Details

Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology


Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology


1. Aufl.

von: Majeti Narasimha Vara Prasad

234,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.06.2021
ISBN/EAN: 9781119670384
Sprache: englisch
Anzahl Seiten: 656

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn more about phytoremediation technology with this state-of-the-art resource from an internationally recognized editor and leader in his field</b></p> <p><i>The Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> discusses sustainable approaches to the removal of contaminants from the environment or the reduction of their toxicity. The distinguished editor has included resources from an internationally recognized group of academics who discuss strategies to increase the effectiveness of phytoremediation.</p> <p>Special attention is paid to the use of organic amendments to facilitate soil cleanup and the growth of phytoremediation plants. The book includes discussions of new remediation technologies, global trends in the environmental remediation industry, and the future challenges and opportunities likely to arise in the short and long term.</p> <p><i>The Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> provides a compelling case for the cost-effectiveness, aesthetics, and minimal environmental disturbance of phytoremediation. Topics covered include:</p> <ul> <li>A discussion of activated carbon from lignin, particularly its use as a sorbent for in situ remediation of contaminated sediments</li> <li>An exploration of fresh and mature organic amendments for phytoremediation of technosols contaminated with high concentrations of trace elements</li> <li>An examination of the revitalization of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost, and biochar</li> <li>A treatment of wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil</li> </ul> <p>Perfect for environmental engineers, environmental scientists, geologists, chemical engineers, and landscape engineers, <i>Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> is also an indispensable reference for scientists working in the green chemistry and technology industries, biochemical engineers, environmental regulators, and policy makers.</p>
<p>List of Contributors xvii</p> <p>Preface xxv</p> <p><b>Part I Global Scenario of Remediation and Combined Clean Biofuel Production </b><b>1</b></p> <p><b>1 Global Remediation Industry and Trends </b><b>3<br /></b><i>Majeti Narasimha Vara Prasad, Lander de Jesus Alves and Fabio Carvalho Nunes</i></p> <p>1.1 Introduction 3</p> <p>1.1.1 Rise of Phytoremediation 4</p> <p>1.1.2 The Phytoremediation Industry 5</p> <p>1.1.3 The Key Players in Global Remediation and Phytoremediation 10</p> <p>1.1.3.1 Markets by Sector 11</p> <p>1.1.3.2 Markets by Application 11</p> <p>1.1.3.3 Sizes of Market Sectors Potentially Available to Phytoremediation 11</p> <p>1.2 Global 12</p> <p>1.3 Mining in Latin America and Phytoremediation Possibilities 16</p> <p>Acknowledgements 23</p> <p>References 23</p> <p><b>2 Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production </b><b>29<br /></b><i>Martina Grifoni, Francesca Pedron, Meri Barbafieri, Irene Rosellini, Gianniantonio Petruzzelli and Elisabetta Franchi</i></p> <p>2.1 Introduction 29</p> <p>2.2 Bioenergy: The Role of Biomass 30</p> <p>2.3 Assisted Phytoremediation: Valorization of Biomass 33</p> <p>2.4 Assisted Phytoremediation-Bioenergy: An Integrated Approach 37</p> <p>2.5 Conclusions 43</p> <p>References 44</p> <p><b>Part II Biochar-Based Soil and Water Remediation </b><b>53</b></p> <p><b>3 Biochar – Production, Properties, and Service to Environmental Protection against Toxic Metals </b><b>55<br /></b><i>Monika Gałwa-Widera</i></p> <p>3.1 Introduction 55</p> <p>3.2 How to Produce Biochar 55</p> <p>3.3 Biochar Properties 57</p> <p>3.4 Biochar in the Service of Environmental Protection 59</p> <p>3.5 Soil Characteristics 59</p> <p>3.6 Environmental Hazards Caused by Heavy Metals 60</p> <p>3.7 Characteristics of Selected Heavy Metals 62</p> <p>3.8 Zinc 64</p> <p>3.9 Copper 64</p> <p>3.10 Lead 65</p> <p>3.11 Cadmium 66</p> <p>3.12 Soil Pollution 67</p> <p>3.13 What is Remediation and What is it for? 68</p> <p>3.14 Improving Soil Properties 69</p> <p>3.15 Removal of Impurities 69</p> <p>3.16 The Addition of Biochar to Contaminated Soils may be Such a Solution 70</p> <p>3.17 Summary 72</p> <p>References 73</p> <p><b>4 Biochar-based Water Treatment Systems for Clean Water Provision </b><b>77<br /></b><i>Dwiwahju Sasongko, David Gunawan and Antonius Indarto</i></p> <p>4.1 Introduction 77</p> <p>4.2 Synthesis of Biochar 77</p> <p>4.2.1 Pyrolysis Process 77</p> <p>4.2.2 Pyrolysis Technology 78</p> <p>4.3 Biochar Properties 80</p> <p>4.3.1 Biochar Surface Chemistry 80</p> <p>4.3.2 Pyrolysis Effect on Chemical Properties of Biochar 81</p> <p>4.3.3 Pyrolysis Effect on Physical Properties of Biochar 81</p> <p>4.4 Mechanism of Adsorption 82</p> <p>4.4.1 Heavy Metal Removal Mechanism 82</p> <p>4.4.2 Organic Contaminants Removal Mechanism 82</p> <p>4.4.3 Pathogenic Organism Removal Mechanism 83</p> <p>4.5 Factors Affecting Adsorption of Contaminants on Biochar 84</p> <p>4.5.1 Biochar Properties 84</p> <p>4.5.2 Post Treatment or Modification 85</p> <p>4.5.3 Solution pH 87</p> <p>4.5.4 Co-existed Ions 87</p> <p>4.5.5 Dosage of Adsorbents 87</p> <p>4.5.6 Temperature 87</p> <p>4.5.7 Contact Time 87</p> <p>4.5.8 Initial Concentration of Pollutants 88</p> <p>4.6 Biochar-Based Water Treatment Systems 88</p> <p>4.6.1 Biochar Supply 88</p> <p>4.6.2 Biochar Use 89</p> <p>4.6.3 Regeneration 90</p> <p>4.6.3.1 Thermal Regeneration 90</p> <p>4.6.3.2 Solvent Regeneration 93</p> <p>4.6.3.3 Microwave Irradiation Regeneration 94</p> <p>4.6.4 Supercritical Fluid Regeneration 94</p> <p>4.6.5 Sustainability of Biochar Utilization 95</p> <p>References 95</p> <p><b>5 Biochar for Wastewater Treatment </b><b>103<br /></b><i>Anna Kwarciak-Kozłowska and Renata Włodarczyk</i></p> <p>5.1 Biochar Production and Its Characteristics 103</p> <p>5.2 Modification of Biochar 105</p> <p>5.3 Comparison of Biochar with Activated Carbon 105</p> <p>5.4 Biochar Adsorption Mechanism 106</p> <p>5.5 Adsorption Kinetics of Aqueous-Phase Organic Compounds 108</p> <p>5.6 Influence of pH, Temperature, and Biochar Dose on the Adsorption Process 108</p> <p>5.7 Biochar Technology in Wastewater Treatment 110</p> <p>5.8 Summary 112</p> <p>Acknowledgment 112</p> <p>References 112</p> <p><b>6 Biochar for Bioremediation of Toxic Metals </b><b>119<br /></b><i>Renata Włodarczyk and Anna Kwarciak-Kozłowska</i></p> <p>6.1 The Idea of Using Biochar with the Assumption of Closed Circulation 119</p> <p>6.2 The Role of Biochar in Soil - General Information 120</p> <p>6.3 Biochar as a Sorbent – Physical and Structural Composition 121</p> <p>6.4 The Role of Biochar in Removing Heavy Metals from Soil 123</p> <p>6.5 Utilization of Selected Heavy Metals from Soil 123</p> <p>6.6 Mechanism of Heavy Metals-Biochar 124</p> <p>6.7 Summary 126</p> <p>Acknowledgment 126</p> <p>References 127</p> <p><b>7 Biochar Assisted Remediation of Toxic Metals and Metalloids </b><b>131<br /></b><i>Shalini Dhiman, Mohd Ibrahim, Kamini Devi, Neerja Sharma, Nitika Kapoor, Ravinderjit Kaur, Nandni Sharma, Raman Tikoria, Puja Ohri, Bilal Ahmad Mir and Renu Bhardwaj</i></p> <p>7.1 Introduction 131</p> <p>7.2 Biochar and its Remarkable Physical Chemical and Biological Properties 132</p> <p>7.2.1 Physical Properties of Biochar 132</p> <p>7.2.1.1 Density and Porosity 132</p> <p>7.2.1.2 Surface Area of Biochar 132</p> <p>7.2.1.3 Pore Volume and Pore Size Distribution 132</p> <p>7.2.1.4 Water Holding Capacity and Hydrophobicity 132</p> <p>7.2.1.5 Mechanical Stability 133</p> <p>7.2.2 Chemical Properties 133</p> <p>7.2.2.1 Atomic Ratios 133</p> <p>7.2.2.2 Elemental Composition 133</p> <p>7.2.2.3 Energy Content 133</p> <p>7.2.2.4 Fixed Carbon and Volatile Matter 134</p> <p>7.2.2.5 Presence of Functional Groups 134</p> <p>7.2.2.6 pH of Biochar 134</p> <p>7.2.2.7 Cation Exchange Capacity 134</p> <p>7.2.3 Biological Properties of Biochar 134</p> <p>7.2.3.1 Biochar as a Habitat for Soil Microorganisms 134</p> <p>7.2.3.2 Biochar as a Substrate for the Soil Biota 135</p> <p>7.3 Heavy Metal Pollutants 135</p> <p>7.4 Interactions between Biochar and Heavy Metal 136</p> <p>7.4.1 Types of Interactions Occurs between Biochar and Heavy Metals 136</p> <p>7.4.1.1 Direct Interaction 136</p> <p>7.4.1.2 Electrostatic Attractions 136</p> <p>7.4.1.3 Ion Exchange 137</p> <p>7.4.1.4 Complexation 137</p> <p>7.4.1.5 Precipitation 137</p> <p>7.4.1.6 Sorption 137</p> <p>7.4.1.7 Indirect Interactions 137</p> <p>7.4.1.8 Biochar Metal Interactions 138</p> <p>7.5 Biochar as a Bioremediator 138</p> <p>7.5.1 Bioremediation of Heavy Metals Pollutant by the Use of Microorganism and Biochar 139</p> <p>7.5.2 Bioremediation of Heavy Metal Pollutants by the Use of Plants and Biochar 140</p> <p>7.5.3 Bioremediation of Heavy Metals Pollutant through the Combination of Biochar, Plant, and Microorganism 143</p> <p>7.6 Application of Biochar in Bioremediation of Mining Area 143</p> <p>7.6.1 Application of Biochar in Bioremediation of Acid Mine Wastes 146</p> <p>7.6.2 Alkaline Tailing Soils 148</p> <p>7.7 Limitation of Biochar Amended Bioremediation 148</p> <p>7.7.1 Phytoextraction of Arsenic 149</p> <p>7.7.2 Phytoremediation of Sewage Sludge 150</p> <p>7.8 Conclusion 150</p> <p>References 150</p> <p><b>8 Use of Biochar as an Amendment for Remediation of Heavy Metal-Contaminated Soils </b><b>163<br /></b><i>Subodh Kumar Maiti and Dipita Ghosh</i></p> <p>8.1 Introduction 163</p> <p>8.2 Biochar Production Conditions 164</p> <p>8.3 Modification to Improve Remediation Potential of Biochar 165</p> <p>8.4 Mechanism of Metal Immobilization by Biochar 169</p> <p>8.4.1 Direct Biochar–Heavy Metal Interaction 170</p> <p>8.4.1.1 Electrostatic Attraction 170</p> <p>8.4.1.2 Ion Exchange 170</p> <p>8.4.1.3 Complexation 170</p> <p>8.4.1.4 Precipitation 170</p> <p>8.4.2 Indirect Biochar–Heavy Metals–Soils Interactions 171</p> <p>8.4.2.1 Impact on Soil pH, CEC, and Organic Carbon Content, thus Metal Mobility 171</p> <p>8.4.2.2 Impacts on Soil Mineral Composition and Metal Mobility by Biochar Application 171</p> <p>8.5 Immobilization of Heavy Metals by Biochar 171</p> <p>8.6 Application of Biochar for Immobilization of Heavy Metals and Enhancement of Plant Growth 172</p> <p>8.7 Conclusions 173</p> <p>References 173</p> <p><b>9 Biochars for Remediation of Recalcitrant Soils to Enhance Agronomic Performance </b><b>179<br /></b><i>Anna Grobelak and Marta Jaskulak</i></p> <p>9.1 Introduction 179</p> <p>9.2 Biochar Properties 179</p> <p>9.2.1 Production 179</p> <p>9.2.2 Properties 180</p> <p>9.3 Application and Impact of Biochar on Soils 183</p> <p>9.3.1 Biochar in Soil Carbon Sequestration 184</p> <p>9.3.2 Influence on Soil Physical and Chemical Properties 184</p> <p>9.3.3 Influence on Microbial Activity and Soil Biota 186</p> <p>9.4 Conclusions 186</p> <p>Acknowledgment 186</p> <p>References 187</p> <p><b>10 Biochar Amendment Improves Crop Production in Problematic Soils </b><b>189<br /></b><i>Bhupinder Dhir</i></p> <p>10.1 Introduction 189</p> <p>10.2 Roles of Biochar in Soil Improvement 189</p> <p>10.2.1 Physical Characteristics 190</p> <p>10.2.2 Chemical Properties 190</p> <p>10.2.3 Biological Indices 191</p> <p>10.3 Other Roles of Biochar 192</p> <p>10.4 Agricultural Productivity in Biochar Amended Soil 192</p> <p>10.4.1 Advantages of Using Biochar as a Soil Supplement 195</p> <p>10.5 Reclamation of Degraded Soils Using Biochar 196</p> <p>10.6 Conclusions 197</p> <p>References 198</p> <p><b>Part III Organic Amendments Use in Remediation </b><b>205</b></p> <p><b>11 Use of Organic Amendments in Phytoremediation of Metal-Contaminated Soils: Prospects and Challenges </b><b>207<br /></b><i>Galina Koptsik, Graeme Spiers, Sergey Koptsik and Peter Beckett</i></p> <p>11.1 Agricultural Organic Waste 209</p> <p>11.2 Forestry By-Products 209</p> <p>11.3 Composts 212</p> <p>11.4 Sewage Sludge/Biosolids 217</p> <p>11.5 Humic Substances 220</p> <p>11.6 Biochar 222</p> <p>11.7 Constructed Organic-Derived Soils 223</p> <p>11.8 Directions for Future Research 224</p> <p>Acknowledgments 226</p> <p>References 226</p> <p><b>12 Rice Husk and Wood Derived Charcoal for Remediation of Metal Contaminated Soil </b><b>235<br /></b><i>Boda Ravi Kiran and Majeti Narasimha Vara Prasad</i></p> <p>12.1 Introduction 235</p> <p>12.2 Heavy Metal Contamination in Soils 235</p> <p>12.3 Rice Husk Ash (RHA) – Production, Characteristics, and Application 236</p> <p>12.3.1 Utilization of Rice Husk Ash as Soil Amendment and Metal Removal 237</p> <p>12.4 Charcoal – Production and Applications 239</p> <p>12.4.1 Charcoal as Amendment and Metal Removal 245</p> <p>12.5 Conclusion 256</p> <p>References 256</p> <p><b>13 Enhanced Composting Using Woody Biomass and Its Application in Wasteland Reclamation </b><b>267<br /></b><i>Zeba Usmani, Tiit Lukk, Eve-Ly Ojangu, Hegne Pupart, Kairit Zovo and Majeti Narasimha Vara Prasad</i></p> <p>13.1 Introduction 267</p> <p>13.2 Composting Process 270</p> <p>13.3 Types of Composting 271</p> <p>13.4 Woody Biomass Waste as Co-composting Material 271</p> <p>13.4.1 Usage of Woody Biochar in Composting 272</p> <p>13.4.2 Woody Biochar-Microbial Consortia 272</p> <p>13.4.3 Usage of Wood Ash in Composting 274</p> <p>13.4.4 Usage of Wood Derived Materials in Composting 274</p> <p>13.5 Advantages and Disadvantages of Composting Woody Biomass 275</p> <p>13.6 Application of Woody Biomass Compost in Restoration of Wastelands 276</p> <p>13.7 Conclusion 277</p> <p>Acknowledgment 277</p> <p>References 277</p> <p><b>14 Sewage Sludge as Soil Conditioner and Fertilizer </b><b>283<br /></b><i>Krzysztof Fijałkowski and Anna Kwarciak-Kozłowska</i></p> <p>14.1 Introduction 283</p> <p>14.2 Sewage Sludge from Wastewater Treatment Plants 283</p> <p>14.2.1 Soil Remediation Practices 284</p> <p>14.2.2 Sewage Sludge in the Remediation of Degraded Soils 286</p> <p>14.2.2.1 Sewage Sludge as a Source of NPK 286</p> <p>14.2.3 Substrates Produced or Based on Sewage Sludge–Biosolids 287</p> <p>14.2.4 Biosolids as Fertility Restorer and Conditioner 287</p> <p>14.2.5 Impact of Sewage Sludge and Biosolids on Soil Microorganisms 290</p> <p>14.2.6 Sewage Sludge Amendments in Relation to CO<sub>2</sub> Sequestration 292</p> <p>14.2.7 Conclusion 292</p> <p>References 292</p> <p><b>15 Sustainable Soil Remediation Using Organic Amendments </b><b>299<br /></b><i>Marta Jaskulak and Anna Grobelak</i></p> <p>15.1 Introduction 299</p> <p>15.2 Organic Amendments for Soil Remediation 300</p> <p>15.2.1 Composts 300</p> <p>15.2.2 Animal Manures and Biosolids 300</p> <p>15.3 Impact of Organic Amendments on Soils 303</p> <p>15.3.1 Influence on Soil Physical Properties 303</p> <p>15.3.2 Influence on Microbial Activities and Soil Biota 305</p> <p>15.3.3 Influence of the Content of Nitrogen and Phosphorus 306</p> <p>15.4 Potential Risks of the Use of Organic Amendments 307</p> <p>15.5 Conclusions 308</p> <p>References 309</p> <p><b>Part IV Advanced Technologies for Remediation of Inorganics and Organics </b><b>313</b></p> <p><b>16 Biosurfactant-Assisted Bioremediation of Crude Oil/Petroleum Hydrocarbon Contaminated Soil </b><b>315<br /></b><i>Jeevanandam Vaishnavi, Punniyakotti Parthipan, Arumugam Arul Prakash, Kuppusamy Sathishkumar and Aruliah Rajasekar</i></p> <p>16.1 Introduction 315</p> <p>16.2 Surfactants and Biosurfactants 316</p> <p>16.3 Microbial Surfactants 316</p> <p>16.4 Types of Biosurfactants 318</p> <p>16.4.1 Glycolipid Biosurfactants 318</p> <p>16.4.1.1 Rhamnolipids 318</p> <p>16.4.1.2 Trehalose 318</p> <p>16.4.1.3 Sophorolipid 318</p> <p>16.4.2 Phospholipids Biosurfactant 319</p> <p>16.4.3 Lipopeptides and Lipoproteins 319</p> <p>16.4.4 Fatty Acid 320</p> <p>16.4.5 Polymeric and Particulate Biosurfactant 320</p> <p>16.5 Optimization of Biosurfactants 320</p> <p>16.6 Biosurfactant in Bioremediation 320</p> <p>16.6.1 Glycolipids Mediated Crude Oil Remediation 321</p> <p>16.6.2 Lipopeptide Mediated Crude Oil/Hydrocarbons Degradation 323</p> <p>16.6.3 Bioemulsifiers Mediated Crude Oil/Hydrocarbons Degradation 323</p> <p>16.7 Challenges and Future Prospectives 324</p> <p>16.8 Conclusion 324</p> <p>References 324</p> <p><b>17 Advanced Technologies for the Remediation of Pesticide-Contaminated Soils </b><b>331<br /></b><i>Palak Bakshi, Arun Dev Singh, Jaspreet Kour, Sadaf Jan, Mohd Ibrahim, Bilal Ahmad Mir and Renu Bhardwaj</i></p> <p>17.1 Introduction 331</p> <p>17.2 Consumption and Need for Removal 332</p> <p>17.2.1 Worldwide Consumption of Pesticide 333</p> <p>17.2.2 Production and Usage of Pesticide in India 333</p> <p>17.2.3 Need for Removal 333</p> <p>17.3 Remediation Technologies for Pesticidal Contamination 335</p> <p>17.3.1 Physico–Chemical Remediation 335</p> <p>17.3.1.1 Adsorption 335</p> <p>17.3.1.2 Oxidation–Reduction 336</p> <p>17.3.1.3 Catalytic Degradation 338</p> <p>17.3.1.4 Nano Technology 338</p> <p>17.3.2 Biological Remediation 340</p> <p>17.3.2.1 Role of Plants 340</p> <p>17.3.2.2 Role of Microflora 341</p> <p>17.4 Conclusion 342</p> <p>References 344</p> <p><b>18 Enzymes Assistance in Remediation of Contaminants and Pollutants </b><b>355<br /></b><i>Majeti Narasimha Vara Prasad</i></p> <p>18.1 Introduction 355</p> <p>18.2 Cyanide Degradation 356</p> <p>18.3 Rhizosphere 360</p> <p>18.3.1 Degradation of Petroleum Hydrocarbons 360</p> <p>18.3.2 Degradation of Pesticides 361</p> <p>Acknowledgments 383</p> <p>References 383</p> <p><b>19 Thiol Assisted Metal Tolerance in Plants </b><b>389<br /></b><i>Pooja Sharma, Palak Bakshi, Dhriti Kapoor, Priya Arora, Jaspreet Kour, Rupinder Kaur, Ashutosh Sharma, Bilal Ahmad Mir and Renu Bhardwaj</i></p> <p>19.1 Introduction 389</p> <p>19.2 Sulfur Metabolism in Plants 390</p> <p>19.3 Thiols Induced Metal Tolerance in Plants 390</p> <p>19.3.1 Role of Metal Transporters 391</p> <p>19.3.2 Role of Thioredoxins and Glutaredoxins 392</p> <p>19.3.3 Role of Metallothioneins 392</p> <p>19.3.4 Role of Phytochelatins in Heavy Metal Stress Mitigation 392</p> <p>19.3.4.1 Heavy Metal Detoxification Mechanism 393</p> <p>19.3.5 Role of Glutathione in Heavy Metal Stress Mitigation 394</p> <p>19.4 Conclusion 396</p> <p>References 397</p> <p><b>20 Biological Remediation of Selenium in Soil and Water </b><b>403<br /></b><i>Siddhartha Narayan Borah, Suparna Sen, Hemen Sarma and Kannan Pakshirajan</i></p> <p>20.1 Introduction 403</p> <p>20.2 Sources of Selenium 403</p> <p>20.2.1 Soil 404</p> <p>20.2.2 Water 404</p> <p>20.2.3 Air 404</p> <p>20.3 Significance in Human Health 405</p> <p>20.4 Biological Remediation Processes 407</p> <p>20.4.1 Phytoremediation 407</p> <p>20.4.1.1 Phytoextraction 407</p> <p>20.4.1.2 Phytovolatilization 408</p> <p>20.4.1.3 Rhizofiltration 408</p> <p>20.4.2 Bioremediation 409</p> <p>20.4.2.1 Planktonic Cells of Axenic Bacterial Culture 409</p> <p>20.4.2.2 Biofilm of Axenic Bacterial Culture 410</p> <p>20.4.2.3 Microbial Consortia 410</p> <p>20.4.3 Bioamendment with Chelating Agents and Organic Matter 411</p> <p>20.4.4 Biosorption 412</p> <p>20.5 Conclusion 412</p> <p>References 413</p> <p><b>Part V Microbe and Plant Assisted Remediation of Inorganics and Organics </b><b>423</b></p> <p><b>21 Phosphate Solubilizing Bacteria for Soil Sustainability </b><b>425<br /></b><i>Raffia Siddique, Alvina Gul, Munir Ozturk and Volkan Altay</i></p> <p>21.1 Introduction 425</p> <p>21.2 Biofertilizer 426</p> <p>21.2.1 PSM Requirement in Plants 426</p> <p>21.2.2 Phosphate Solubilizing Microorganisms (PSM) 426</p> <p>21.2.3 Application of PSB Inoculants 427</p> <p>21.3 Mechanism of P Solubilization 427</p> <p>21.3.1 Lowering of Soil pH 427</p> <p>21.3.2 Chelation 428</p> <p>21.3.3 Mineralization 429</p> <p>21.4 PSB Help Plant Growth 429</p> <p>21.5 Phosphate Solubilizing Bacteria (PSB) 430</p> <p>21.5.1 Mechanism of Action of PSB 431</p> <p>21.6 Soil Sustainability with PSB 431</p> <p>References 432</p> <p><b>22 Microbe and Plant-Assisted Remediation of Organic Xenobiotics </b><b>437<br /></b><i>A.P. Pinto, M.E. Lopes, A. Dordio and J.E.F. Castanheiro</i></p> <p>22.1 Introduction 437</p> <p>22.2 Impact of PAHs on Environment 439</p> <p>22.3 PAHs in Soil and Sediments 441</p> <p>22.4 Molecular Weight and Aqueous Solubility 442</p> <p>22.5 Plant Assisted Remediation of PAHs 443</p> <p>22.5.1 Phytoremediation 445</p> <p>22.5.1.1 Phytoextraction 447</p> <p>22.5.1.2 Phytostabilization 448</p> <p>22.5.1.3 Phytovolatilization 448</p> <p>22.5.1.4 Phytodegradation 448</p> <p>22.5.1.5 Rhizodegradation 449</p> <p>22.6 Plant and Microbe Assisted Remediation – Synergistic Approaches 449</p> <p>22.7 Plant–Endophyte Partnership in Phytoremediation 452</p> <p>22.7.1 Endophyte Colonization and Survival 453</p> <p>22.7.2 Beneficial Mutualistic Interactions Between Endophytes and Their Hosts 454</p> <p>22.7.2.1 Nutrient Bioavailability 457</p> <p>22.7.2.2 Modulation and Synthesis of Phytohormones 458</p> <p>22.7.2.3 Defense Mechanisms against Phytopathogens 459</p> <p>22.7.3 Biosurfactants and Their Roles in Phytoremediation 459</p> <p>22.8 Conclusions 461</p> <p>References 461</p> <p><b>23 Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Phytoremediation of Inorganic and Organic Contaminants Including Amelioration of Perturbed Marginal Soils </b><b>477<br /></b><i>Elisabetta Franchi and Danilo Fusini</i></p> <p>23.1 Introduction 477</p> <p>23.2 Plant Growth-Promoting Rhizobacteria (PGPR): Features and Mechanisms 478</p> <p>23.2.1 Auxins, Cytokinins, Gibberellins 479</p> <p>23.2.2 Siderophores 480</p> <p>23.2.3 ACC Deaminase 480</p> <p>23.2.4 Phosphate Solubilization 481</p> <p>23.2.5 Nitrogen Fixation 482</p> <p>23.2.6 Indirect Mechanisms 482</p> <p>23.3 Influence of PGPR on Heavy Metals and Hydrocarbons Remediation 482</p> <p>23.4 Plant Growth-Promoting Rhizobacteria to Face Salinity and Drought in Marginal Soils 486</p> <p>23.4.1 Survival to Abiotic Stress 486</p> <p>23.4.2 Affecting the Drought Pressure 487</p> <p>23.4.3 Improving the Salinity Tolerance 488</p> <p>23.4.4 Phytodepuration for Water Reclamation 489</p> <p>23.5 Conclusions 491</p> <p>References 491</p> <p><b>24 Plant and Microbe Association for Degradation of Xenobiotics Focusing Transgenic Plants </b><b>501<br /></b><i>Pooja Sharma, Palak Bakshi, Kanika Khanna, Jaspreet Kour, Dhriti Kapoor, Arun Dev Singh, </i><i>Tamanna Bhardwaj, Rupinder Kaur, Ashutosh Sharma and Renu Bhardwaj</i></p> <p>24.1 Introduction 501</p> <p>24.2 Xenobiotics in the Environment 502</p> <p>24.3 Mechanism of Degradation of Xenobiotics 502</p> <p>24.4 Plant and Microbe Association for Degradation of Xenobiotics 504</p> <p>24.5 Transgenic Plants and Microbes for the Remediation of Xenobiotics 506</p> <p>24.6 Conclusion 509</p> <p>References 509</p> <p><b>25 <i>Azolla </i>Farming for Sustainable Environmental Remediation </b><b>517<br /></b><i>Abin Sebastian, Palengara Deepa and Majeti Narasimha Vara Prasad</i></p> <p>25.1 Introduction 517</p> <p>25.2 Diversity and Ecological Distribution 519</p> <p>25.3 Growth Conditions for Optimal Biomass Productivity 521</p> <p>25.4 Phytoremediation of Water Bodies 523</p> <p>25.5 Prospects in Sustainable Remediation and Bioeconomy 525</p> <p>25.6 Outlook 529</p> <p>References 529</p> <p><b>26 Mangrove Assisted Remediation and Ecosystem Services </b><b>535<br /></b><i>Janaina dos Santos Garcia, Sershen and Marcel Giovanni Costa Franca</i></p> <p>26.1 Mangrove Ecosystems 535</p> <p>26.2 Mangrove Plants 535</p> <p>26.3 Factors Responsible for Mangrove Degradation and Destruction 536</p> <p>26.4 Ecosystem Services of Mangroves 537</p> <p>26.4.1 Mangrove as a Sink of Pollutants 538</p> <p>26.4.1.1 Heavy Metals 539</p> <p>26.4.1.2 Heavy Metal Indices 540</p> <p>26.4.1.3 Association with Other Elements 542</p> <p>26.4.1.4 Organic Compounds 544</p> <p>26.4.1.5 Waste Water 545</p> <p>26.4.1.6 Microorganism Association and Isolation 547</p> <p>26.5 Methodologies to Use Mangroves for Remediation 550</p> <p>26.6 Final Comments 550</p> <p>References 552</p> <p><b>Part VI Nanoscience in Remediation </b><b>557</b></p> <p><b>27 Nanotechnology Assisted Remediation of Polluted Soils </b><b>559<br /></b><i>H.A.D.B. Amarasiri and Nadeesh M. Adassooriya</i></p> <p>27.1 Soil as Soil of Life 559</p> <p>27.2 Soil Pollution 561</p> <p>27.3 Impact of Soil Pollution 561</p> <p>27.4 Nanopollution 562</p> <p>27.5 Soil Remediation 563</p> <p>27.5.1 Conventional Soil Remediation Techniques and Methods 563</p> <p>27.5.1.1 Bioremediation 563</p> <p>27.5.1.2 Thermal Desorption 564</p> <p>27.5.1.3 Surfactant Enhanced Aquifer Remediation 565</p> <p>27.5.1.4 Pump and Treat 565</p> <p>27.5.1.5 In-Situ Oxidation 566</p> <p>27.5.2 Nanotechnology Based Soil Remediation Methods 566</p> <p>27.5.2.1 Nanomaterials 566</p> <p>27.5.2.2 Nano-Bioremediation 567</p> <p>27.5.2.3 Bioremediation with Biogenic Uraninite NPs 567</p> <p>27.5.2.4 Bioremediation with Engineered Polymeric NPs 567</p> <p>27.5.2.5 Bioremediation with Single Enzyme NPs 568</p> <p>27.5.2.6 Zeolites in Soil Remediation with Nanotechnology 568</p> <p>27.5.2.7 Soil Remediation with Iron Oxide NPs 569</p> <p>27.5.2.8 Soil Remediation with Nano Scale Zero Valent Iron (nZVI) 570</p> <p>27.5.2.9 Remediation with Other Metal-based NPs 570</p> <p>27.5.2.10 Remediation with Phosphate-based NPs 571</p> <p>27.5.2.11 Soil Remediation with Iron Sulfide NPs 571</p> <p>27.5.2.12 Carbon Nanotubes (CNT) in Soil Remediation 571</p> <p>27.5.2.13 Nanoclay in Soil Remediation 572</p> <p>27.6 Future Scope of Nanotechnology in Soil Remediation 573</p> <p>References 573</p> <p><b>28 Remediation of Wastewater Using Plant Based Nano Materials </b><b>583<br /></b><i>Wangjam Kabita Devi, Maibam Dhanaraj Meitei and Majeti Narasimha Vara Prasad</i></p> <p>28.1 Introduction 583</p> <p>28.2 Materials and Methods 586</p> <p>28.2.1 Materials 586</p> <p>28.2.2 Preparation of Extract 587</p> <p>28.2.3 Synthesis of AgNPs 587</p> <p>28.2.4 Characterization of Synthesized AgNPs 587</p> <p>28.2.5 Catalytic Activity of Synthesized AgNPs 587</p> <p>28.3 Results and Discussion 588</p> <p>28.3.1 Energy Dispersive X-Ray (EDX) and X-Ray Diffraction (XRD) Analysis 590</p> <p>28.3.2 Transmission Electron Microscopy 591</p> <p>28.3.3 Fourier Transform Infra-Red Spectroscopy 591</p> <p>28.3.4 Catalytic Property of AgNPs 593</p> <p>28.4 Conclusion 595</p> <p>Acknowledgments 596</p> <p>References 596</p> <p>Index 601</p>
<p><b>Majeti Narasimha Vara Prasad,</b> is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).</p>
<p><b>Learn more about phytoremediation technology with this state-of-the-art resource from an internationally recognized editor and leader in his field</b></p><p>The <i>Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> discusses sustainable approaches to the removal of contaminants from the environment or the reduction of their toxicity. The distinguished editor has included resources from an internationally recognized group of academics who discuss strategies to increase the effectiveness of phytoremediation.</p><p>Special attention is paid to the use of organic amendments to facilitate soil cleanup and the growth of phytoremediation plants. The book includes discussions of new remediation technologies, global trends in the environmental remediation industry, and the future challenges and opportunities likely to arise in the short and long term.</p><p>The <i>Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> provides a compelling case for the cost-effectiveness, aesthetics, and minimal environmental disturbance of phytoremediation.</p><p>Topics covered include:</p><ul><li>A discussion of activated carbon from lignin, particularly its use as a sorbent for in situ remediation of contaminated sediments</li><li>An exploration of fresh and mature organic amendments for phytoremediation of technosols contaminated with high concentrations of trace elements</li><li>An examination of the revitalization of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost, and biochar</li><li>A treatment of wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil</li></ul><p>Perfect for environmental engineers, environmental scientists, geologists, chemical engineers, and landscape engineers, <i>Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology</i> is also an indispensable reference for scientists working in the green chemistry and technology industries, biochemical engineers, environmental regulators, and policy makers.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €