Details

Fundamentals of Terahertz Devices and Applications


Fundamentals of Terahertz Devices and Applications


1. Aufl.

von: Dimitris Pavlidis

106,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.07.2021
ISBN/EAN: 9781119460732
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An authoritative and comprehensive guide to the devices and applications of Terahertz technology</b> <p>Terahertz (THz) technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. Fundamentals of Terahertz Devices and Applications offers a comprehensive review of the devices and applications of Terahertz technology. With contributions from a range of experts on the topic, this book contains in a single volume an inclusive review of THz devices for signal generation, detection and treatment.<p> <p><i>Fundamentals of Terahertz Devices and Applications</i> offers an exploration and addresses key categories and aspects of Terahertz Technology such as: sources, detectors, transmission, electronic considerations and applications, optical (photonic) considerations and applications. Worked examples—based on the contributors' extensive experience— highlight the chapter material presented. The text is designed for use by novices and professionals who want a better understanding of device operation and use, and is suitable for instructional purposes This important book:<p> <li>Offers the most relevant up-to-date research information and insight into the future developments in the technology <li>Addresses a wide-range of categories and aspects of Terahertz technology <li>Includes material to support courses on Terahertz Technology and more <li>Contains illustrative worked examples <p>Written for researchers, students, and professional engineers, Fundamentals of Terahertz Devices and Applications offers an in-depth exploration of the topic that is designed for both novices and professionals and can be adopted for instructional purposes.
<p>About the Editor</p> <p>Acknowledgements [still to follow]</p> <p>Chapter 1: Introduction to THz Technologies</p> <p>Dimitris Pavlidis</p> <p>Chapter 2: THz Antennas</p> <p>Maria Alonso-delPino and Nuria Llombart Juan</p> <p>Introduction</p> <p>Elliptical Lens Antennas</p> <p>2.1 Elliptical Lens Synthesis</p> <p>2.2 Radiation of Elliptical Lenses</p> <p>2.2.1 Transmission function T ̃(Q)</p> <p>2.2.2 Spreading Factor S(Q)</p> <p>2.2.3 Equivalent Current Distribution and Far-Field Calculation</p> <p>2.2.4 Lens Reflection Efficiency</p> <p>3. Extended Semi-Hemispherical lens antennas</p> <p>3. 1 Radiation of extended semi-hemispherical lenses</p> <p>4. Shallow Lenses excited by leaky wave /Fabry-Perot feeds</p> <p>4.1.Analysis of the leaky-wave propagation constant</p> <p>4.2 Primary fields radiated by a leaky-wave antenna feed on an infinite medium</p> <p>4.3 Shallow-Lens geometry optimization</p> <p>5. Fly-eye Antenna Array</p> <p>5.1 Silicon DRIE micromachining process at submillimeter-wave frequencies</p> <p>5.1.1 Fabrication of silicon lenses using DRIE</p> <p>5.1.2 Surface Accuracy</p> <p>5.2 Examples of fabricated antennas</p> <p>Chapter 3: Photoconductive THz Sources Driven at 1550 nm</p> <p>E.R. Brown, G. Carpintero del Barrio, A. Rivera, D. Segovia-Vargas, B. Globisch, and A. Steiger</p> <p>I. Introduction</p> <p>Overview of THz Photoconductive Sources</p> <p>Lasers and Fiber Optics</p> <p>II. 1550-nm THz photoconductive sources</p> <p>II.A. Epitaxial Materials</p> <p>Bandgap Engineering</p> <p>Low Temperature Growth</p> <p>II.B. Device Types and Modes of Operation</p> <p>II.C. Analysis of THz photoconductive sources</p> <p>II.C.1. PC-Switch Analysis</p> <p>II.C.2. Photomixer Analysis</p> <p>II.C.2.a. p-i-n photodiode</p> <p>II.C.2.b. MSM bulk photoconductor</p> <p>II.D. Practical Issues</p> <p>Contact Effects</p> <p>Thermal Effects</p> <p>Circuit Limitations</p> <p>III. THz Metrology</p> <p>Power Measurements</p> <p>A Traceable Power Sensor</p> <p>Exemplary THz Power Measurement Exercise</p> <p>Other Sources of Error</p> <p>Frequency Metrology</p> <p>IV. THz Antenna Coupling</p> <p>Fundamental Principles</p> <p>Planar antennas on dielectric substrates</p> <p>Input Impedance</p> <p>ΔEIRP (increase in the EIRP of the transmitting antenna)</p> <p>G/T or Aeff/T</p> <p>Estimation of Power Coupling Factor</p> <p>Exemplary THz Planar Antennas</p> <p>Resonant antennas</p> <p>Quick survey of self-complementary antennas</p> <p>V. State-of-the-Art in 1550-nm Photoconductive Sources Error! Bookmark not defined.</p> <p>1550-nm MSM Photoconductive Switches</p> <p>Material and Device Design</p> <p>THz Performance</p> <p>1550-nm Photodiode CW (photomixer) Sources</p> <p>Material and Device Design</p> <p>THz Performance</p> <p>VI. Alternative 1550-nm THz Photoconductive Sources Error! Bookmark not defined.</p> <p>Fe-Doped InGaAs</p> <p>ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity</p> <p>VII. System Applications Error! Bookmark not defined.</p> <p>Comparison between pulsed and cw THz systems</p> <p>Device aspects</p> <p>Systems aspects</p> <p>Wireless Communications</p> <p>THz Spectroscopy</p> <p>Time vs Frequency Domain Systems</p> <p>Analysis of Frequency Domain Systems: Amplitude and Phase Modulation</p> <p>Exercises</p> <p>Chapter 4 : THz Photomixers</p> <p>E. Peytavit, G. Ducournau, J-F. Lampin</p> <p>1. Introduction</p> <p>2. Elliptical Lens Antennas</p> <p>2.1 Elliptical Lens Synthesis</p> <p>2.2 Radiation of Elliptical Lenses</p> <p>2.2.1 Transmission function TQ</p> <p>2.2.2 Spreading Factor SQ</p> <p>2.2.3 Equivalent Current Distribution and Far-Field Calculation</p> <p>2.2.4 Lens Reflection Efficiency</p> <p>3. Extended Semi-Hemispherical lens antennas</p> <p>3. 1 Radiation of extended semi-hemispherical lenses</p> <p>4. Shallow Lenses excited by leaky wave /Fabry-Perot feeds</p> <p>4.1.Analysis of the leaky-wave propagation constant</p> <p>4.2 Primary fields radiated by a leaky-wave antenna feed on an infinite medium</p> <p>4.3 Shallow-Lens geometry optimization</p> <p>5. Fly-eye Antenna Array</p> <p>5.1 Silicon DRIE micromachining process at submillimeter-wave frequencies</p> <p>5.1.1 Fabrication of silicon lenses using DRIE</p> <p>5.1.2 Surface Accuracy</p> <p>5.2 Examples of fabricated antennas</p> <p>Chapter 5: Plasmonics-enhanced Photoconductive Terahertz Devices</p> <p>Ping Keng Lu and Mona Jarrahi</p> <p>Introduction</p> <p>Photoconductive Antennas</p> <p>Photoconductors for THz operation</p> <p>Photoconductive THz emitters</p> <p>Pulsed THz emitters</p> <p>Continuous-wave THz emitters</p> <p>Photoconductive THz Detectors</p> <p>Common photoconductors and antennas for photoconductive THz devices</p> <p>Plasmonics-enhanced photoconductive antennas</p> <p>Fundamentals of plasmonics</p> <p>Plasmonics for enhancing performance of photoconductive THz devices</p> <p>Principles of plasmonic enhancement</p> <p>Design considerations for plasmonic nanostructures</p> <p>State-of-the-art plasmonics-enhanced photoconductive THz devices</p> <p>Photoconductive THz devices with plasmonic contact electrodes</p> <p>Large area plasmonic photoconductive nanoantenna arrays</p> <p>Plasmonic photoconductive THz devices with optical nanocavities</p> <p>Conclusion and Outlook</p> <p>Chapter 6 : Terahertz Quantum Cascade Lasers</p> <p>Roberto Paiella</p> <p>1. Introduction</p> <p>2. Fundamentals of Intersubband Transitions</p> <p>3. Active Material Design</p> <p>4. Optical Waveguides and Cavities</p> <p>5. State-of-the-Art Performance and Limitations</p> <p>6. Novel Materials Systems</p> <p>6.1 III-Nitride Quantum Wells</p> <p>6.2 SiGe Quantum Wells</p> <p>7. Conclusion </p> <p>Chapter 7: Advanced Devices Using Two-Dimensional Layer Technology</p> <p>Berardi Sensale-Rodriguez</p> <p>7.1. Graphene-based THz Devices</p> <p>7.1.1. THz Properties of graphene</p> <p>7.1.2. How to simulate and model graphene?</p> <p>7.1.3. Terahertz device applications of graphene</p> <p>Modulators</p> <p>- Broadband structures</p> <p>- Electromagnetic-cavity integrated structures</p> <p>- Graphene/metal -hybrid metamaterials</p> <p>- Graphene/dielectric -hybrid metamaterials</p> <p>- Active filters</p> <p>- Phase modulation in graphene-based metamaterials</p> <p>7.2. TMD based THz Devices</p> <p>7.3. Applications</p> <p>Chapter 8: THz Plasma Field Effect Transistor Detectors</p> <p>Naznin Akter, Nezih Pala, Wojcieech Knap, Michael Shur</p> <p> Introduction</p> <p>Field effect transistors (fets) and thz plasma oscillations</p> <p>2.1. Dispersion of plasma waves in fets</p> <p>2.2. THz detection by an fet</p> <p>Resonant detection</p> <p>Broadband detection</p> <p>THz detectors based on silicon fets</p> <p>Terahertz detection by graphene plasmonic fets</p> <p>Terahertz detection in black-phosphorus nano-transistors</p> <p>Diamond plasmonic thz detectors</p> <p>Conclusion</p> <p>[Was Chapter 13] Chapter 9: Signal Generation by Diode Multiplication</p> <p>Alain Maestrini and Jose Siles</p> <p>1 Introduction 3</p> <p>2 Bridging the microwave to photonics gap with terahertz frequency multipliers 3</p> <p>3 A practical approach to the design of frequency multipliers 5</p> <p>3.1 Frequency multiplier versus comb generator 5</p> <p>3.2 Frequency multiplier ideal matching network and ideal device performance 6</p> <p>3.3 Symmetry at device level versus symmetry at circuit level 7</p> <p>3.4 Classic balanced frequency doublers 8</p> <p>3.4.1 General circuit description 8</p> <p>3.4.2 Necessary condition to balance the circuit 9</p> <p>3.5 Balanced frequency triplers with an anti-parallel pair of diodes 11</p> <p>3.6 Multi-anode frequency triplers in a virtual loop configuration 12</p> <p>3.6.1 General circuit description 12</p> <p>3.6.2 Necessary condition to balance the circuit 14</p> <p>3.7 Multiplier design optimization 15</p> <p>3.7.1 General design methodology 16</p> <p>3.7.2 Non-linear modeling of the Schottky diode barrier 22</p> <p>3.7.3 3D modeling of the extrinsic structure of the diodes 23</p> <p>3.7.4 Modeling and optimization of the diode cell 24</p> <p>3.7.5 Input and output matching circuits. 26</p> <p>4 Technology of THz diode frequency multipliers 26</p> <p>4.1 From Whisker-contacted diodes to Planar Discrete Diodes 26</p> <p>4.2 Semi-monolithic frequency multipliers at THz frequencies 27</p> <p>4.3 THz local oscillators for the Heterodyne Instrument of Herschel Space Observatory 29</p> <p>4.4 First 2.7THz multiplier chain with more than 10µW of power at room temperature 32</p> <p>4.5 High power 1.6THz frequency multiplied source for future 4.75THz local oscillator 34</p> <p>5 Power-combining at sub-millimeter wavelength 36</p> <p>5.1 In-phase power combining 36</p> <p>5.1.1 First in-phase power-combined submillimeter-wave frequency multiplier 37</p> <p>5.1.2 In-phase power combining at 900GHz 38</p> <p>5.1.3 In-phase power-combined balanced doublers 40</p> <p>5.2 In-channel power combining 41</p> <p>5.3 Advanced on-chip power combining 42</p> <p>5.3.1 High power 490-560GHz frequency tripler 43</p> <p>5.3.2 Dual-Output 550 GHz Frequency Tripler 43</p> <p>5.3.3 High-power quad channel 165-195GHz frequency doubler 44</p> <p>6 Conclusions and perspectives 46</p> <p>7 References 46</p> <p>8 Problems 52</p> <p>[WasChapter 9] Chapter 10: GaN Multipliers</p> <p>Chong Jin and Dimitris Pavlidis</p> <p>1 Introduction</p> <p>1.1 Frequency Multipliers</p> <p>1.2 Properties of Nitride Materials</p> <p>1.3 Motivation and Challenges</p> <p>2 Theoretical Considerations of GaN Schottky Diode Design</p> <p>2.1 Analysis by Analytical Equations</p> <p>2.1.1 Nonlinearity and Harmonic Generation</p> <p>2.1.2 Nonlinearity of Ideal Schottky Diode</p> <p>2.1.3 Series Resistance</p> <p>2.2 Analysis by numeric simulation</p> <p>2.2.1 Introduction of Semiconductor Device Numerical Simulation</p> <p>2.2.2 Parameters for GaN Based Device Simulation</p> <p>2.2.3 Simulation Results</p> <p>Device Structure</p> <p>Breakdown voltage</p> <p>I-V characteristics</p> <p>Series resistance</p> <p>C-V characteristics</p> <p>Time Domain Transient Analysis</p> <p>2.3 Conclusions on Theoretical Considerations of GaN Schottky Diode Design</p> <p>3 Fabrication Process of GaN Schottky Diodes</p> <p>3.1 Fabrication Process</p> <p>3.2 Etching</p> <p>3.3 Metallization</p> <p>3.3.1 Ohmic Contacts on GaN</p> <p>3.3.2 Schottky Contacts on GaN</p> <p>Analysis of Schottky contact characteristics</p> <p>Oxygen plasma before Schottky metallization</p> <p>3.4 Bridge Interconnects</p> <p>Dielectric Bridge</p> <p>Optical Air-bridge</p> <p>E-Beam Air-bridge</p> <p>3.5 Conclusion on Fabrication Process of GaN Schottky Diodes</p> <p>Small-signal High Frequency Characterization of GaN Schottky</p> <p>4 Diodes</p> <p>4.1 Current-Voltage Characteristics</p> <p>4.2 Small-signal Characterization and Equivalent Circuit Modeling</p> <p>Step 1. Parasitic elements</p> <p>Step 2. Junction Capacitance</p> <p>Step 3. Optimization</p> <p>Summary</p> <p>4.3 Results</p> <p>4.4 Conclusion</p> <p>5 Large-Signal On-wafer Characterization</p> <p>5.1 Characterization Approach</p> <p>5.2 Large signal measurements of GaN Schottky diodes</p> <p>5.2.1 LSNA with 50 Ω load</p> <p>Time domain waveforms</p> <p>Power handling characteristics</p> <p>5.3 LSNA with harmonic loadpull</p> <p>5.4 Conclusion</p> <p>6 GaN Diode Implementation for Signal generation</p> <p>6.1 Large-signal modeling of GaN Schottky diodes</p> <p>6.2 Frequency Doubler</p> <p>7 Multiplier Considerations for Optimum Performance</p> <p>Exercises </p> <p>[Was Chapter 10] Chapter 11: THz Resonant Tunneling Devices</p> <p>Masahiro Asada and Safumi Suzuki</p> <p>10.1 Introduction</p> <p>10.2 Basic structure and operation of RTD</p> <p>10.2.1 Basic operation of RTD</p> <p>10.2.2 Principle of oscillation</p> <p>10.2.3 Effect of electron delay time</p> <p>10.3 Structure and oscillation characteristics of fabricated RTD oscillators</p> <p>10.3.1 Actual structure of RTD oscillators</p> <p>10.3.2 High-frequency oscillation</p> <p>10.3.3 High-output power oscillation</p> <p>10.4 Control of oscillation spectrum and frequency</p> <p>10.4.1 Oscillation spectrum and phase-locked loop</p> <p>10.4.2 Frequency-tunable oscillators</p> <p>10.5 Targeted applications</p> <p>10.5.1 High-speed wireless communications</p> <p>10.5.2 Spectroscopy</p> <p>10.5.3 Other applications and expected future development</p> <p>[Was Chapter 11] Chapter 12: Wireless communications in the THz range</p> <p>G. Ducournau, T. Nagatsuma</p> <p>11.1 Evolution of telecoms towards THz</p> <p>11.1.1 Brief historic</p> <p>11.1.2 Data rate evolution</p> <p>11.1.3 THz waves: propagation, advantages and disadvantages</p> <p>11.1.4 Frequency bands</p> <p>11.1.5 Potential scenarios</p> <p>11.1.6 Comparison between FSO and THz</p> <p>11.2 THz technologies: transmitters, receivers and basic architecture</p> <p>11.2.1 THz sources</p> <p>11.2.2 THz receivers</p> <p>11.2.3 Basic architecture of the transmission system</p> <p>11.3 Devices/function examples for T-ray coms</p> <p>11.3.1 Photomixing techniques for THz coms</p> <p>11.3.2 THz modulated signals enabled by photomixing</p> <p>11.3.3 Other techniques for the generation of modulated THz signals</p> <p>11.3.4 Integration, interconnections and antennas</p> <p>11.3.4.1 Integration</p> <p>11.3.4.2 Antennas</p> <p>11.4 THz links</p> <p>11.4.1 Modulations and key Indicators of a THz Communication Link</p> <p>11.4.2 State of the art of THz links</p> <p>11.4.2.1 First systems</p> <p>11.4.2.2 Photonics-based demos</p> <p>11.4.2.3 Electronic-based demos</p> <p>11.4.2.4 Beyond 100 GHz high power amplification</p> <p>11.4.2.5 Table of reported systems</p> <p>11.5 Towards normalisation of 100G links in the THz range</p> <p>11.6 Conclusion Error! Bookmark not defined.</p> <p>11. 7 Acronyms</p> <p>11.8 References</p> <p>11.9 Exercice : link budget of a THz link</p> <p>[Was Chapter 12] Chapter 13: THz Applications: Devices to Space System</p> <p>Imran Mehdi</p> <p>12.1 INTRODUCTION</p> <p>12.1.1 Why is THz technology important for space science?</p> <p>12.1.2 Fundamentals of THz Spectroscopy</p> <p>12.1.3 THz Technology for Space Exploration</p> <p>12.2 THz HETERODYNE RECEIVERS</p> <p>12.2.1 Local Oscillators</p> <p>12.2.1.1 Frequency Multiplied Chains</p> <p>12.2.2 Mixers</p> <p>12.2.2.1 Room Temperature Schottky Diode Mixers</p> <p>12.2.2.2 SIS Mixer Technology</p> <p>12.2.2.3 Hot Electron Bolometric (HEB) Mixers</p> <p>12.2.2.4 State-of-the-Art Receiver Sensitivities</p> <p>12.3 THZ SPACE APPLICATIONS</p> <p>12.3.1 Planetary Science: The Case for Miniaturization</p> <p>12.3.2 Astrophysics: The Case for THz Array Receivers</p> <p>12.3.3 Earth Science: The Case for Active THz Systems</p> <p>12.4 SUMMARY AND FUTURE TRENDS</p> <p>12.5 REFERENCES AND CITATIONS</p> <p>12.6 PROBLEMS</p> <p>Index</p>
<p><b>Dimitris Pavlidis</b> is a Research Professor at Florida International University. He has been Professor of Electrical Engineering and Computer Science at the University of Michigan (UofM) from 1986 to 2004 and a Founding Member of UofM?s first of its kind NASA THz Center in 1988. He served as Program Director in Electronics, Photonics and Magnetic Devices (EPMD) at the National Science Foundation. He received the decoration of "Palmes Academiques" in the order of Chevalier by the French Ministry of Education and Distinguished Educator Award of the IEEE/MTT-S and is an IEEE Life Fellow.

Diese Produkte könnten Sie auch interessieren:

High Temperature Superconductor Bulk Materials
High Temperature Superconductor Bulk Materials
von: Gernot Krabbes, Günter Fuchs, Wolf-Rüdiger Canders, Hardo May, Ryszard Palka
PDF ebook
156,99 €
A New Twist to Fourier Transforms
A New Twist to Fourier Transforms
von: Hamish D. Meikle
PDF ebook
88,99 €