Details

Green Energy


Green Energy

Solar Energy, Photovoltaics, and Smart Cities
1. Aufl.

von: Suman Lata Tripathi, Sanjeevikumar Padmanaban

217,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.12.2020
ISBN/EAN: 9781119760795
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy.  The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels.  It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area.</p> <p>To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country.</p> <p>Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts.  A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels.  It is a must-have for any library.</p>
<p>Preface xix</p> <p><b>1 Fabrication and Manufacturing Process of Solar Cell: Part I 1<br /></b><i>S. Dwivedi</i></p> <p>1.1 Introduction 2</p> <p>1.1.1 Introduction to Si-Based Fabrication Technology 2</p> <p>1.1.2 Introduction to Si Wafer 4</p> <p>1.1.3 Introduction to Diode Physics 5</p> <p>1.1.3.1 Equilibrium Fermi Energy (E<sub>F</sub>) 10</p> <p>1.2 Fabrication Technology of Diode 19</p> <p>1.3 Energy Production by Equivalent Cell Circuitry 27</p> <p>1.4 Conclusion 30</p> <p>References 31</p> <p><b>2 Fabrication and Manufacturing Process of Solar Cell: Part II 39<br /></b><i>Prabhansu and Nayan Kumar</i></p> <p>2.1 Introduction 39</p> <p>2.2 Silicon Solar Cell Technologies 41</p> <p>2.2.1 Crystalline Structured Silicon (c-Si) 41</p> <p>2.2.2 Silicon-Based Thin-Film PV Cell 43</p> <p>2.3 Homojunction Silicon Solar Cells 44</p> <p>2.3.1 Classic Structure and Manufacture Process 44</p> <p>2.3.2 Plans for High Productivity 45</p> <p>2.4 Solar Si-Heterojunction Cell 46</p> <p>2.5 Si Thin-Film PV Cells 48</p> <p>2.5.1 PV Cell Development Based on p-I-n and n-I-p 49</p> <p>2.5.2 Light-Based Trapping Methodologies 49</p> <p>2.5.3 Approach to Tandem 51</p> <p>2.5.4 Current Trends 51</p> <p>2.6 Perovskite Solar Cells 52</p> <p>2.6.1 Introduction 52</p> <p>2.6.2 Specific Properties with Perovskites-Based Metaldhalide for Photovoltaics 53</p> <p>2.6.3 Crystallization of Perovskite 55</p> <p>2.6.4 Current Trends 56</p> <p>2.7 Future Possibility and Difficulties 56</p> <p>2.8 Conclusions 57</p> <p>References 58</p> <p><b>3 Fabrication and Manufacturing Process of Perovskite Solar Cell 67<br /></b><i>Nandhakumar Eswaramoorthy and Kamatchi R</i></p> <p>3.1 Introduction 67</p> <p>3.2 Architectures of Perovskite Solar Cells 68</p> <p>3.3 Working Principle of Perovskite Solar Cell 70</p> <p>3.4 Components of Perovskite Solar Cell 73</p> <p>3.4.1 Transparent Conducting Metal Oxide (TCO) Layer 73</p> <p>3.4.2 Electron Transport Layer (ETL) 74</p> <p>3.4.3 Perovskite Layer 74</p> <p>3.4.4 Hole Transport Layer (HTL) 75</p> <p>3.4.5 Electrodes 75</p> <p>3.5 Fabrication of Perovskite Films 76</p> <p>3.5.1 One-Step Method 77</p> <p>3.5.2 Two-Step Method 77</p> <p>3.5.3 Solid-State Method 78</p> <p>3.5.4 Bifacial Stamping Method 78</p> <p>3.5.5 Solvent-Solvent Extraction Method 78</p> <p>3.5.6 Pulse Laser Deposition Method 78</p> <p>3.5.7 Vapor Deposition Method 79</p> <p>3.5.8 Solvent Engineering 79</p> <p>3.5.9 Additive Engineering 79</p> <p>3.6 Manufacturing Techniques of Perovskite Solar Cells 79</p> <p>3.6.1 Solution-Based Manufacturing Technique 80</p> <p>3.6.1.1 Spin Coating 80</p> <p>3.6.1.2 Dip Coating 81</p> <p>3.6.2 Roll-to-Roll (R2R) Process 82</p> <p>3.6.2.1 Knife-Over-Roll Coating 82</p> <p>3.6.2.2 Slot-Die Coating 83</p> <p>3.6.2.3 Flexographic Printing 84</p> <p>3.6.2.4 Gravure Printing 85</p> <p>3.6.2.5 Screen Printing 85</p> <p>3.6.2.6 Inkjet Printing 86</p> <p>3.6.2.7 Spray Coating 87</p> <p>3.6.2.8 Brush Painting 88</p> <p>3.6.2.9 Doctor Blade Coating 88</p> <p>3.7 Encapsulation 89</p> <p>3.8 Conclusions 90</p> <p>References 90</p> <p><b>4 Parameter Estimation of Solar Cells: A State-of-the-Art Review with Metaheuristic Approaches and Future Recommendations 103<br /></b><i>Shilpy Goyal, Parag Nijhawan and Souvik Ganguli</i></p> <p>4.1 Introduction 104</p> <p>4.2 Related Works 106</p> <p>4.3 Problem Formulation 107</p> <p>4.3.1 Single-Diode Model (SDM) 113</p> <p>4.3.2 Double-Diode Model (DDM) 115</p> <p>4.3.3 Three-Diode Model (TDM) 117</p> <p>4.4 Salient Simulations and Discussions for Future Work 121</p> <p>4.5 Conclusions 134</p> <p>References 134</p> <p><b>5 Power Electronics and Solar Panel: Solar Panel Design and Implementation 139<br /></b><i>Nayan Kumar, Tapas Kumar Saha and Jayati Dey</i></p> <p>5.1 Chapter Overview 139</p> <p>5.2 Challenges in Solar Power 141</p> <p>5.3 Solar PV Cell Design and Implementation 141</p> <p>5.3.1 Solar PV Cell Basics 145</p> <p>5.3.2 Single-Diode-Based PV Cells (SDPVCs) 148</p> <p>5.3.3 Determination of the Parameters 151</p> <p>5.3.4 Double-Diode-Based PV Cell (DDPVC) 152</p> <p>5.3.5 Solar PV System Configuration 153</p> <p>5.4 MPPT Scheme for PV Panels 154</p> <p>5.4.1 Operation and Modeling of MPPT Schemes for Solar PV Panels 155</p> <p>5.4.2 Comparisons of Existing Solar MPPT Schemes 156</p> <p>5.4.2.1 Perturbation and Observation (P&O)-MPPT Algorithms 156</p> <p>5.4.2.2 Incremental-Conductance MPPT Algorithm 158</p> <p>5.5 Way for Utilization of PV Schemes 159</p> <p>5.5.1 Stand-Alone (SA) Based PV System 159</p> <p>5.5.2 Grid-Integration–Based PV System 161</p> <p>5.6 Future Trends 161</p> <p>5.7 Conclusion 162</p> <p>References 162</p> <p><b>6 An Effective Li-Ion Battery State of Health Estimation Based on Event-Driven Processing 167<br /></b><i>Saeed Mian Qaisar and Maram Alguthami</i></p> <p>6.1 Introduction 168</p> <p>6.2 Background and Literature Review 169</p> <p>6.2.1 Rechargeable Batteries 169</p> <p>6.2.2 Applications of Li-Ion Batteries 171</p> <p>6.2.3 Battery Management Systems 171</p> <p>6.2.4 State of Health Estimation Methods 173</p> <p>6.2.4.1 Direct Assessment Approaches 173</p> <p>6.2.4.2 Adaptive Model–Based Approaches 173</p> <p>6.2.4.3 Data-Driven Approaches 174</p> <p>6.3 The Proposed Approach 175</p> <p>6.3.1 The Li-Ion Battery Model 175</p> <p>6.3.2 The Event-Driven Sensing 176</p> <p>6.3.3 The Event-Driven State of Health Estimation 177</p> <p>6.3.3.1 The Conventional Coulomb Counting Based SoH Estimation 178</p> <p>6.3.3.2 The Event-Driven Coulomb Counting Based SoH Estimation 178</p> <p>6.3.4 The Evaluation Measures 179</p> <p>6.3.4.1 The Compression Ratio 179</p> <p>6.3.4.2 The Computational Complexity 179</p> <p>6.3.4.3 The SoH Estimation Error 181</p> <p>6.4 Experimental Results and Discussion 181</p> <p>6.4.1 Experimental Results 181</p> <p>6.4.2 Discussion 185</p> <p>6.5 Conclusion 187</p> <p>Acknowledgement 187</p> <p>References 188</p> <p><b>7 Effective Power Quality Disturbances Identification Based on Event-Driven Processing and Machine Learning 191<br /></b><i>Saeed Mian Qaisar and Raheef Aljefri</i></p> <p>7.1 Introduction 192</p> <p>7.2 Background and Literature Review 194</p> <p>7.2.1 Types of PQ Disturbances 195</p> <p>7.2.1.1 Transient 196</p> <p>7.2.1.2 Voltage Fluctuation 196</p> <p>7.2.1.3 Long Duration Voltage Interruption 196</p> <p>7.2.1.4 Noise 196</p> <p>7.2.1.5 Flicker 196</p> <p>7.2.1.6 Waveform Distortion 196</p> <p>7.2.2 Reasons for Generation of the PQ Disturbances 196</p> <p>7.2.3 PQ Disturbances Monitoring Techniques 197</p> <p>7.2.4 Facilities Effected by Power Quality Disturbances 198</p> <p>7.2.5 Power Quality (PQ) Disturbances Model 198</p> <p>7.2.6 Extraction of Features 199</p> <p>7.2.7 Classification Techniques 200</p> <p>7.3 Proposed Solution 201</p> <p>7.3.1 Power Quality (PQ) Disturbances Model 201</p> <p>7.3.1.1 The Pure Signal 202</p> <p>7.3.1.2 The Sag 203</p> <p>7.3.1.3 The Interruption 203</p> <p>7.3.1.4 The Swell 203</p> <p>7.3.2 The Signal Reconstruction 204</p> <p>7.3.3 The Event-Driven Sensing 206</p> <p>7.3.4 The Event-Driven Segmentation 207</p> <p>7.3.5 Extraction of Features 207</p> <p>7.3.6 Classification Techniques 208</p> <p>7.3.6.1 k-Nearest Neighbor (KNN) 208</p> <p>7.3.6.2 Naïve Bayes 209</p> <p>7.3.7 Evaluation Measures 209</p> <p>7.4 Results 210</p> <p>7.5 Discussion 213</p> <p>7.6 Conclusion 215</p> <p>Acknowledgement 215</p> <p>References 215</p> <p><b>8 Sr<sub>2</sub>SnO<sub>4</sub> Ruddlesden Popper Oxide: Future Material for Renewable Energy Applications 221<br /></b><i>Upendra Kumar and Shail Upadhya</i></p> <p>8.1 Introduction 222</p> <p>8.1.1 Needs of Renewable Energy 222</p> <p>8.1.2 Ruddlesden Popper Oxide Phase 224</p> <p>8.1.3 Application of Ruddlesden Popper Phase 227</p> <p>8.1.4 Motivation of Present Work 229</p> <p>8.2 Experimental Work 230</p> <p>8.2.1 Preparation of Materials 230</p> <p>8.2.2 Characterizations of Materials 231</p> <p>8.3 Experimental Results 231</p> <p>8.3.1 Thermogravimetric and Differential Scanning Calorimetry Analysis 231</p> <p>8.3.2 Characterization of Sr<sub>2</sub>-xBa<sub>x</sub>SnO<sub>4</sub> 232</p> <p>8.3.2.1 Phase Determination using XRD 232</p> <p>8.3.2.2 Optical Properties 234</p> <p>8.3.2.3 Dielectric Analysis of Samples 236</p> <p>8.3.3 Characterization of Sr<sub>2</sub>-xLa<sub>x</sub>SnO<sub>4</sub> 239</p> <p>8.3.3.1 Structural Analysis using XRD 239</p> <p>8.3.3.2 UV-Vis. Spectroscopy 242</p> <p>8.3.3.3 Electrical Analysis 244</p> <p>8.4 Conclusions 245</p> <p>Acknowledgement 246</p> <p>References 246</p> <p><b>9 A Universal Approach to Solar Photovoltaic Panel Modeling 251<br /></b><i>Chitra A., M. Manimozhi, Sanjeevikumar P, Nirupama Nambiar and Saransh Chhawchharia</i></p> <p>9.1 Introduction 251</p> <p>9.2 PV Panel Modeling: A Brief Overview 252</p> <p>9.3 Proposed Model 254</p> <p>9.4 Current Model 259</p> <p>9.5 Voltage Model 260</p> <p>9.6 Simulation Results 260</p> <p>9.7 Conclusion 265</p> <p>Acknowledgement 265</p> <p>References 266</p> <p><b>10 Stepped DC Link Converters for Solar Power Applications 271<br /></b><i>Dr. R. Uthirasamy, Dr. V. Kumar Chinnaiyan, Dr. J. Karpagam and Dr. V. J.Vijayalakshmi</i></p> <p>10.1 Introduction 272</p> <p>10.1.1 Photovoltaic Cell 272</p> <p>10.1.2 Photovoltaic Module 272</p> <p>10.1.3 Photovoltaic Array 273</p> <p>10.1.4 Working of Solar Cell 273</p> <p>10.1.5 Modeling of Solar Cell 273</p> <p>10.1.6 Effect of Irradiance 277</p> <p>10.1.7 Effect of Temperature 279</p> <p>10.1.8 Maximum Efficiency 280</p> <p>10.1.9 Fill Factor 280</p> <p>10.1.10 Modeling of Solar Panel 281</p> <p>10.1.11 Simulation Model of PV Interfaced Boost Chopper Unit 282</p> <p>10.2 Power Converters for Solar Power Applications 283</p> <p>10.2.1 Introduction 283</p> <p>10.2.2 DC-DC Converters 284</p> <p>10.2.2.1 Boost Converter 285</p> <p>10.2.2.2 Buck-Boost Converter 286</p> <p>10.2.3 DC-AC Converters 288</p> <p>10.2.3.1 Structure of Boost Cascaded Multilevel Inverter 288</p> <p>10.2.3.2 Analysis of DC Sources in BCMLI System 298</p> <p>10.2.4 Structure of Single-Phase Seven-Level BCDCLHBI 298</p> <p>10.2.4.1 Operation of Boost Cascaded DC Link Configuration 300</p> <p>10.2.4.2 Operation of H-Bridge Inverter Configuration 309</p> <p>10.2.4.3 Calculation of Losses in BCDCLHBI 310</p> <p>10.2.5 Realization of Boost Cascaded Dc Link H-Bridge Inverter 312</p> <p>10.2.5.1 Peripheral Interface Controller 312</p> <p>10.2.5.2 Features of PIC16F877A Microcontroller 312</p> <p>10.2.5.3 Equivalent Circuit of Boost Cascaded DC Link H-Bridge Inverter 313</p> <p>10.2.5.4 Design of Boost Chopper Parameters 314</p> <p>10.2.6 Conclusion 315</p> <p>References 315</p> <p><b>11 A Harris Hawks Optimization (HHO)–Based Parameter Assessment for Modified Two-Diode Model of Solar Cells 319<br /></b><i>Shilpy Goyal, Parag Nijhawan and Souvik Ganguli</i></p> <p>11.1 Introduction 320</p> <p>11.2 Problem Formulation 322</p> <p>11.3 Proposed Methodology of Work 325</p> <p>11.3.1 Exploration Phase 326</p> <p>11.3.2 Switching from Exploration to Exploitation 327</p> <p>11.3.3 Exploitation Phase 327</p> <p>11.4 Simulation Results 327</p> <p>11.5 Conclusions 340</p> <p>References 341</p> <p><b>12 A Large-Gain Continuous Input-Current DC-DC Converter Applicable for Solar Energy Systems 345<br /></b><i>Tohid Taghiloo, Kazem Varesi and Sanjeevikumar Padmanaban</i></p> <p>12.1 Introduction 345</p> <p>12.2 Proposed Configuration 348</p> <p>12.3 Steady-State Analysis 351</p> <p>12.4 Component Design 354</p> <p>12.5 Real Gain Relation 355</p> <p>12.6 Comparative Analysis 356</p> <p>12.7 Simulation Outcomes 360</p> <p>12.8 Conclusions 364</p> <p>References 364</p> <p><b>13 Stability Issues in Microgrids: A Review 369<br /></b><i>Sonam Khurana and Sheela Tiwari</i></p> <p>13.1 Introduction 370</p> <p>13.2 Stability Issues 373</p> <p>13.2.1 Control System Stability 375</p> <p>13.2.2 Power Supply and Balance Stability 376</p> <p>13.3 Analysis Techniques 378</p> <p>13.3.1 Large-Perturbation Stability 379</p> <p>13.3.2 Small-Perturbation Stability 381</p> <p>13.4 Microgrid Control System 382</p> <p>13.4.1 Control Methods for AC Microgrids 384</p> <p>13.4.1.1 Primary Control 384</p> <p>13.4.1.2 Secondary Control 389</p> <p>13.4.1.3 Tertiary Control 391</p> <p>13.4.2 Control Methods for DC Microgrid 392</p> <p>13.4.2.1 Primary Control 392</p> <p>13.4.2.2 Secondary Control 394</p> <p>13.4.2.3 Tertiary Control 396</p> <p>13.5 Conclusion 396</p> <p>References 396</p> <p><b>14 Theoretical Analysis of Torque Ripple Reduction in the SPMSM Drives Using PWM Control-Based Variable Switching Frequency 411<br /></b><i>Mohamed G. Hussien and Sanjeevikumar Padmanaban</i></p> <p>14.1 Introduction 411</p> <p>14.2 Prediction of Current and Torque Ripples 413</p> <p>14.2.1 Current Ripple Prediction 413</p> <p>14.2.2 Torque Ripple Prediction 416</p> <p>14.3 Variable Switching Frequency PWM (VSFPWM) Method for Torque Ripple Control 418</p> <p>14.4 Conclusion 422</p> <p>References 422</p> <p>Appendix: Simulation Model Circuits 424</p> <p>Main Model 424</p> <p>Speed & Current Loop Controllers 425</p> <p>VSFPWM for Torque Ripple Control 426</p> <p><b>15 Energy-Efficient System for Smart Cities 427<br /></b><i>Dushyant Kumar Singh, Ashish Kumar Singh and Himani Jerath</i></p> <p>15.1 Introduction 428</p> <p>15.2 Factors Promoting Energy-Efficient System 429</p> <p>15.2.1 Smart and Clean Energy 429</p> <p>15.2.2 Smart Grid 430</p> <p>15.2.3 Smart Infrastructure 431</p> <p>15.2.4 Smart Home 431</p> <p>15.2.4.1 Home Automation 432</p> <p>15.2.5 Smart Surveillance 437</p> <p>15.2.6 Smart Roads and Traffic Management 438</p> <p>15.2.7 Smart Agriculture and Water Distribution 439</p> <p>References 440</p> <p><b>16 Assessment of Economic and Environmental Impacts of Energy Conservation Strategies in a University Campus 441<br /></b><i>Sunday O. Oyedepo, Emmanuel G. Anifowose, Elizabeth O. Obembe, Joseph O. Dirisu, Shoaib Khanmohamadi, Kilanko O., Babalola P.O., Ohunakin O.S., Leramo R.O. and Olawole O.C.</i></p> <p>16.1 Introduction 442</p> <p>16.2 Materials and Methods 444</p> <p>16.2.1 Study Location 445</p> <p>16.2.2 Instrumentation 446</p> <p>16.2.2.1 Building Energy Simulation Tool – eQUEST Software 446</p> <p>16.2.3 Procedure for Data Collection and Analysis 446</p> <p>16.2.4 Analysis of Electrical Energy Consumption 447</p> <p>16.2.5 Economic Analysis 448</p> <p>16.2.6 Environmental Impacts Analysis 449</p> <p>16.3 Electricity Consumption Pattern in Covenant University 449</p> <p>16.3.1 Result of Electricity Demand in Covenant University for Various End Uses 450</p> <p>16.3.1.1 Results of Energy Audit in Cafeterias 1 & 2 450</p> <p>16.3.1.2 Results of Energy Audit in Academic Buildings (Mechanical Engineering Building) 453</p> <p>16.3.1.3 Results of Energy Audit in University Library 455</p> <p>16.3.1.4 Results of Energy Audit in Health Center 457</p> <p>16.3.1.5 Results of Energy Audit in the Student Halls of Residence (Daniel Hall) 459</p> <p>16.3.2 Comparison of Energy Use Among the University Buildings 461</p> <p>16.3.3 Results of Greenhouse Gas Emissions 462</p> <p>16.3.4 Qualitative Recommendation Analysis 463</p> <p>16.3.4.1 Replacement of Lighting Fixtures with LED Bulbs 463</p> <p>16.3.4.2 Installation of Solar Panels on the Roofs of Selected Buildings 464</p> <p>16.4 Conclusion 465</p> <p>References 466</p> <p><b>17 A Solar Energy–Based Multi-Level Inverter Structure with Enhanced Output-Voltage Quality and Increased Levels per Components 469<br /></b><i>Fatemeh Esmaeili, Kazem Varesi and Sanjeevikumar Padmanaban</i></p> <p>17.1 Introduction 470</p> <p>17.2 Proposed Basic Topology 471</p> <p>17.2.1 Topology of Basic Unit 471</p> <p>17.2.2 Operation of Basic Configuration 472</p> <p>17.2.3 Switching of Basic Unit for Different Magnitudes of Input Sources 473</p> <p>17.2.3.1 Symmetric Value of Input DC Supplies (P<sub>1</sub>) 473</p> <p>17.2.3.2 DC Sources with Binary Order Magnitudes (P<sub>2</sub> ) 475</p> <p>17.2.3.3 DC Sources with Trinary Manner Magnitudes (P<sub>3</sub>) 476</p> <p>17.3 Proposed Extended Structure 478</p> <p>17.3.1 Structure 478</p> <p>17.3.2 Determination of Values of DC Supplies 478</p> <p>17.3.3 Blocking Voltage (BV) on Switches 479</p> <p>17.4 Efficiency and Losses Analysis in Suggested Structure 480</p> <p>17.4.1 Conduction Power Loss 480</p> <p>17.4.2 Switching Power Loss 481</p> <p>17.5 Comparison Results 483</p> <p>17.6 Nearest Level Technique 485</p> <p>17.7 Simulation Results 485</p> <p>17.8 Conclusions 490</p> <p>References 490</p> <p><b>18 Operations of Doubly Fed Induction Generators Applied in Green Energy Systems 495<br /></b><i>Bhagwan Shree Ram and Suman Lata Tripathi</i></p> <p>18.1 Introduction 496</p> <p>18.2 Doubly Fed Induction Generators (DFIG) Systems Operated by Wind Turbines 496</p> <p>18.3 Control Scheme of Direct Current Controller 497</p> <p>18.4 Simulation Studies of Direct Current Control of DFIG System 498</p> <p>18.5 Characteristics of DFIG at Transient and After Transient Situation 499</p> <p>18.6 Pulsation of DFIG Parameters with DCC Control Technique 501</p> <p>18.7 Effects of 5<sup>th</sup> and 7<sup>th</sup> Harmonics of I<sub>S</sub> and V<sub>GRID</sub> 502</p> <p>18.8 Load Contribution of DFIG in Grid with DCC Control Technique 503</p> <p>18.9 Speed Control Scheme of Generators 505</p> <p>18.10 DFIG Control Scheme 506</p> <p>18.11 General Description About PI Controller Design 507</p> <p>18.12 GSC Controller 508</p> <p>18.13 Characteristics of DFIG with Wind Speed Variations 509</p> <p>18.14 Conclusion 511</p> <p>References 512</p> <p><b>19 A Developed Large Boosting Factor DC-DC Converter Feasible for Photovoltaic Applications 515<br /></b><i>Hussein Mostafapour, Kazem Varesi and Sanjeevikumar Padmanaban</i></p> <p>19.1 Introduction 515</p> <p>19.2 Suggested Topology 518</p> <p>19.2.1 Configuration 518</p> <p>19.2.2 Operating Modes during CCM 520</p> <p>19.2.3 Operating Modes during DCM 521</p> <p>19.3 Steady State Analyses 524</p> <p>19.3.1 Gain Calculation 524</p> <p>19.3.2 Average Currents and Current Ripple of Inductors 527</p> <p>19.3.3 Stress on Semiconductors 528</p> <p>19.3.4 Efficiency 529</p> <p>19.4 Design Consideration 531</p> <p>19.4.1 Design Consideration of Capacitors 531</p> <p>19.4.2 Design Consideration of Inductors 531</p> <p>19.5 Comparison 532</p> <p>19.6 Simulation 539</p> <p>19.7 Conclusion 544</p> <p>References 545</p> <p><b>20 Photovoltaic-Based Switched-Capacitor Multi-Level Inverters with Self-Voltage Balancing and Step-Up Capabilities 549<br /></b><i>Saeid Deliri Khatoonabad, Kazem Varesi and Sanjeevikumar Padmanaban</i></p> <p>20.1 Introduction 550</p> <p>20.2 Suggested First (13-Level) Basic Configuration 551</p> <p>20.3 Suggested Second Basic Configuration 556</p> <p>20.4 Modulation Method 561</p> <p>20.5 Design Consideration of Capacitors 562</p> <p>20.6 Efficiency and Losses Analysis 563</p> <p>20.7 Simulation Results 567</p> <p>20.7.1 First Structure 567</p> <p>20.7.2 Second Structure 571</p> <p>20.8 Comparative Analysis 575</p> <p>20.9 Conclusions 578</p> <p>References 579</p> <p>Index 583</p>
<p><b>Suman Lata Tripathi,</b> PhD, is a professor at Lovely Professional with more than seventeen years of experience in academics. She has published more than 45 research papers in refereed journals and conferences. She has organized several workshops, summer internships, and expert lectures for students, and she has worked as a session chair, conference steering committee member, editorial board member, and reviewer for IEEE journals and conferences. She has published one edited book and currently has multiple volumes scheduled for publication, including volumes available from Wiley-Scrivener. <p><b>Sanjeevikumar Padmanaban,</b> PhD, is a faculty member with the Department of Energy Technology, Aalborg University, Esbjerg, Denmark. He has almost ten years of teaching, research and industrial experience and is an associate editor on a number of international scientific refereed journals. He has published more than 300 research papers and has won numerous awards for his research and teaching.
<p><b>Covering the concepts and fundamentals of green energy, this volume, written and edited by a global team of experts, also goes into the practical applications that can be utilized across multiple industries, for both the engineer and the student.</b></p> <p>Like most industries around the world, the energy industry has also made, and continues to make, a long march toward "green" energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area.</p> <p>To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country.</p> <p>Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.</p> <p><b>This breakthrough new volume:</b></p> <ul> <li>Provides a thorough, comprehensive reference for anyone working in green energy, for engineers, scientists, chemists, and students in many fields</li> <li>Is a key tool for researchers and designers in scoping parameters for future processes and equipment relating to green energy</li> <li>Outlines the practical applications of green energy across many different industries and fields, including advanced electronic systems</li> <li>Covers the international standards for green energy technology</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €