surface Modification 284</p> <p>8.3 The Methods and Technology of Preparation of the PVA/Cellulose Composites 284</p> <p>8.3.1 Solvent Casting 284</p> <p>8.3.2 Melt Processing 285</p> <p>8.3.3 Electrospun Fiber 285</p> <p>8.3.4 <i>In Situ </i>Production 286</p> <p>8.4 The Relationship between Structure and Properties of PVA/Cellulose Composites 286</p> <p>8.4.1 Interpenetrating Polymer Network 286</p> <p>8.4.2 Hydrogen-Bonding or Bond Network 287</p> <p>8.4.3 Chemical Cross-Linked Network 287</p> <p>8.5 The Effect of the Interaction between PVA and Cellulose on Properties of PVA/Cellulose Composites 288</p> <p>8.5.1 Characterization Methods for the Interaction between PVA and Cellulose 288</p> <p>8.5.1.1 Raman Spectroscopy 288</p> <p>8.5.1.2 Differential Scanning Calorimetry 288</p> <p>8.5.1.3 X-Ray Powder Diffraction 289</p> <p>8.5.1.4 Fourier Transform Infrared 289</p> <p>8.5.2 Interaction between PVA and Cellulose 290</p> <p>8.5.2.1 Molecular Interactions 290</p> <p>8.5.2.2 Covalent Interactions 290</p> <p>8.5.2.3 Nucleation of Cellulose 290</p> <p>8.6 Conclusions and Outlook 291</p> <p>References 291</p> <p><b>9 Green Composites with Cellulose Nanoreinforcements 299<br /></b><i>Denis Mihaela Panaitescu, Adriana Nicoleta Frone and Ioana Chiulan</i></p> <p>9.1 Introduction 299</p> <p>9.2 A Short Overview on Nanosized Cellulose 300</p> <p>9.3 General Aspects on Green Composites with Cellulose Nanoreinforcements 304</p> <p>9.4 Green Composites from Biopolyamides and Cellulose Nanoreinforcements 305</p> <p>9.5 Green Composites from Polylactide and Cellulose Nanoreinforcements 309</p> <p>9.5.1 General Aspects 309</p> <p>9.5.2 Processing Methods 310</p> <p>9.5.2.1 Solution Casting 310</p> <p>9.5.2.2 Melt Processing 311</p> <p>9.5.2.3 Other Processing Techniques 314</p> <p>9.5.3 Mechanical, Thermal, and Morphological Properties 314</p> <p>9.5.4 Applications 318</p> <p>9.6 Microbial Polyesters Nanocellulose Composites 319</p> <p>9.6.1 PHAs Biosynthesis 319</p> <p>9.6.2 General Overview on PHAs–Nanocellulose Composites 321</p> <p>9.6.3 Processing Strategies for the Preparation of PHAs–Cellulose Nanocomposites 321</p> <p>9.6.4 Morphological, Thermal, and Mechanical Characteristics of PHAs/Nanocellulose 323</p> <p>9.6.5 Biodegradability and Biocompatibility 327</p> <p>9.6.6 Applications 328</p> <p>9.7 Conclusions 328</p> <p>Acknowledgment 329</p> <p>References 329</p> <p><b>10 Biomass Composites from Bamboo-Based Micro/Nanofibers 339<br /></b><i>Haruo Nishida, Keisaku Yamashiro and Takayuki Tsukegi</i></p> <p>10.1 Introduction 339</p> <p>10.2 Bamboo Microfiber and Microcomposites 340</p> <p>10.2.1 Bamboo Fibrovascular Bundle Structure 340</p> <p>10.2.2 Preparation Methods of Short Bamboo Microfiber 341</p> <p>10.2.3 Preparation of sBμF with Super-Heated Steam 342</p> <p>10.2.3.1 SHS Treatment 342</p> <p>10.2.3.2 Characterization Methods of sBμF 342</p> <p>10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo 344</p> <p>10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo 345</p> <p>10.2.3.5 Classification of sBμF 348</p> <p>10.2.4 Preparation of sBμF/Plastic Microcomposites 349</p> <p>10.2.4.1 Mechanical and Physical Properties of sBμF/Plastic Microcomposites 349</p> <p>10.2.4.2 Melt Processability of sBμF/Plastic Microcomposites 350</p> <p>10.2.4.3 Electrical Properties of sBμF/Plastic Microcomposites 350</p> <p>10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite 352</p> <p>10.3.1 Nanofibrillation Technologies of Cellulose 352</p> <p>10.3.2 Nanofibrillation Technologies of Lignocellulose 352</p> <p>10.3.3 Reactive Processing for Nanofibrillation 353</p> <p>10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation 355</p> <p>10.3.5 Preparation of BLCNF/Plastic Nanocomposites 355</p> <p>10.3.6 Properties of BLCNF/Plastic Nanocomposites 356</p> <p>10.4 Conclusions 357</p> <p>References 358</p> <p><b>11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources 363<br /></b><i>Selvaraj Mohana Roopan, T.V. Surendra and G. Madhumitha</i></p> <p>11.1 Introduction 363</p> <p>11.2 Synthesis 365</p> <p>11.2.1 Chemical Synthesis of Polycarbonates 365</p> <p>11.2.2 Synthesis of Polycarbonate from Eugenol 365</p> <p>11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione 366</p> <p>11.2.4 Synthesis of Mesoporous PC–SiO<sub>2</sub> 367</p> <p>11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) 367</p> <p>11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) 368</p> <p>11.3 Polycarbonates from Renewable Resources 368</p> <p>11.3.1 Ethylene from Biomass 368</p> <p>11.3.2 Synthesis of Dianols <i>via </i>Microwave Degradation 369</p> <p>11.3.3 Glycerol Carbonates from Recyclable Catalyst 369</p> <p>11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses 370</p> <p>11.3.5 Liquid-Phase Synthesis of Polycarbonate 371</p> <p>11.4 Medicinal Properties 372</p> <p>11.4.1 Polycarbonates in Drug Delivery 372</p> <p>11.4.2 Polycarbonates in Gene Transformation 372</p> <p>11.4.3 Cytotoxicity Test of Polycarbonates 373</p> <p>11.4.4 Polycarbonates in Autoimmunity 374</p> <p>11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates 375</p> <p>11.5 Conclusion 376</p> <p>References 376</p> <p><b>12 Nanostructured Polymer Composites with Modified Carbon Nanotubes 381<br /></b><i>A.P. Kharitonov, A.G. Tkachev, A.N. Blohin, I.V. Burakova, A.E. Burakov, A.E. Kucherova and A.A. Maksimkin</i></p> <p>12.1 Introduction 382</p> <p>12.1.1 Polymer Materials and Their Application 382</p> <p>12.1.2 Carbon Nanotubes Application and Their Main Properties 387</p> <p>12.2 Experimental Methods 390</p> <p>12.2.1 Investigation of the CNTs Synthesis 390</p> <p>12.2.2 CNTs Treatment 395</p> <p>12.2.3 Composites Fabrication 395</p> <p>12.2.4 Testing Procedures 395</p> <p>12.3 Results and Discussion 396</p> <p>12.3.1 FTIR Spectroscopy 396</p> <p>12.3.2 Influence of Fluorination on the CNTs Specific Surface 396</p> <p>12.3.3 X-Ray Photoelectron Spectroscopy Study 396</p> <p>12.3.4 TGA of Virgin and Fluorinated CNTs 397</p> <p>12.3.5 SEM Data of Composites Fracture 397</p> <p>12.3.6 TGA and DSC of Composites 401</p> <p>12.3.7 Mechanical Properties of Composites 402</p> <p>12.3.7.1 Tensile Strength 402</p> <p>12.3.7.2 Flexural Strength 403</p> <p>12.4 Conclusion 403</p> <p>Acknowledgments 404</p> <p>References 404</p> <p><b>13 Organic–Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities 409<br /></b><i>Ana Barros-Timmons, Fabiane Oliveira and José A. Lopes-da-Silva</i></p> <p>13.1 Introduction 409</p> <p>13.2 Constituents 412</p> <p>13.2.1 Polysaccharides 412</p> <p>13.2.2 Inorganic Nanofillers 413</p> <p>13.3 Preparation of Polysaccharide-Derived Nanocomposites 414</p> <p>13.3.1 Surface Modification 414</p> <p>13.3.2 Addition of Components 416</p> <p>13.3.3 <i>In Situ </i>Preparation of Nanoparticles via Precursors 419</p> <p>13.4 Processing 421</p> <p>13.4.1 Plasticizers 422</p> <p>13.4.2 Conventional Processing Methods to Prepare Inorganic–Polysaccharide Nanocomposites 422</p> <p>13.4.3 Emerging Methods to Prepare Inorganic–Polysaccharide Nanocomposites 424</p> <p>13.5 Trends and Perspectives 426</p> <p>Acknowledgments 426</p> <p>References 427</p> <p><b>14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future 433<br /></b><i>Prasanta Baishya, Moon Mandal, Pankaj Gogoi and Tarun K. Maji</i></p> <p>14.1 Introduction 433</p> <p>14.2 Wood Polymer Nanocomposite 435</p> <p>14.3 Basic Components of Wood Polymer Nanocomposite 436</p> <p>14.4 Natural Polymer/Raw Material Used in Preparation of WPNC 436</p> <p>14.4.1 Starch 436</p> <p>14.4.2 Gluten 437</p> <p>14.4.3 Chitosan 438</p> <p>14.4.4 Vegetable Oil 439</p> <p>14.4.4.1 Chemical Modification of Vegetable Oil 440</p> <p>14.5 Wood 442</p> <p>14.6 Cross-Linker 443</p> <p>14.7 Modification of Natural Polymers 443</p> <p>14.7.1 Grafting of Starch 443</p> <p>14.7.2 Modification of Starch by Other Methods 444</p> <p>14.7.3 Plasticizer 445</p> <p>14.7.4 Nano-Reinforcing Agents 446</p> <p>14.7.4.1 Montmorillonite 446</p> <p>14.7.4.2 Metal Oxide Nanoparticles 447</p> <p>14.7.4.3 Carbon Nanotubes 448</p> <p>14.7.4.4 Nanocellulose 448</p> <p>14.8 Properties of Natural Polymer-Based Composites 449</p> <p>14.8.1 Mechanical Properties 449</p> <p>14.8.2 Thermal Properties 450</p> <p>14.8.3 Water Uptake and Dimensional Stability 450</p> <p>14.9 Conclusion and Future Prospects 451</p> <p>References 452</p> <p><b>15 Cellulose Whisker-Based Green Polymer Composites 461<br /></b><i>Silviya Elanthikkal, Tania Francis, C. Sangeetha and G. Unnikrishnan</i></p> <p>15.1 Cellulose: Discovery, Sources, and Microstructure 462</p> <p>15.1.1 Sources of Cellulose 462</p> <p>15.1.2 Microstructure of Cellulose 463</p> <p>15.2 Nanocellulose 466</p> <p>15.2.1 Acid Hydrolysis 467</p> <p>15.2.2 Mechanical Processes 470</p> <p>15.2.3 TEMPO-Mediated Oxidation 471</p> <p>15.2.4 Steam Explosion Method 472</p> <p>15.2.5 Enzymatic Hydrolysis 473</p> <p>15.2.6 Hydrolysis with Gaseous Acid 474</p> <p>15.2.7 Treatment with Ionic Liquid 474</p> <p>15.3 Polymer Composites 475</p> <p>15.3.1 Polymer Composite Fabrication Techniques 476</p> <p>15.3.1.1 Casting Evaporation Technique 476</p> <p>15.3.1.2 Extrusion 476</p> <p>15.3.1.3 Compression Molding 477</p> <p>15.3.1.4 Injection Molding 478</p> <p>15.3.2 Cellulose Whisker Composites: Literature-Based Discussion 478</p> <p>15.3.2.1 Latex-Based Composites 478</p> <p>15.3.2.2 Polar Polymer-Based Composites 479</p> <p>15.3.2.3 Nonpolar Polymer-Based Composites 479</p> <p>15.4 Applications of Cellulose Whisker Composites 483</p> <p>15.4.1 Packaging 484</p> <p>15.4.2 Automotive and Toys 484</p> <p>15.4.3 Electronics 484</p> <p>15.4.4 Biomedical Applications 485</p> <p>References 486</p> <p><b>16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives 495<br /></b><i>Ravi Babu Valapa, G. Pugazhenthi and Vimal Katiyar</i></p> <p>16.1 Introduction 495</p> <p>16.2 Biopolymers 497</p> <p>16.2.1 Classification of Biopolymers 497</p> <p>16.3 PLA Nanocomposites 502</p> <p>16.3.1 PLA–Clay Nanocomposites 502</p> <p>16.3.2 PLA–Carbonaceous Nanocomposites 507</p> <p>16.3.3 PLA-Bio Filler Composites 510</p> <p>16.3.4 PLA–Silica Nanocomposites 516</p> <p>16.4 Summary 516</p> <p>References 516</p> <p><b>17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials 523<br /></b><i>Samira Bagheri, Nurhidayatullaili Muhd Julkapli and Negar Mansouri</i></p> <p>17.1 Introduction: Natural Based Products 523</p> <p>17.2 Nanocellulose 524</p> <p>17.2.1 Nanocellulose: Properties 524</p> <p>17.2.1.1 Nanocellulose: Mechanical Properties 526</p> <p>17.2.1.2 Nanocellulose: Physical Properties 526</p> <p>17.2.1.3 Nanocellulose: Surface Chemistry Properties 529</p> <p>17.2.2 Nanocellulose: Synthesis Process 529</p> <p>17.2.2.1 Conventional Acid Hydrolysis Process 529</p> <p>17.2.3 Nanocellulose: Limitations 530</p> <p>17.2.3.1 Single Particles Dispersion 530</p> <p>17.2.3.2 Barrier Properties 530</p> <p>17.2.3.3 Permeability Properties 531</p> <p>17.3 Nanocellulose: Chemical Functionalization 531</p> <p>17.3.1 Organic Compounds Functionalization 532</p> <p>17.3.1.1 Molecular Functionalization 532</p> <p>17.3.1.2 Macromolecular Functionalization 536</p> <p>17.3.2 Nanocellulose: Inorganic Compounds Functionalization 539</p> <p>17.3.2.1 Nanocellulose-Titanium Oxide Functionalization 539</p> <p>17.3.2.2 Nanocellulose-Fluorine Functionalization 539</p> <p>17.3.2.3 Nanocellulose-Gold Functionalization 540</p> <p>17.3.2.4 Nanocellulose-Silver Functionalization 540</p> <p>17.3.2.5 Nanocellulose-Pd Functionalization 540</p> <p>17.3.2.6 Nanocellulose-CdS Functionalization 541</p> <p>17.4 Applications of Functionalized Nanocellulose 541</p> <p>17.4.1 Wastewater Treatment 541</p> <p>17.4.2 Biomedical Applications 542</p> <p>17.4.3 Biosensor and Bioimaging 542</p> <p>17.4.4 Catalysis 543</p> <p>17.5 Conclusion 543</p> <p>Acknowledgment 544</p> <p>References 544</p> <p><b>18 Halloysite-Based Bionanocomposites 557<br /></b><i>Giuseppe Lazzara, Marina Massaro, Stefana Milioto and Serena Riela</i></p> <p>18.1 Introduction 557</p> <p>18.2 Biodegradable Polymers 559</p> <p>18.2.1 Cellulose 559</p> <p>18.2.2 Chitosan 560</p> <p>18.2.3 Starch 561</p> <p>18.2.4 Alginate 562</p> <p>18.2.5 Pectin 562</p> <p>18.3 Natural Inorganic Filler: Halloysite Nanotubes 563</p> <p>18.3.1 Functionalization of HNTs 565</p> <p>18.3.1.1 Functionalization of External Surface 565</p> <p>18.3.1.2 Functionalization of the Lumen 567</p> <p>18.3.2 Composites Structured with Halloysite 568</p> <p>18.4 Bionanocomposites 569</p> <p>18.4.1 HNT-Biopolymer Nanocomposite Formation 569</p> <p>18.4.2 Properties of HNTs-Biopolymer Nanocomposites 570</p> <p>18.4.2.1 Bionanocomposites Surface Morphology 571</p> <p>18.4.2.2 Bionanocomposites Mechanical and Thermal Response 573</p> <p>18.5 Applications of HNT/Polysaccharide Nanocomposites 576</p> <p>18.6 Conclusions 578</p> <p>References 579</p> <p><b>19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles 585<br /></b><i>Oana Fufă, George Mihail Vlăsceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrjă, Bogdan Nicoară and Alexandru Mihai Grumezescu</i></p> <p>19.1 Introduction 585</p> <p>19.2 Silver Nanoparticles 586</p> <p>19.3 Applications of Silver Nanoparticles 588</p> <p>19.4 Silver Nanoparticle Composites 594</p> <p>19.4.1 <i>In situ </i>and <i>ex situ </i>Strategies for AgNPs-Based Composites with Polymer Matrix 594</p> <p>19.4.2 Other AgNPs Composites 599</p> <p>19.5 Applications of Silver Nanoparticles Composites 600</p> <p>19.5.1 Active Substance Delivery Composites 600</p> <p>19.5.2 Antimicrobial Composites 603</p> <p>19.6 Conclusions and Future Prospectives 607</p> <p>Acknowledgments 608</p> <p>References 608</p> <p><b>20 Starch-Based Biomaterials and Nanocomposites 623<br /></b><i>Arantzazu Valdés and María Carmen Garrigós</i></p> <p>20.1 Introduction 623</p> <p>20.2 Starch: Structure and Characteristics 625</p> <p>20.3 Applicability of Starch in Food Industry 627</p> <p>20.3.1 Starch Biomaterials: Films, Coatings, and Blends 629</p> <p>20.3.2 Reinforced Materials 631</p> <p>20.3.3 Starch Nanoparticles 632</p> <p>20.4 Conclusion 632</p> <p>References 633</p> <p><b>21 Green Nanocomposites-Based on PLA and Natural Organic Fillers 637<br /></b><i>Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio and Fiorenza Sutera</i></p> <p>21.1 Introduction 637</p> <p>21.2 Poly(lactic acid) (PLA) 638</p> <p>21.3 Natural Organic Nanofillers 640</p> <p>21.3.1 Cellulose 641</p> <p>21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA 643</p> <p>21.3.2 Chitin 645</p> <p>21.3.3 Starch 646</p> <p>21.4 Bionanocomposites Based on PLA 648</p> <p>21.4.1 PLA/cellulose Nanocomposites 648</p> <p>21.4.1.1 Preparation 648</p> <p>21.4.1.2 Properties 651</p> <p>21.4.1.3 Degradation 653</p> <p>21.4.2 PLA/chitin Nanocomposites 654</p> <p>21.4.2.1 Preparation 654</p> <p>21.4.2.2 Properties 655</p> <p>21.4.3 PLA/starch Nanocomposites 656</p> <p>21.4.3.1 Preparation 656</p> <p>21.4.3.2 Properties 657</p> <p>21.5 Conclusions 659</p> <p>References 659</p> <p><b>22 Chitin and Chitosan-Based (NANO) Composites 671<br /></b><i>André R. Fajardo, Antonio G. B. Pereira, Alessandro F. Martins, Alexandre T. Paulino, Edvani C. Muniz and You-Lo Hsieh</i></p> <p>22.1 Introduction 672</p> <p>22.1.1 Chitin 672</p> <p>22.1.2 Chitosan 673</p> <p>22.2 Chitin and Chitosan Properties and Processing 674</p> <p>22.3 Preparation and Characterization of Ct and Cs Composites: An Overview 675</p> <p>22.4 Ct- and Cs-Metal Composites 679</p> <p>22.5 Ct and Cs-Inorganic Composites 685</p> <p>22.5.1 Food Packaging 685</p> <p>22.5.2 Membranes 685</p> <p>22.5.3 Biomedical Uses 685</p> <p>22.5.4 Environmental Remediation 686</p> <p>22.6 Composites Based on Ct and Cs Whiskers 687</p> <p>22.7 Overview, Perspectives, and Conclusion 690</p> <p>References 691</p> <p>Index 701</p>
<p><b>Vijay Kumar Thakur </b>is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.</p> <p><b>Manju Kumar Thakur </b>has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials. <p><b>Michael R. Kessler </b>is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials </i>comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. <p>Volume 7 is solely focused on the "<i>Nanocomposites: Science and Fundamentals</i>" of renewable materials. Some of the important topics include but not limited to: Preparation, characterization, and applications of nanomaterials from renewable resources; hydrogels and its nanocomposites from renewable resources: preparation of chitin-based nanocomposite materials through gelation with ionic liquid; starch-based bionanocomposites; biorenewable nanofiber and nanocrystal; investigation of wear characteristics of dental composite reinforced with rice husk-derived nanosilica filler particles; performance of regenerated cellulose/vermiculite nanocomposites fabricated via ionic liquid; preparation, structure, properties, and interactions of the PVA/cellulose composites; green composites with cellulose nanoreinforcements; biomass composites from bamboo-based micro/nanofibers; synthesis and medicinal properties of polycarbonates and resins from renewable sources; nanostructured polymer composites with modified carbon nanotubes; organic–inorganic nanocomposites derived from polysaccharides; natural polymer-based nanocomposites; cellulose whisker-based green polymer composites; poly (lactic acid) nanocomposites reinforced with different additives; nanocrystalline cellulose; halloysite-based bionanocomposites; nanostructurated composites based on biodegradable polymers and silver nanoparticles; starch-based biomaterials and nanocomposites; green nanocomposites based on PLA and natural organic fillers; and chitin and chitosan-based nanocomposites. <p><b>Audience</b><BR>This valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €