Details

Green Adhesives


Green Adhesives

Preparation, Properties, and Applications
1. Aufl.

von: Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri

167,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.04.2020
ISBN/EAN: 9781119655091
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Green Adhesives: Preparation, Properties and Applications deals with the fabrication methods, characterization, and applications of green adhesives. It also includes the collective properties of waterborne, bio, and wound-healing green adhesives. Exclusive attention is devoted to discussing the applications of green adhesives in biomedical coatings, food, and industrial applications.
<p>Preface xv</p> <p><b>1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling 1<br /></b><i>Xiaohong Sun, Songyuan Zhang, Hui Li and Nandika Bandara</i></p> <p>1.1 Bacterial Surface Fouling (Biofouling) 2</p> <p>1.2 Negative Effects of Biofouling by Bacteria on Practical Applications 2</p> <p>1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling 3</p> <p>1.3.1 Hydrophilic Polymers 3</p> <p>1.3.2 Zwitterionic Polymers 7</p> <p>1.3.3 Super-Hydrophobic Polymers 9</p> <p>1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) 10</p> <p>1.3.5 Protein and Glycoprotein-Based Coatings 12</p> <p>1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties 13</p> <p>1.5 Concluding Remarks 16</p> <p>Acknowledgments 16</p> <p>References 17</p> <p><b>2 Lignin-Based Adhesives 25<br /></b><i>Xiaolin Luo and Li Shuai</i></p> <p>2.1 Introduction 25</p> <p>2.2 Native Lignin and Source of Technical Lignin 27</p> <p>2.2.1 Native Lignin 27</p> <p>2.2.2 Technical Lignins 28</p> <p>2.3 Limitations of Technical Lignins 29</p> <p>2.3.1 Heterogeneity of Technical Lignins 29</p> <p>2.3.2 Reactivity of Technical Lignins 30</p> <p>2.4 Lignin Pre-Treatment/Modification for Adhesive Application 32</p> <p>2.4.1 Physical Pre-Treatment 32</p> <p>2.4.2 Chemical Modification 35</p> <p>2.5 Challenges and Prospects 45</p> <p>2.6 Conclusions 47</p> <p>References 47</p> <p><b>3 Green Adhesive for Industrial Applications 57<br /></b><i>Priyanka E. Bhaskaran, Thangavel Subramaniam, Gobinath Velu Kaliyannan, Sathish Kumar Palaniappan and Rajasekar Rathanasamy</i></p> <p>3.1 Introduction 57</p> <p>3.2 Advanced Green Adhesives Categories—Industrial Applications 59</p> <p>3.2.1 Keta Spire Poly Etherether Ketone Powder Coating 59</p> <p>3.2.2 Bio-Inspired Adhesive in Robotics Field Application 60</p> <p>3.2.3 Bio-Inspired Synthetic Adhesive in Space Application 62</p> <p>3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application 62</p> <p>3.2.4 Natural Polymer Adhesive for Wood Panel Industry 72</p> <p>3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry 74</p> <p>3.2.6 Conductive Adhesives in Microelectronics Industry 76</p> <p>3.2.7 Bio-Resin Adhesive in Dental Industry 78</p> <p>3.2.8 Green Adhesive in Fiberboard Industry 79</p> <p>3.3 Conclusions and Future Scope 81</p> <p>References 81</p> <p><b>4 Green Adhesives for Biomedical Applications 85<br /></b><i>Julliana Ribeiro Alves dos Santos, Alessandra Teixeira de Macedo, Audirene Amorim Santana, Maria Eliziane Pires de Souza, Rodrigo Assuncao Holanda and Glauber Cruz</i></p> <p>4.1 Introduction 86</p> <p>4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties 87</p> <p>4.2.1 Chitosan 88</p> <p>4.2.2 Alginate 90</p> <p>4.2.3 Lignin 93</p> <p>4.2.4 Lactic Acid PLA 94</p> <p>4.3 Properties Characterization of Green Adhesives for Biomedical Applications 96</p> <p>4.3.1 Diffraction X-Rays (DRX) 98</p> <p>4.3.2 Atomic Force Microscopy (AFM) 99</p> <p>4.3.3 Scanning Electron Microscope (SEM Images) 100</p> <p>4.3.4 Wettability or Contact Angle (CA) 101</p> <p>4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 102</p> <p>4.3.6 Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES) 103</p> <p>4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) 104</p> <p>4.3.8 Surface Area and Porosimetry Analyzer (ASAP) 105</p> <p>4.3.9 Mechanical Properties of Green Adhesives 105</p> <p>4.4 Biomedical Applications of Natural Polymers 106</p> <p>4.4.1 Alginate 107</p> <p>4.4.1.1 Biomedical Applications of Alginate 107</p> <p>4.4.2 Chitosan 108</p> <p>4.4.2.1 Biomedical Applications of Chitosan 108</p> <p>4.4.3 Lignin 109</p> <p>4.4.3.1 Biomedical Applications of Lignin 109</p> <p>4.4.4 Polylactide (PLA) 110</p> <p>4.4.4.1 Biomedical Applications of PLA 110</p> <p>4.5 Final Considerations 111</p> <p>Acknowledgements 111</p> <p>References 112</p> <p><b>5 Waterborne Adhesives 121<br /></b><i>Sukanya Pradhan</i></p> <p>5.1 Introduction 121</p> <p>5.1.1 Motivation for the Use of Waterborne Adhesives 122</p> <p>5.1.1.1 Sustainability and Environment Regulations 122</p> <p>5.1.1.2 Circular Economy 122</p> <p>5.1.1.3 Avoid Harmful Emissions 122</p> <p>5.1.1.4 Development of Novel and Sustainable End Products 122</p> <p>5.1.2 Environmental Effects and Mankind Toxicity Analysis 123</p> <p>5.2 Performance of Waterborne Adhesives: An Overview 124</p> <p>5.2.1 Waterborne Polyurethane (WBPU) Adhesives 124</p> <p>5.2.1.1 Chemical Structure of Waterborne PU 124</p> <p>5.2.1.2 Performances of WBPU Adhesives 124</p> <p>5.2.2 Waterborne Epoxy Adhesive 125</p> <p>5.3 Conclusions 126</p> <p>References 126</p> <p><b>6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant 129<br /></b><i>Rakesh Kumar and Rajnish Kumar</i></p> <p>6.1 Introduction 130</p> <p>6.2 Furfuryl Alcohol as Adhesives 132</p> <p>6.3 Polyfurfuryl Alcohol as Sealants 133</p> <p>6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants 134</p> <p>6.4 Applications 140</p> <p>6.5 Conclusions 141</p> <p>Acknowledgement 142</p> <p>References 142</p> <p><b>7 Bioadhesives 145<br /></b><i>M. Ramesh and L. Rajesh Kumar</i></p> <p>7.1 Introduction 146</p> <p>7.2 History of Bioadhesives 148</p> <p>7.3 Classification of Bioadhesives 149</p> <p>7.4 Mechanism of Bioadhesion 150</p> <p>7.4.1 Mechanical Interlocking 151</p> <p>7.4.2 Chain Entanglement 152</p> <p>7.4.3 Intermolecular Bonding 152</p> <p>7.4.4 Electrostatic Bonding 153</p> <p>7.5 Testing of Bioadhesives 153</p> <p>7.5.1 <i>In Vitro </i>Methods 153</p> <p>7.5.1.1 Shear Stress Measurements 153</p> <p>7.5.1.2 Peel Strength Evaluation 154</p> <p>7.5.1.3 Flow Through Experiment and Plate Method 154</p> <p>7.5.2 <i>Ex Vitro </i>Methods 155</p> <p>7.5.2.1 Adhesion Weight Method 155</p> <p>7.5.2.2 Fluorescent Probe Methods 156</p> <p>7.5.2.3 Falling Liquid Film Method 156</p> <p>7.6 Application of Bioadhesives 157</p> <p>7.6.1 Bioadhesives as Drug Delivery Systems 157</p> <p>7.6.2 Bioadhesives as Fibrin Sealants 158</p> <p>7.6.3 Bioadhesives as Protein-Based Adhesives 158</p> <p>7.6.4 Bioadhesives in Tissue Engineering 159</p> <p>7.7 Conclusion 160</p> <p>References 161</p> <p><b>8 Polysaccharide-Based Adhesives 165<br /></b><i>Asad Ali, Kanwal Rehman, Humaira Majeed, Muhammad Fiaz Khalid and Muhammad Sajid Hamid Akash</i></p> <p>8.1 Introduction 166</p> <p>8.2 Cellulose-Derived Adhesive 167</p> <p>8.2.1 Esterification 167</p> <p>8.2.1.1 Cellulose Nitrate 167</p> <p>8.2.1.2 Cellulose Acetate 169</p> <p>8.2.1.3 Cellulose Acetate Butyrate 169</p> <p>8.2.2 Etherification 169</p> <p>8.2.2.1 Methyl Cellulose 169</p> <p>8.2.2.2 Ethyl Cellulose 170</p> <p>8.2.2.3 Carboxymethyl Cellulose 170</p> <p>8.3 Starch-Derived Adhesives 170</p> <p>8.3.1 Alkali Treatment 171</p> <p>8.3.2 Acid Treatment 171</p> <p>8.3.3 Heating 171</p> <p>8.3.4 Oxidation 172</p> <p>8.4 Natural Gums Derived-Adhesives 172</p> <p>8.5 Fermentation-Based Adhesives 172</p> <p>8.6 Enzyme Cross-Linked-Based Adhesives 173</p> <p>8.7 Micro-Biopolysaccharide-Based Adhesives 173</p> <p>8.8 Mechanism of Adhesion 173</p> <p>8.9 Tests for Adhesion Strength 174</p> <p>8.10 Applications 176</p> <p>8.10.1 Biomedical Applications 176</p> <p>8.10.2 Food Stuffs Applications 176</p> <p>8.10.3 Pharmaceutical Applications 177</p> <p>8.10.4 Agricultural Applications 177</p> <p>8.10.5 Cigarette Manufacturing 177</p> <p>8.10.6 Skin Cleansing Applications 177</p> <p>8.11 Conclusion 178</p> <p>References 178</p> <p><b>9 Wound Healing Adhesives 181<br /></b><i>Humaira Majeed, Kanwal Rehman, Asad Ali, Muhammad Fiaz Khalid and Muhammad Sajid Hamid Akash</i></p> <p>9.1 Introduction 181</p> <p>9.2 Wound 182</p> <p>9.2.1 Types of Wounds 185</p> <p>9.2.1.1 Acute Wounds 185</p> <p>9.2.1.2 Chronic Wounds 185</p> <p>9.3 Structure and Function of the Skin 185</p> <p>9.4 Mechanism of Wound Healing 186</p> <p>9.5 Wound Closing Techniques 187</p> <p>9.6 Wound Healing Adhesives 187</p> <p>9.7 Types of Wound Healing Adhesives Based Upon Site of Application 189</p> <p>9.7.1 External Use Wound Adhesives 190</p> <p>9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin 190</p> <p>9.7.2 Internal Use Wound Adhesives 190</p> <p>9.8 Types of Wound Healing Adhesives Based Upon Chemistry 191</p> <p>9.8.1 Natural Wound Healing Adhesives 191</p> <p>9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives 191</p> <p>9.8.1.2 Albumin-Based Adhesives 194</p> <p>9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives 195</p> <p>9.8.1.4 Starch 195</p> <p>9.8.1.5 Chitosan 196</p> <p>9.8.1.6 Dextran 196</p> <p>9.8.2 Synthetic Wound Healing Adhesives 197</p> <p>9.8.2.1 Cyanoacrylate 197</p> <p>9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) 198</p> <p>9.8.2.3 Hydrogels 198</p> <p>9.8.2.4 Polyurethane 200</p> <p>9.9 Summary 200</p> <p>References 200</p> <p><b>10 Green-Wood Flooring Adhesives 205<br /></b><i>Mustafa Kucuktuvek</i></p> <p>10.1 Introduction 205</p> <p>10.2 Wood Flooring 212</p> <p>10.2.1 Softwood Flooring 212</p> <p>10.2.2 Hardwood Flooring 213</p> <p>10.2.3 Engineered Wood Flooring 213</p> <p>10.2.4 Laminate Flooring 213</p> <p>10.2.5 Vinyl Flooring 214</p> <p>10.2.6 Agricultural Residue Wood Flooring Panels 214</p> <p>10.3 Recent Advances About Green Wood-Flooring Adhesives 215</p> <p>10.3.1 Xylan 216</p> <p>10.3.2 Modified Cassava Starch Bioadhesives 216</p> <p>10.3.3 High-Efficiency Bioadhesive 217</p> <p>10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide 217</p> <p>10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive 217</p> <p>10.3.6 “Green” Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins 218</p> <p>10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing 218</p> <p>10.3.8 Cottonseed Protein as Wood Adhesives 219</p> <p>10.3.9 Chitosan as an Adhesive 219</p> <p>10.3.10 PE-cg-MAH Green Wood Flooring Adhesive 219</p> <p>References 220</p> <p><b>11 Synthetic Binders for Polymer Division 227<br /></b><i>Sathish Kumar Palaniappan, Moganapriya Chinnasamy, Rajasekar Rathanasamy and Samir Kumar Pal</i></p> <p>List of Abbreviations 228</p> <p>11.1 Introduction 229</p> <p>11.2 Classification of Adhesives Based on Its Chemical Properties 230</p> <p>11.2.1 Thermoset Adhesives 230</p> <p>11.2.2 Thermoplastic Adhesives 231</p> <p>11.2.3 Adhesive Blends 232</p> <p>11.3 Adhesives Characteristics 232</p> <p>11.4 Adhesives Classification Based on Its Function 233</p> <p>11.4.1 Permanent Adhesives 233</p> <p>11.4.2 Removable Adhesives 234</p> <p>11.4.3 Repositionable Adhesives 235</p> <p>11.4.4 Blended Adhesives 235</p> <p>11.4.5 Anaerobic Adhesives 236</p> <p>11.4.6 Aromatic Polymer Adhesives 237</p> <p>11.4.7 Asphalt 237</p> <p>11.4.8 Adhesives Based on Butyl Rubber 238</p> <p>11.4.9 Cellulose Ester Adhesives 238</p> <p>11.4.10 Adhesives Based on Cellulose Ether 238</p> <p>11.4.11 Conductive Adhesives 239</p> <p>11.4.12 Electrically Conductive Adhesive Materials 239</p> <p>11.4.13 Thermally Conductive Adhesives 240</p> <p>11.5 Resin 240</p> <p>11.5.1 Unsaturated Polyester Resin 240</p> <p>11.5.2 Monomers 241</p> <p>11.5.2.1 Unsaturated Polyester 241</p> <p>11.5.2.2 Alcohol Constituents 241</p> <p>11.5.2.3 Constituents Like Anhydride and Acid 241</p> <p>11.5.3 Vinyl Monomers of Unsaturated Polyester Resins 245</p> <p>11.5.4 Styrenes 245</p> <p>11.5.5 Acrylates and Methacrylates 245</p> <p>11.5.6 Vinyl Ethers 245</p> <p>11.5.7 Fillers 247</p> <p>11.6 Polyurethanes 247</p> <p>11.6.1 Monomers 247</p> <p>11.6.1.1 Diisocyanates 248</p> <p>11.6.1.2 Phosgene Route 248</p> <p>11.6.1.3 Phosgene-Free Route 248</p> <p>11.6.1.4 Polyols 248</p> <p>11.6.1.5 Vinyl Functionalized Polyols 249</p> <p>11.6.1.6 Polyols Based on Modified Polyurea 249</p> <p>11.6.1.7 Polyols Based on Polyester 249</p> <p>11.6.1.8 Acid and Alcohols-Based Polyesters 250</p> <p>11.6.2 Rectorite Nanocomposites 250</p> <p>11.6.3 Zeolite 250</p> <p>11.7 Epoxy Resins 251</p> <p>11.7.1 Monomers 251</p> <p>11.7.1.1 Epoxides 251</p> <p>11.7.1.2 Hyper Branched Polymers 251</p> <p>11.7.2 Epoxide Resins Based on Liquid Crystalline Structure 252</p> <p>11.7.3 Liquid Crystal 252</p> <p>11.7.4 Liquid-Based Rubbers 253</p> <p>11.7.5 Silicone-Based Elastomers 253</p> <p>11.7.6 Rubbery Epoxy Compounds 254</p> <p>11.7.7 Adhesion Improvers 254</p> <p>11.7.8 Unsaturated Polyesters 254</p> <p>11.7.9 Functional Peroxides 254</p> <p>11.7.10 Acrylics 255</p> <p>11.7.11 Bismaleimide Based on Modified Urethane 255</p> <p>11.7.12 Hybrid Materials Comprising Organic and Inorganic Compounds 255</p> <p>11.7.13 Poly (Ether Ether Ketone) 256</p> <p>11.7.14 Epoxy Systems Comprising of Vinyl-Based Polymers 256</p> <p>11.7.15 Characteristics 256</p> <p>11.7.16 Hybrid- and Mixed-Bases Polymers 257</p> <p>11.7.17 Copolymers-Based on Epoxy-Siloxane 257</p> <p>11.8 Phenol Formaldehyde Resin 257</p> <p>11.8.1 Monomers 259</p> <p>11.8.2 Phenol 259</p> <p>11.8.3 O-Cresol 259</p> <p>11.8.4 Formaldehyde 259</p> <p>11.8.5 Multihydroxymethylketone 260</p> <p>11.8.6 Basic Resin Types 260</p> <p>11.8.6.1 Novolak Resins 260</p> <p>11.8.6.2 Resol Resins 260</p> <p>11.8.7 Fillers 261</p> <p>11.8.8 Reinforcement Based on Jute Fibers 261</p> <p>11.8.9 Applications and Uses 261</p> <p>11.8.10 Binders for Glass Fibers 261</p> <p>11.8.11 Phenolic Binders 262</p> <p>11.9 Melamine Resins 262</p> <p>11.9.1 Monomers 263</p> <p>11.9.2 Other Modifiers 263</p> <p>11.9.3 Synthesis 263</p> <p>11.9.4 Etherified Resins 263</p> <p>11.9.5 Properties 264</p> <p>11.9.6 Applications and Uses 264</p> <p>11.10 Furan Resins 264</p> <p>11.10.1 Monomers 265</p> <p>11.10.2 Furfural 265</p> <p>11.10.3 Furfuryl Alcohol 265</p> <p>11.10.4 Specialties, i.e., Polyimides Based on Furan 265</p> <p>11.10.5 Special Additives as Reinforcing Materials 266</p> <p>11.10.6 Curing 266</p> <p>11.10.7 Recycling Properties 266</p> <p>11.10.8 Applications and Uses 267</p> <p>11.10.8.1 Carbons 267</p> <p>11.10.8.2 Composite Carbon Fiber Materials 267</p> <p>11.10.8.3 Foundry Binders 268</p> <p>11.10.8.4 Binders Based on Glass Fiber 268</p> <p>11.10.8.5 Oil Fields 269</p> <p>11.10.8.6 Substrates for Plant Growth 269</p> <p>References 269</p> <p>Index 273</p>
<p><b>Inamuddin, PhD</b>, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Rajender Boddula, PdD</b>, is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored twenty book chapters. <p><b>Mohd Imran Ahamed</b> received his Ph.D on the topic "Synthesis and characterization of inorganic-organic composite heavy metals selective cation-exchangers and their analytical applications", from Aligarh Muslim University, India in 2019. He has published several research and review articles in SCI journals. His research focusses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. <p><b>Abdullah M. Asiri</b> is the Head of the Chemistry Department at King Abdulaziz University and the founder and Director of the Center of Excellence for Advanced Materials Research (CEAMR). He is the Editor-in-Chief of the King Abdulaziz University <i>Journal of Science</i>. He has received numerous awards, including the first prize for distinction in science from the Saudi Chemical Society in 2012. He holds multiple patents, has authored ten books and more than one thousand publications in international journals.
<p><b>The development of green adhesives based on renewable resources is the necessity of this age and this book includes chapters on the collective properties of waterborne, bio, and wound-healing green adhesives.</b> <p><i>Green Adhesives: Preparation, Properties and Applications</i> reviews??the coating science and state-of-the-art technology of green adhesives and their allied applications. Various types of green adhesives, fundamentals, formulations, green synthesis methods, and characterization techniques are discussed with the emphasis on the enhanced sustainable properties of these materials. Furthermore, it delivers theoretical insights and experimental evaluations for coatings science and technology with industrial applications in detail. Bringing together contributions from leading researchers in academia and industry throughout the world, the book also discusses the potential for future research for??innovation and growth of marketable applications??of green adhesives and coatings. <p><b>Audience</b> <p>This book will be very useful for researchers and industrial engineers in adhesion science, polymer science, green chemistry, materials science, and engineering.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €