Details

Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture


Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture


1. Aufl.

von: Frans J. de Bruijn, Hauke Smidt, Luca S. Cocolin, Michael Sauer, David N. Dowling, Linda Thomashow

178,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.09.2022
ISBN/EAN: 9781119762379
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Discover the positive and helpful contributions made by microorganisms to various areas of human health, food preservation and production, biotechnology, industry, environmental clean up and sustainable agriculture.</b> <p>In <i>Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation and Agriculture,</i> a team of distinguished researchers delivers a comprehensive and eye-opening look at the positive side of bacteria and other microbes. The book explores the important and positive roles played by microorganisms. <p>Divided into five sections, <i>Good Microbes</i> examines the use of microorganisms and the microbiome in human health, food production, industrial use, bioremediation, and sustainable agriculture. Coverage spans from food allergies, skin disorders, microbial food preservation and fermentation of various beverages and food products, also from an ethnical point of view to beneficial use of microbes in biotechnology, industry, bioeconomy, environmental remediation such as resource recovery, microbial-based environmental clean-up, plant-microbe interactions in biorestauration, biological control of plant diseases, and biological nitrogen fixation. <ul> <li>Provides basic knowledge on bacterial biology, biochemistry, genetics and genomics of beneficial microbes</li> <li>Includes practical discussions of microbial biotechnology, including the contribution of microbial biotechnology to sustainable development goals</li> <li>Features a comprehensive introduction and extensive index to facilitate the search for key terms.</li> </ul> <p>Perfect for scientists, researchers and anyone with an interest in beneficial microbes, <i>Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation and Agriculture</i> is also an indispensable resource for microbiology graduate students, applied microbiologists and policy makers.
<p>Preface xxi</p> <p>List of Contributors xxii</p> <p>Acknowledgments xxviii</p> <p>Introduction xxix</p> <p>Section 1 Good Microbes in Medicine 1<br /> Co-Edited by Hauke Smidt and Frans J. de Bruijn</p> <p><b>Chapter 1 Modern Medicine Relies on the Help of Microorganisms – From Vaccine Production to Cancer Medication 3<br /> </b>Letícia Parizotto, Larissa Brumano, Eduardo Kleingesinds, and Adalberto Pessoa Junior</p> <p>1.1 Introduction: Good Microorganisms and Our Health 3</p> <p>1.2 Bad Microorganisms: Epidemics Boosted Modern Medicine 4</p> <p>1.3 Antimicrobial Peptides: A New Therapeutic Alternative to Antibiotics? 4</p> <p>1.4 Microorganisms as Tools: Recombinant DNA Technology (rDNAT) 5</p> <p>1.5 Vaccines: The Use of Microorganisms in the Frontline against Diseases 7</p> <p>1.6 Anticancer Drugs: Many Ways to Fight Cancer with Good Microorganisms 8</p> <p>1.7 Gene Therapy: The Future of Modern Medicine 9</p> <p>1.8 Concluding Remarks and Perspectives 10</p> <p>Acknowledgments 10</p> <p><b>Chapter 2 How Nursing Mothers Protect Their Babies with Bifidobacteria 13<br /> </b>Nick M. Jensen, Britta E. Heiss, and David A. Mills</p> <p>2.1 Bifidobacterium Species and Diversity 13</p> <p>2.2 Human Milk Oligosaccharides 14</p> <p>2.3 Bifidobacterial Metabolism 14</p> <p>2.4 Benefits of Bifidobacterium 15</p> <p>2.5 Global Distribution of Bifidobacterium 16</p> <p>2.6 Supporting Persistent Bifidobacterium Populations 16</p> <p>2.7 Summary 18</p> <p>Acknowledgments 18</p> <p><b>Chapter 3 Gut Microbiome and the Immune System: Role in Vaccine Response 22<br /> </b>Helena Ipe Pinheiro Guimaraes, Jorgen De Jonge, Debbie Van Baarle, and Susana Fuentes</p> <p>3.1 Immunology of Vaccines 22</p> <p>3.1.1 Induction of Protective Immunity by Vaccination 22</p> <p>3.1.2 Evolution of Vaccines 23</p> <p>3.1.3 Vaccine Limitations 24</p> <p>3.2 Gut Microbiome and the Immune System 24</p> <p>3.2.1 Microbiome Development in Life 24</p> <p>3.2.2 Host–microbe Interactions: Impact on Health 25</p> <p>3.3 Microbiome and Vaccine Response 27</p> <p>3.3.1 Mechanistic Studies in Animal Models 27</p> <p>3.4 Role of the Microbiome in Vaccine Response in Human Studies 28</p> <p>3.5 Conclusions and Future Perspectives 29</p> <p><b>Chapter 4 Probiotics for Prevention or Treatment of Food Allergies 35<br /> </b>Agnes S. Y. Leung, Wenyin Loh, and Mimi L. K. Tang</p> <p>4.1 Introduction 35</p> <p>4.2 Prevention of Food Allergy 36</p> <p>4.3 Treatment of Food Allergy 37</p> <p>4.3.1 Clinical Use of Probiotics in Food Immunotherapy 38</p> <p>4.3.2 Preclinical Studies of the Effects of Probiotics for Treatment of Food Allergy 39</p> <p>4.4 Conclusion 39</p> <p><b>Chapter 5 COVID-19, Microbiota, and Probiotics 43<br /> </b>Marta Mozota, Leónides Fernández, and Juan Miguel Rodríguez</p> <p>5.1 Introduction 43</p> <p>5.2 Relationship between COVID-19 and the Microbiota 44</p> <p>5.3 Respiratory Microbiota in Patients with COVID-19 45</p> <p>5.4 Gut Microbiota in Patients with COVID-19 45</p> <p>5.5 Probiotics and COVID-19 46</p> <p><b>Chapter 6 Underarm Body Odor, the Microbiome, and Probiotic Treatment 52<br /> </b>Britta De Pessemier, Rune Daneels, Tom Van De Wiele, and Chris Callewaert</p> <p>6.1 Skin Structure and Function 52</p> <p>6.2 Sweat 52</p> <p>6.2.1 Sweat Glands</p> <p>6.2.1.1 Eccrine Glands 53</p> <p>6.2.1.2 Apocrine Glands 53</p> <p>6.2.1.3 Apoeccrine Glands 53</p> <p>6.2.1.4 Sebaceous Glands 54</p> <p>6.3 Skin and Underarm Microbiome 54</p> <p>6.4 Axillary Microbiome 54</p> <p>6.5 Bromhidrosis Pathophysiology 56</p> <p>6.5.1 Steroid-based Malodor 56</p> <p>6.5.2 Long-chain Fatty Acids (LCFAs) 56</p> <p>6.5.3 VFA-based Malodor 57</p> <p>6.5.4 Thioalcohol-based Malodor 57</p> <p>6.6 Methods to Treat Body Odor 57</p> <p>6.6.1 Conventional Methods 57</p> <p>6.6.1.1 Deodorants 57</p> <p>6.6.1.2 Antiperspirants 58</p> <p>6.6.1.3 Antibiotics 58</p> <p>6.6.1.4 Medication 58</p> <p>6.6.1.5 Botox 58</p> <p>6.6.1.6 Surgery 58</p> <p>6.6.2 Alternative Methods 58</p> <p>6.6.2.1 Pre-, Pro-, and Postbiotics 59</p> <p>6.6.2.2 Armpit Bacterial Transplant 60</p> <p>6.6.2.3 Bacteriotherapy 60</p> <p>6.7 Conclusions 60</p> <p>Acknowledgments 61</p> <p><b>Chapter 7 The Enigma of Prevotella copri 64<br /> </b>Petia Kovatcheva-Datchary</p> <p>7.1 Introduction 64</p> <p>7.2 Prevotella copri Physiology, Growth, and Metabolism 64</p> <p>7.3 Prevotella copri, an Important Member of the Human Gut Microbiota 65</p> <p>7.4 The Unexplored Diversity of Prevotella copri 65</p> <p><b>Chapter 8 Future Perspectives of Probiotics and Prebiotics in Foods and Food Supplements 69<br /> </b>Z. H. Hassan, F. Hugenholtz, E. G. Zoetendal, and Hauke Smidt</p> <p>8.1 Introduction 69</p> <p>8.2 Function of the GI Tract Microbiota 71</p> <p>8.3 Modulating the GI Tract Microbiota to Improve Health 71</p> <p>8.3.1 Modulating the GI Tract Microbiota with Probiotics 72</p> <p>8.3.2 Criteria for a Microorganism to Be Classified as Probiotic 72</p> <p>8.4 Modulating the GI Tract Microbiota with Prebiotics 73</p> <p>8.5 Modulating the GI Tract Microbiota with Synbiotics 74</p> <p>8.6 Future Perspectives 76</p> <p>8.6.1 Next Generation Probiotics 78</p> <p>8.6.2 Next Generation Prebiotics 80</p> <p>Acknowledgments 82</p> <p><b>Section 2 Good Microbes in Food Production 89<br /> </b>Co-Edited by Luca S. Cocolin and Frans J. de Bruijn</p> <p><b>Chapter 9 Bioprotective Cultures and Bacteriocins for Food 91<br /> </b>Sara Arbulu, Beatriz Gómez-Sala, Enriqueta Garcia-Gutierrez,<br /> and Paul D. Cotter</p> <p>9.1 Introduction 91</p> <p>9.1.1 Food Safety Hazards 91</p> <p>9.1.2 Bioprotection: Fermentation, Protective Cultures, and Bacteriocins 92</p> <p>9.1.3 Fermented Foods 92</p> <p>9.1.4 Protective Cultures 92</p> <p>9.1.5 Bacteriocins 92</p> <p>9.1.6 Bacteriocin Classification 92</p> <p>9.2 Bioprotection of Milk and Dairy Products 93</p> <p>9.2.1 Milk Products and Their Importance in Society 93</p> <p>9.2.2 Spoilage and Food-borne Pathogenic Bacteria in Milk and Dairy Products 93</p> <p>9.3 Fermented Dairy Products 93</p> <p>9.4 Application of Bacteriocins and Their Protective Cultures in Milk and Dairy Products 94</p> <p>9.5 Bioprotection of Meat and Meat Products 95</p> <p>9.5.1 Meat and Meat Products and Their Importance in Society 95</p> <p>9.5.2 Spoilage and Food-borne Pathogenic Bacteria in Meat and Meat Products 95</p> <p>9.6 Fermented Meat Products 95</p> <p>9.7 Application of Protective Cultures and Their Bacteriocins in Meat and Meat Products 96</p> <p>9.8 Bioprotection of Fresh Fish and Fish Products 97</p> <p>9.8.1 Fish and Fish Products and Their Importance in Society 97</p> <p>9.8.2 Spoilage and Food-borne Pathogenic Bacteria in Fish and Fish Products 97</p> <p>9.9 Fermented Fish Products 98</p> <p>9.10 Application of Protective Cultures and Their Bacteriocins in Fish and Fish Products 100</p> <p>9.11 Bioprotection of Fruits and Vegetables 100</p> <p>9.11.1 Fruit and Vegetables and Their Importance in Society 100</p> <p>9.11.2 Spoilage and Pathogenic Bacteria in Fruit and Vegetables 103</p> <p>9.12 Fermented Fruits and Vegetables Products 103</p> <p>9.13 Application of Protective Cultures and Their Bacteriocins in Fruit, Vegetables, and By-products 104</p> <p>9.14 Regulatory Issues in Bioprotection 104</p> <p>9.15 Conclusions 106</p> <p>Acknowledgments 106</p> <p><b>Chapter 10 Aromatic Yeasts: Revealing Their Flavor Potential in Food Fermentations 113<br /> </b>Amparo Gamero, Mónica Flores, and Carmela Belloch</p> <p>10.1 Introduction 113</p> <p>10.2 Yeast Aroma in Alcoholic Beverages 113</p> <p>10.2.1 Yeast: Saccharomyces and Non-Saccharomyces 114</p> <p>10.2.2 Aromatic Precursors 115</p> <p>10.2.3 Fermentative Aroma Compounds 116</p> <p>10.3 Yeast Aroma in Foods from Animal Sources 116</p> <p>10.3.1 Yeast: Debaryomyces and Kluyveromyces 117</p> <p>10.3.2 Fermentation Aroma Compounds 117</p> <p>10.4 Yeast Aroma in Other Fermentations 120</p> <p>10.4.1 Vegetables 121</p> <p>10.4.2 Traditional Fermentations 122</p> <p>10.5 Final Remarks 125</p> <p>Acknowledgments 125</p> <p><b>Chapter 11 Beneficial Microbiota in Ethnic Fermented Foods and Beverages 130<br /> </b>Jyoti Prakash Tamang and Namrata Thapa</p> <p>11.1 Introduction 130</p> <p>11.2 Ethnic Fermented Foods 130</p> <p>11.3 Diversity of Beneficial Microorganisms in Ethnic Fermented Foods 132</p> <p>11.3.1 Lactic Acid Bacteria 133</p> <p>11.3.2 Non-Lactic Acid Bacteria 134</p> <p>11.3.3 Yeasts 135</p> <p>11.3.4 Filamentous Molds 135</p> <p>11.3.5 Probiotic Strains from Ethnic Fermented Foods 136</p> <p>11.3.6 Functional Profiles of Beneficial Microorganisms 136</p> <p>11.4 Conclusion 137</p> <p><b>Chapter 12 No Microbes, No Cheese 149<br /> </b>Maria Kazou and Effie Tsakalidou</p> <p>12.1 Cheese for Life: The History 149</p> <p>12.2 The Technology 150</p> <p>12.3 The Market 151</p> <p>12.4 Microbes, Milk, and Cheese: A Long Lasting Threesome Love Affair 151</p> <p>12.5 Raw Milk Cheese versus Pasteurized Milk Cheese: A Thoughtful Debate about Cheese Quality and Safety 154</p> <p>12.6 Starter Cultures versus Non-starter Cultures, Alias, Sprinters versus Marathon Runners 155</p> <p>12.7 Cheese Microbial Communities Thrive while Cheese is Aging and Make a Fortune in Aroma, Flavor, Texture, and Color 156</p> <p>12.8 Cheese Microbiota and Human Health: Myth or Reality? 157</p> <p>12.9 Conclusions 158</p> <p><b>Chapter 13 The Microbiome of Fermented Sausages 160<br /> </b>Ilario Ferrocino, Irene Franciosa, Kalliopi Rantsiou, and Luca S. Cocolin</p> <p>13.1 Introduction 160</p> <p>13.2 The Microbiota of Fermented Sausages 161</p> <p>13.3 The Importance of the Sausage’s Mycobiota 164</p> <p>13.4 Use of the Autochthonous Microbiome to Improve the Quality and Safety of Fermented Sausages 165</p> <p>13.5 Conclusion 166</p> <p><b>Chapter 14 The Sourdough Microbiota and Its Sensory and Nutritional Performances 169<br /> </b>Hana Ameur, Kashika Arora, Andrea Polo, and Marco Gobbetti</p> <p>14.1 Introduction 169</p> <p>14.2 How the Sourdough Microbiota is Assembled 170</p> <p>14.2.1 House Microbiota 170</p> <p>14.2.2 Flour 171</p> <p>14.2.3 Water 172</p> <p>14.2.4 Other Ingredients 172</p> <p>14.3 Where and How to Use the Sourdough 173</p> <p> 14.3.1 Baked Goods and Flours 173</p> <p>14.3.2 Conditions of Use 173</p> <p>14.3.3 Microbiological and Biochemical Characteristics 174</p> <p>14.4 Sourdough to Exploit the Potential of Non-conventional Flours 175</p> <p>14.4.1 Legumes 175</p> <p>14.4.2 Pseudo-cereals 177</p> <p>14.4.3 Milling By-products 177</p> <p>14.5 The Sensory Performances of Sourdough Baked Goods 178</p> <p>14.6 The Nutritional Performances of Sourdough Baked Goods 178</p> <p>14.6.1 Mineral Bioavailability 178</p> <p>14.6.2 Dietary Fibers 179</p> <p>14.6.3 Glycemic Index 179</p> <p>14.6.4 Protein Digestibility 179</p> <p>14.6.5 Degradation of Anti-nutritional Factors 180</p> <p>14.7 Conclusions 181</p> <p><b>Chapter 15 Beneficial Role of Microorganisms in Olives 185<br /> </b>Anthoula A. Argyri and Chrysoula C. Tassou</p> <p>15.1 Table Olives as Fermented Food 185</p> <p>15.1.1 Microbiota of Fermented Olives 185</p> <p>15.1.2 Microbial Starters in Olive Fermentation 186</p> <p>15.2 Table Olives as Functional/Probiotic Food 186</p> <p>15.2.1 Probiotic Microorganisms of Olives 187</p> <p>15.2.2 Probiotic Microorganisms as Starters in Olive Fermentation 191</p> <p>15.2.2.1 Non-olive Origin Probiotic Starters 191</p> <p>15.2.2.2 Olive Origin Probiotic Starters 192</p> <p>15.3 Conclusions 193</p> <p><b>Chapter 16 The Functional and Nutritional Aspects of Cocobiota: Lactobacilli 199<br /> </b>Jatziri Mota-Gutierrez and Luca S. Cocolin</p> <p>16.1 Introduction 199</p> <p>16.2 Characteristics of Liquorilactobacillus Cacaonum, Limosilactobacillus Fermentum, and Lactiplantibacillus Plantarum 200</p> <p>16.2.1 Nutrition and Growth 200</p> <p>16.2.2 Genetics 201</p> <p>16.2.3 Metabolic Properties 202</p> <p>16.2.4 Potential Food Application of Lactobacilli from Fermented Cocoa Pulp-bean Mass 203</p> <p>16.2.5 Starter Cultures 203</p> <p>16.2.6 Food Preservation Applications 205</p> <p>16.2.7 Organoleptic Applications 205</p> <p>16.2.8 Nutritional Applications 206</p> <p>16.3 European Regulation of Food Cultures 207</p> <p>16.3.1 Food Safety Assessment 207</p> <p>16.4 Conclusions 207</p> <p><b>Chapter 17 Microbiological Control as a Tool to Improve Wine Aroma and Quality 213<br /> </b>Albert Mas, Gemma Beltran, and María Jesús Torija</p> <p>17.1 Introduction 213</p> <p>17.2 Methods of Analysis: Classical and Molecular Methods 213</p> <p>17.3 Grape Microbiome 215</p> <p>17.4 Succession of Microorganisms during Alcoholic Fermentation 216</p> <p>17.5 Microbial Interactions during Alcoholic Fermentation 218</p> <p>17.6 Production of Aromas and Wine Quality 219</p> <p>17.7 Conclusions 222</p> <p><b>Chapter 18 Lambic Beer, A Unique Blend of Tradition and Good Microorganisms 225<br /> </b>Jonas De Roos and Luc De Vuyst</p> <p>18.1 Introduction 225</p> <p>18.2 Lambic Beer, a Long-lasting Brew 226</p> <p>18.3 A Unique Blend of Microorganisms 228</p> <p>18.4 How Beer-spoiling Bacteria Can Be Wanted 229</p> <p>18.5 Yeasts, More than a One-trick Pony 231</p> <p>18.6 Conclusions 232</p> <p>Section 3 Good Microbes in Biotechnology 237<br /> Co-Edited by Michael Sauer and Frans J. de Bruijn</p> <p><b>Chapter 19 Microbiology and Bio-economy – Sustainability by Nature 239<br /> </b>Michael Sauer</p> <p>19.1 Introduction 239</p> <p>19.2 Economy, Employment, and Microbes – Some Numbers 239</p> <p>19.3 Outlook into a Sustainable Future – Microbial Chemical Production as an Example 240</p> <p>19.4 What Makes Microorganisms Useful for the Chemical Industry? 241</p> <p>19.5 Metabolic Engineering Allows the Design of Microbial Cell Factories 243</p> <p>19.6 From Plant to Microbe – Production of the Malaria Medication Artemisinin 243</p> <p>19.7 Opening up the Chemical Space with the Tools of Synthetic Biology 244</p> <p>19.8 Conclusions 245</p> <p><b>Chapter 20 Role of Microorganisms in Environmental Remediation and Resource Recovery through Microbe-Based Technologies Having Major Potentials 247<br /> </b>Piyush Malaviya, Rozi Sharma, Smiley Sharma, and Deepak Pant</p> <p>20.1 Introduction 247</p> <p>20.2 Microorganisms as Important Biological Entities in the Environment 248</p> <p>20.2.1 Role of Microorganisms in Urgent Environmental Needs 248</p> <p>20.2.1.1 Pollution Control 248</p> <p>20.2.1.2 Carbon Sequestration 249</p> <p>20.2.1.3 Biofuel Production 249</p> <p>20.2.1.4 Biogas Production 250</p> <p>20.2.1.5 Biofertilizer Production 250</p> <p>20.2.1.6 Production of Single-cell Proteins 250</p> <p>20.3 Different Microbial Technologies with High Potential for Environmental Exigencies 250</p> <p>20.3.1 Omics Technologies 250</p> <p>20.3.2 Nanobioremediation Technology 251</p> <p>20.3.3 Electrobioremediation 251</p> <p>20.3.4 Microbial Electrosynthesis for CO<sub>2</sub> Sequestration 251</p> <p>20.3.5 Microbial Fuel Cells (MFCs) for Electricity Generation 252</p> <p>20.3.6 Microbial Electrolysis for Hydrogen Production 254</p> <p>20.3.7 Consolidated Bioprocessing for Bioethanol Production 255</p> <p>20.3.8 Microbial Technologies for Biogas Production 256</p> <p>20.3.9 Bioaugmentation 256</p> <p>20.3.10 Biogranulation 257</p> <p>20.4 Conclusion 257</p> <p><b>Chapter 21 Microbes Saving the World? How Microbial Carbon Dioxide Fixation Contributes to Storing Carbon in Goods of Our Daily Life 265<br /> </b>Diethard Mattanovich, Özge Ata, and Thomas Gassler</p> <p>21.1 Introduction 265</p> <p>21.2 Photoautrophic Microorganisms 267</p> <p>21.2.1 Cultivation and Applications of Cyanobacteria and Microalgae 268</p> <p>21.3 Chemoautotrophic Bacteria 270</p> <p>21.3.1 Biotech Applications of Chemoautotrophs 272</p> <p>21.4 Synthetic Biology: New-to-Nature CO 2 Fixation Pathways 272</p> <p><b>Chapter 22 The Biodiesel Biorefinery: Opportunities and Challenges for Microbial Production of Fuels and Chemicals 276<br /> </b><i>Hannes Russmayer and Michael Egermeier</i></p> <p>22.1 The Concept of a Biorefinery 276</p> <p>22.1.1 Biorefinery Concept for Biodiesel Production 277</p> <p>22.1.2 Microorganisms as Feedstocks for Biodiesel Production 277</p> <p>22.1.3 Microbial Upgrading of Waste Streams from Biodiesel Production 279</p> <p>22.2 Higher Value Chemicals from Aerobic Glycerol Metabolism 280</p> <p>22.2.1 Anaerobic Glycerol Metabolism for Industrial Chemical Production 281</p> <p>22.2.1.1 Dehydration of Glycerol to Industrial Relevant Building Blocks 281</p> <p>22.2.1.2 Microbial Glycerol Reduction for Chemical Production 282</p> <p>22.3 Concluding Remarks 282</p> <p>Acknowledgments 283</p> <p><b>Chapter 23 The Good Fungus – About the Potential of Fungi for Our Future 287<br /> </b><i>Valeria Ellena and Matthias Steiger</i></p> <p>23.1 Introduction 287</p> <p>23.2 Fungal Biotechnology: The Origins 287</p> <p>23.3 Fungi for Moving Forward – Biofuels 288</p> <p>23.4 Fungal Enzymes to the Rescue for Sustainable Industries 288</p> <p>23.5 Fungal Organic Acids: Jacks of All Trades 289</p> <p>23.6 Fungal Metabolites – Weapons against Diseases 289</p> <p>23.7 Fungal Products on Demand 290</p> <p>23.8 “Green” Fungi for a Sustainable Future 290</p> <p>23.9 Biocomputers and Life in Space: The Future of Fungal Biotechnology 291</p> <p>23.10 Conclusions 292</p> <p>Acknowledgments 292</p> <p><b>Chapter 24 Microbes and Plastic – A Sustainable Duo for the Future 294<br /> </b><i>Birger Wolter, Henric M.T. Hintzen, Gina Welsing, Till Tiso, and Lars M. Blank</i></p> <p>List of Abbreviations 294</p> <p>24.1 Introduction 294</p> <p>24.9 Conclusion 306</p> <p>Acknowledgments 306</p> <p><b>Chapter 25 Food Waste as a Valuable Carbon Source for Bioconversion – How Microbes do Miracles 312<br /> </b>Rajat Kumar, Varsha Bohra, Manu Mk, and Jonathan W. C. Wong</p> <p>25.1 Introduction 312</p> <p>25.2 Biofertilizers 313</p> <p>25.3 Bioenergy 315</p> <p>25.3.1 Hydrolysis 315</p> <p>25.3.2 Acidogenesis 316</p> <p>25.3.3 Acetogenesis 316</p> <p>25.3.4 Methanogenesis 317</p> <p>25.3.5 Bio-products 317</p> <p>25.3.6 Biochemicals 318</p> <p>25.3.7 Bioplastics 318</p> <p>25.3.8 Biosurfactants 319</p> <p>25.3.9 Biocatalysts 319</p> <p>25.4 Conclusions 319</p> <p><b>Section 4 Good Microbes and Bioremediation 323<br /> </b><i>Co-Edited by David Dowling and Frans J. de Bruijn</i></p> <p><b>Chapter 26 Microbial-based Bioremediation at a Global Scale: The Challenges and the Tools 325<br /> </b><i>Victor de Lorenzo, Esteban Martínez-García, and Tomás Aparicio</i></p> <p>26.1 Introduction 325</p> <p>26.2 Bioremediation Beyond the Tipping Point 326</p> <p>26.3 The Environmental Microbiome as a Global Catalyst 326</p> <p>26.4 Designing Agents for Spreading New Traits through the Environmental Microbiome 328</p> <p>26.5 Bacterial Chassis for Environmental Interventions 329</p> <p>26.6 Inoculation of Newcomers in Existing Microbial Niches: No Piece of Cake 331</p> <p>26.7 Programming Large-scale Horizontal Gene Transfer 331</p> <p>26.8 Conclusion 332</p> <p>Acknowledgments 333</p> <p><b>Chapter 27 Ecopiling: Beneficial Soil Bacteria, Plants, and Optimized Soil Conditions for Enhanced Remediation of Hydrocarbon Polluted Soil 337<br /> </b><i>Robert Conlon, Mutian Wang, Xuemei Liu Germaine, Rajesh Mali,<br /> David Dowling, and Kieran J. Germaine</i></p> <p>27.1 Introduction 337</p> <p>27.2 Remediation of Hydrocarbons 338</p> <p>27.3 Bioremediation 338</p> <p>27.4 Biopiles 339</p> <p>27.5 Phytoremediation 339</p> <p>27.6 Rhizoremediation of Total Petroleum Hydrocarbons 340</p> <p>27.7 Ecopiling 340</p> <p>27.8 Conclusion 345</p> <p>Acknowledgments 346</p> <p><b>Chapter 28 Plant–Microbe Interactions in Environmental Restoration 348<br /> </b><i>Ondrej Uhlik, Jachym Suman, Jakub Papik, Michal Strejcek, and Tomas Macek</i></p> <p>28.1 Introduction to Plant–Microbe Interactions 348</p> <p>28.5 Conclusions 353</p> <p>Acknowledgments 354</p> <p><b>Chapter 29 Microbial Endophytes for Clean-up of Pollution 358<br /> </b><i>Robert J. Tournay and Sharon L. Doty</i></p> <p>29.1 Introduction 358</p> <p>29.4 Conclusions 367</p> <p><b>Chapter 30 Metagenomics of Bacterial Consortia for the Bioremediation of Organic Pollutants 372<br /> </b><i>Daniel Garrido-Sanz, Paula Sansegundo-Lobato, Marta Martin,<br /> Miguel Redondo-Nieto, and Rafael Rivilla</i></p> <p>30.1 Introduction 372</p> <p>Acknowledgments 382</p> <p><b>Chapter 31 Soil Microbial Fuel Cells for Energy Harvesting and Bioremediation of Soil Contaminated with Organic Pollutants 385<br /> </b><i>Bongkyu Kim, Jakub Dziegielowski, and Mirella Di Lorenzo</i></p> <p>31.1 Introduction to Soil Microbial Fuel Cells 385</p> <p>31.6 Conclusions and Future Perspective 392</p> <p><b>Chapter 32 Biotechnology for the Management of Plastics and Microplastics 396<br /> </b><i>Loriane Murphy and John Cleary</i></p> <p>32.1 Introduction 396</p> <p>32.4 Conclusions 406</p> <p>Acknowledgments 407</p> <p><b>Chapter 33 Bio-electrochemical Systems for Monitoring and Enhancement of Groundwater Bioremediation 412<br /> </b><i>Rory Doherty, Altaf AlBaho, and Lily Roney</i></p> <p>33.1 Introduction 412</p> <p>33.6 Conclusion 422</p> <p><b>Section 5 Good Microbes and Agriculture 427<br /> </b><i>Co-Edited by Linda Thomashow and Frans J. de Bruijn</i></p> <p><b>Chapter 34 Beneficial Microbes for Agriculture: From Discovery to Applications 429<br /> </b><i>Gabriele Berg, Peter Kusstatscher, Birgit Wassermann, Tomislav Cernava,<br /> and Ahmed Abdelfattah</i></p> <p>34.1 Introduction 429</p> <p>34.8 Concluding Remarks 438</p> <p>Acknowledgments 438</p> <p><b>Chapter 35 Biological Control of Soilborne Plant Diseases 444<br /> </b><i>Linda Thomashow and David M. Weller</i></p> <p>35.1 Introduction 444</p> <p>Acknowledgments 454</p> <p><b>Chapter 36 Classification, Discovery, and Microbial Basis of Disease-Suppressive Soils 457<br /> </b><i>David M. Weller, Melissa LeTourneau, and Mingming Yang</i></p> <p>36.1 Microbe-based Plant Defense of Roots 457</p> <p><b>Chapter 37 Biological Nitrogen Fixation 466<br /> </b><i>Frans J. de Bruijn and Mariangela Hungria</i></p> <p>37.1 Introduction 466</p> <p>37.9 Conclusions 472</p> <p>Acknowledgments 473</p> <p><b>Chapter 38 A Primer on the Extraordinary Efficacy and Safety of Bacterial Insecticides Based on Bacillus Thuringiensis 476<br /> </b><i>Brian Federici</i></p> <p>38.1 Introduction 476</p> <p>38.2 Summary of Bt Biology and Its Mode of Action 477</p> <p>38.3 Summary of Earlier Studies on Bt Safety 479</p> <p><b>Chapter 39 Life of Microbes Inside the Plant: Beneficial Fungal Endophytes and Mycorrhizal Fungi 488<br /> </b><i>Luisa Lanfranco and Valentina Fiorilli</i></p> <p>39.1 The Plant Microbiota 488</p> <p>39.4 Conclusions and Perspectives 497</p> <p>Acknowledgments 498</p> <p><b>Chapter 40 Aromatherapy: Improving Plant Health through Microbial Volatiles 506<br /> </b><i>Ana Shein Lee Diaz and Paolina Garbeva</i></p> <p>40.1 Background 506</p> <p><b>Chapter 41 Trichoderma for Biocontrol and Biostimulation – A Green Fungus Revolution in Agriculture 515<br /> </b><i>Sheridan Lois Woo and Matteo Lorito</i></p> <p>41.1 Modern Agriculture with Old Problems 515</p> <p>41.9 Conclusions 526</p> <p>Acknowledgments 527</p> <p><b>Chapter 42 Companies and Organizations Active in Agriculture and Horticulture 531<br /> </b><i>Ben Lugtenberg</i></p> <p>42.1 Introduction 531</p> <p>42.2 Examples of Important Microbes 532<br /> 42.2.1 Arbuscular Mycorrhizas 532<br /> 42.2.2 Bacillus 532<br /> 42.2.3 Bacillus thuringiensis 532</p> <p>Acknowledgments 539</p> <p>Index 541</p>
<p><b>Frans J. de Bruijn, PhD,</b> was Director of the Laboratory for Plant-Microbe Interactions and Environment, a mixed INRAE/CNRS research facility with about 100 scientists and support staff in Toulouse, France. He is presently Director of Recherche DR1 and editor of multiple books on a variety of topics. <p><b>Hauke Schmidt, PhD,</b> is a member of the management team at the National BE-Basic Program and Senior Scientist and Theme Council member at TI Food & Nutrition. <p><b>Luca S. Cocolin</b> is Full Professor in the Department of Agricultural, Forest, and Food Sciences at the University of Torino, Italy. <p><b>Michael Sauer</b> is Assistant Professor at the Department of Biotechnology of BOKU—University of Natural Resources and Life Sciences in Vienna, Austria. <p><b>David Dowling, PhD,</b> co-founded MicroGen Biotechnology Limited and is the Head of the Faculty of Science at the Institute of Technology Carlow. <p><b>Linda Thomashow, PhD,</b> Research Geneticist at the USDA Agricultural Research Service's Wheat Health, Genetics and Quality Research Unit and Professor in Plant Pathology and Molecular Plant Sciences at Washington State University, USA.
<p><b>Discover the positive and helpful contributions made by microorganisms to various areas of human health, food preservation and production, biotechnology, industry, environmental clean-up and sustainable agriculture. </b></p> <p>In <i>Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture</i>, a team of distinguished researchers delivers a comprehensive and eye-opening look at the positive side of bacteria and other microbes. The book explores the important and positive roles played by microorganisms. <p> Divided into five sections, <i>Good Microbes</i> examines the use of microorganisms and the microbiome in human health, food production, industrial use, bioremediation, and sustainable agriculture. Coverage spans from food allergies, skin disorders, microbial food preservation and fermentation of various beverages and food products, and from an ethical point of view to the beneficial use of microbes in biotechnology, industry, bioeconomy, environmental remediation such as resource recovery, microbial-based environmental clean-up, plant-microbe interactions in biorestauration, biological control of plant diseases, and biological nitrogen fixation. <ul><li>Provides basic knowledge on bacterial biology, biochemistry, genetics, and genomics of beneficial microbes</li> <li>Includes practical discussions of microbial biotechnology, including the contribution of microbial biotechnology to sustainable development goals</li> <li>Features a comprehensive introduction and extensive index to facilitate the search for key terms.</li></ul> <p> Perfect for scientists, researchers and anyone with an interest in beneficial microbes, <i>Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture</i> is also an indispensable resource for microbiology graduate students, applied microbiologists and policy makers.

Diese Produkte könnten Sie auch interessieren:

Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
PDF ebook
114,99 €
Biologische Bodensanierung
Biologische Bodensanierung
von: Kassem Alef
PDF ebook
40,99 €
Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
EPUB ebook
114,99 €