Details

Functional Organic and Hybrid Nanostructured Materials


Functional Organic and Hybrid Nanostructured Materials

Fabrication, Properties, and Applications
1. Aufl.

von: Quan Li

192,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 25.01.2018
ISBN/EAN: 9783527807352
Sprache: englisch
Anzahl Seiten: 656

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner. <br> The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials. <br> For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.<br>
<p>Preface xiii</p> <p><b>1 Controllable Self-Assembly of One-Dimensional Nanocrystals 1<br /></b><i>Shaoyi Zhang, Yang Yang, and Zhihong Nie</i></p> <p>1.1 Introduction 1</p> <p>1.2 Assembly Strategies 2</p> <p>1.2.1 Templated Assembly 2</p> <p>1.2.1.1 Geometrically Patterned Template 2</p> <p>1.2.1.2 Chemically Patterned Template 4</p> <p>1.2.2 Field-Driven Assembly 7</p> <p>1.2.2.1 Assembly under Electric Field 7</p> <p>1.2.2.2 Magnetic Field 10</p> <p>1.2.2.3 Flow Field 12</p> <p>1.2.3 Assembly at Interfaces and Surface 13</p> <p>1.2.3.1 Liquid–Liquid Interface 14</p> <p>1.2.3.2 Liquid–Air Interface 15</p> <p>1.2.3.3 Evaporation-Mediated Assembly on Solid Surface 17</p> <p>1.2.4 Ligand-Guided Assembly 19</p> <p>1.2.4.1 Small Molecules 19</p> <p>1.2.4.2 Polymeric Species 21</p> <p>1.2.4.3 Biomolecular Ligand 23</p> <p>1.3 Properties and Applications 25</p> <p>1.4 Perspectives and Challenges 28</p> <p>References 29</p> <p><b>2 Self-Assembled Graphene Nanostructures and Their Applications 39<br /></b><i>Dingshan Yu, Zhongke Yuan, Xiaofen Xiao, and Quan Li</i></p> <p>2.1 Introduction 39</p> <p>2.2 State-of-the-Art Self-Assembly Strategies of Graphene Nanostructures 40</p> <p>2.2.1 Langmuir–Blodgett (LB) Method 40</p> <p>2.2.2 Layer-by-Layer (LbL) Assembly Method 42</p> <p>2.2.3 Flow-, Evaporation-, and Interface-Induced Self-Assembly 43</p> <p>2.2.4 Template-Directed Self-Assembly and Hydrothermal Processes 45</p> <p>2.2.5 Spin- and Space-Confinement Self-Assembly 46</p> <p>2.2.6 Composites with Carbon Nanomaterials 49</p> <p>2.2.7 Composites with Polymers 51</p> <p>2.2.8 Composites with Metal or Metal Compounds 53</p> <p>2.3 Applications of Self-Assembled Graphene Nanostructures 57</p> <p>2.3.1 Optoelectronics and Photocatalysis 57</p> <p>2.3.2 Electrochemical Energy Storage 59</p> <p>2.3.3 Electrocatalysis 60</p> <p>2.4 Outlook 61</p> <p>References 62</p> <p><b>3 Photochromic Organic and Hybrid Self-Organized Nanostructured Materials: From Design to</b> <b>Applications 75<br /></b><i>Ling Wang and Quan Li</i></p> <p>3.1 Introduction 75</p> <p>3.2 Photochromic Organic and Hybrid Nanoparticles 76</p> <p>3.2.1 Noble Metal Nanoparticles with Photochromic Molecules 77</p> <p>3.2.2 Fluorescent Nanoparticles with Photochromic Molecules 81</p> <p>3.2.3 Mesoporous Silica Nanoparticles with Photochromic Molecules 83</p> <p>3.3 Photochromic Carbon-Based Nanomaterials 87</p> <p>3.3.1 Carbon Nanotubes with Photochromic Molecules 87</p> <p>3.3.2 Graphene Derivatives with Photochromic Molecules 90</p> <p>3.4 Photochromic Chiral Liquid-Crystalline Nanostructured Materials 91</p> <p>3.4.1 Cholesteric Liquid-Crystalline Superstructures 93</p> <p>3.4.2 Liquid-Crystalline Blue Phase Superstructures 97</p> <p>3.4.3 Liquid-Crystalline Microshells and Microdroplets 98</p> <p>3.5 Summary and Perspective 100</p> <p>Acknowledgments 101</p> <p>References 101</p> <p><b>4 Photoresponsive Host–Guest Nanostructured Supramolecular Systems 113<br /></b><i>Da-Hui Qu,Wen-ZhiWang, and He Tian</i></p> <p>4.1 Introduction 113</p> <p>4.2 Photoresponsive Supramolecular Polymers andTheir Assemblies 114</p> <p>4.2.1 Supramolecular Interactions in the Main Chain 115</p> <p>4.2.2 Supramolecular Interactions in the Side Chain 133</p> <p>4.2.3 Supramolecular Complexations as Cross-Linkers between Branched Polymer Chains 139</p> <p>4.2.4 Photoresponsive Supramolecular Micelles, Vesicles, and Other Assemblies 140</p> <p>4.3 Photoresponsive Host–Guest Systems Immobilized on Surfaces 148</p> <p>4.4 Conclusions and Prospects 157</p> <p>Acknowledgments 157</p> <p>Abbreviations 157</p> <p>References 158</p> <p><b>5 </b><b>;;-Electronic Ion-Pairing Assemblies Providing Nanostructured Materials 165<br /></b><i>Yohei Haketa and Hiromitsu Maeda</i></p> <p>5.1 Introduction 165</p> <p>5.2 Nanostructures Based on Self-Assembling π-Electronic Charged Species 167</p> <p>5.2.1 Formation of Nanofibers 167</p> <p>5.2.2 Formation of Nanotubes and Others 172</p> <p>5.3 Ionic Liquid Crystals Based on π-Electronic Charged Species 175</p> <p>5.4 Assemblies Based on Genuine π-Electronic Ions 177</p> <p>5.5 Ion-Pairing Assemblies Based on π-Electronic Anion-Responsive Molecules 184</p> <p>5.5.1 Solid-State Assemblies Based on π-Electronic Anion-Responsive Molecules 184</p> <p>5.5.2 Solid-State Assemblies of Receptor–Anion Complexes 186</p> <p>5.5.3 Ion-Pairing Supramolecular Gels 186</p> <p>5.5.4 Ion-Pairing Liquid Crystals Based on π-Electronic Charged Species 188</p> <p>5.6 Conclusion 193</p> <p>References 194</p> <p><b>6 Stimuli-Responsive Nanostructured Surfaces for Biomedical Applications 203<br /></b><i>Bárbara Santos Gomes and Paula M. Mendes</i></p> <p>6.1 Introduction 203</p> <p>6.2 Thin-Film Formation by Assembly on Surfaces 204</p> <p>6.3 Lithographic Techniques 206</p> <p>6.4 Electrically Driven Nanostructured Responsive Surfaces 209</p> <p>6.5 Photodriven Nanostructured Responsive Surfaces 216</p> <p>6.6 Thermo-Driven Nanostructured Responsive Surfaces 222</p> <p>6.7 Chemically Controlled Nanostructured Surfaces 227</p> <p>6.8 Concluding Remarks and Perspectives 234</p> <p>References 235</p> <p><b>7 Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures for</b> <b>Optoelectronic Applications 247<br /></b><i>A.S. Achalkumar,Manoj Mathews, and Quan Li</i></p> <p>7.1 Introduction to Discotic Liquid Crystals 247</p> <p>7.2 Application of Columnar Phases in Organic Electronics 250</p> <p>7.3 Alignment of Col LC Phases through Different Stimuli 253</p> <p>7.3.1 Alignment Control by Molecular Design 255</p> <p>7.3.2 Alignment Control of Columnar Phase through Physical Methods 262</p> <p>7.3.2.1 Surface Treatment 262</p> <p>7.3.2.2 Langmuir–Blodgett (LB) Deposition 266</p> <p>7.3.2.3 Application of Self-Assembled Monolayers 269</p> <p>7.3.2.4 Application of Chemically Modified Surfaces and Dewetting 273</p> <p>7.3.2.5 Application of Sacrificial Layer 276</p> <p>7.3.2.6 Alignment in Nanopores and Nanogrooves 277</p> <p>7.3.2.7 Zone Casting 281</p> <p>7.3.2.8 Zone Melting 282</p> <p>7.3.2.9 Dip Coating, Solvent Vapor Annealing, and Solvent-Induced Precipitation 283</p> <p>7.3.2.10 Magnetic-Field-Induced Alignment 287</p> <p>7.3.2.11 Electric-Field-Induced Alignment 288</p> <p>7.3.2.12 Photoalignment by Infrared Irradiation 290</p> <p>7.3.2.13 Other Alignment Techniques 291</p> <p>7.4 Conclusions and Perspective 293</p> <p>References 295</p> <p><b>8 Stimuli-Directed Helical Axis Switching in Chiral Liquid Crystal Nanostructures 307<br /></b><i>Rafael S. Zola and Quan Li</i></p> <p>8.1 Introduction 307</p> <p>8.2 Self-Organized Chiral Nematic LCs 308</p> <p>8.3 Field-Induced Helical Axis Switching: Dielectric/Magnetic Torque and Flexoelectric Effect 311</p> <p>8.4 Optically Driven Helical Axis Switching 319</p> <p>8.5 Confinement Mediated Helical Axis Change 328</p> <p>8.6 Helical Axis Switching in CLC Polymer Composites 339</p> <p>8.7 Summary and Outlook 345</p> <p>References 346</p> <p><b>9 Electrically Driven Self-Organized Chiral Liquid-Crystalline Nanostructures: Organic Molecular Photonic Crystal with Tunable Bandgap 359<br /></b><i>Suman K. Manna, Thomas F. George, and Guoqiang Li</i></p> <p>9.1 Introduction 359</p> <p>9.1.1 Photonic Crystal 359</p> <p>9.1.2 Photonic Bandgap 359</p> <p>9.1.3 Light Propagation in 1D Photonic Bandgap Medium 361</p> <p>9.2 Self-Assembled Photonic Crystals 362</p> <p>9.2.1 Opal Structure 363</p> <p>9.2.2 Cholesteric Liquid Crystal 363</p> <p>9.2.2.1 Liquid Crystal 364</p> <p>9.2.2.2 Nonchiral Liquid-Crystalline Phase 364</p> <p>9.2.2.3 Chiral Liquid-Crystalline Phase (Cholesteric) 365</p> <p>9.3 Electric-Field-Induced, Self-Assembled, Tunable Photonic Crystals 366</p> <p>9.3.1 Self-Assembled Tunable Opal 367</p> <p>9.3.2 Electric-Field-Induced, Self-Assembled, Tunable CLC 367</p> <p>9.3.3 Transverse-Electric-Field-Induced Tunable CLCs 368</p> <p>9.3.4 Polymer-Stabilized Tunable CLCs 371</p> <p>9.3.5 Lower Elastic Constant LC Host 373</p> <p>9.3.6 Negative LC Host 374</p> <p>9.4 Conclusions 377</p> <p>Acknowledgments 378</p> <p>References 378</p> <p><b>10 Nanostructured Organic–Inorganic Hybrid Membranes for High-Temperature Proton Exchange</b> <b>Membrane Fuel Cells 383<br /></b><i>Jin Zhang and San Ping Jiang</i></p> <p>10.1 Introduction 383</p> <p>10.2 Nanostructured Nafion-Based Hybrid Membranes 386</p> <p>10.2.1 Nafion Hybrid Membrane Based on Metal Oxides 387</p> <p>10.2.1.1 Casting Method 388</p> <p>10.2.1.2 In situ Sol–Gel Method 391</p> <p>10.2.1.3 Liquid-Phase Deposition Method 393</p> <p>10.2.2 Nafion Hybrid Membrane Based on Proton Conductors 394</p> <p>10.3 Hydrocarbon Polymer-Based Hybrid Membranes 394</p> <p>10.4 Nanostructured PBI-Based Hybrid Membranes 396</p> <p>10.4.1 Addition of Non-proton Conductors 398</p> <p>10.4.2 Conductive Inorganic Fillers 400</p> <p>10.4.2.1 Functionalization of Inorganic Fillers 400</p> <p>10.4.2.2 Proton-Conductor-Incorporated Inorganic Fillers 402</p> <p>10.5 Alternative PA-Doped Hybrid Membranes 404</p> <p>10.6 Conclusions and Outlook 405</p> <p>Acknowledgment 408</p> <p>References 408</p> <p><b>11 Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems:</b> <b>Electronic Properties and Advanced Energy Conversion Functions 419<br /></b><i>Ken Sakaushi</i></p> <p>11.1 Introduction 419</p> <p>11.2 Electronic Function Control in Two-Dimensional Organic and Hybrid Porous Frameworks 422</p> <p>11.3 Electronic Functions in 2D Organic Frameworks and Applications 424</p> <p>11.4 Electronic Functions in Two-Dimensional Hybrid Porous Frameworks and Applications 433</p> <p>11.5 Concluding Remarks 437</p> <p>Acknowledgments 439</p> <p>References 439</p> <p><b>12 Organic/Inorganic Hybrid Nanostructured Materials for Thermoelectric Energy Conversion 445<br /></b><i>Yucheng Lan, XiaomingWang, ChundongWang, and Mona Zebarjadi</i></p> <p>12.1 Introduction 445</p> <p>12.1.1 Inorganic Thermoelectric Materials 447</p> <p>12.1.2 Organic Thermoelectric Materials 449</p> <p>12.1.3 HybridThermoelectric Nanostructured Composites 453</p> <p>12.2 Organic/Inorganic Thermoelectric Nanostructured Materials 454</p> <p>12.2.1 PEDOT Hybrid Nanocomposites 455</p> <p>12.2.2 PANI Hybrid Nanostructured Composites 458</p> <p>12.2.3 CNT/Polymer Nanostructured Composites 460</p> <p>12.2.3.1 CNT/PVAc Composites 461</p> <p>12.2.3.2 CNT/PANI Nanostructured Composites 462</p> <p>12.2.3.3 CNT/PEDOT:PSS Nanostructured Composites 464</p> <p>12.2.3.4 CNT/Bi2Te3 Nanostuctured Composites 465</p> <p>12.2.3.5 Three-Component CNT Nanostructured Composites 465</p> <p>12.2.4 Other Hybrid Nanostructured Composites 467</p> <p>12.2.4.1 P3OT Hybrid Nanocomposites 467</p> <p>12.2.4.2 PTH Hybrid Nanocomposites 468</p> <p>12.2.4.3 PPy Hybrid Nanocomposites 468</p> <p>12.2.4.4 PC Hybrid Nanocomposites 468</p> <p>12.2.4.5 PHT Hybrid Nanocomposites 468</p> <p>12.2.4.6 PPT Hybrid Nanocomposites 468</p> <p>12.2.4.7 P3HT Hybrid Nanocomposites 468</p> <p>12.2.4.8 PA Hybrid Nanocomposites 469</p> <p>12.3 Surface-Transfer Doping of Organic/Inorganic Thermoelectric Nanocomposites 469</p> <p>12.4 Outlook 472</p> <p>Abbreviations 473</p> <p>References 473</p> <p><b>13 Hybrid Organic–Nitride Semiconductor Nanostructures for Biosensor Applications 485<br /></b><i>Paul Bertani and Wu Lu</i></p> <p>13.1 Introduction 485</p> <p>13.2 AlGaN/GaN Functionality and Active Region 487</p> <p>13.3 Device Fabrication 491</p> <p>13.4 Au-Linking and Thiol Group Employment 492</p> <p>13.5 Oxidation of Nitride Surfaces in Preparation for Functionalization 494</p> <p>13.6 Silanization of Oxidized Nitride Surfaces 497</p> <p>13.7 DNA Immobilization and Hybridization 500</p> <p>13.8 Biotin–Streptavidin 504</p> <p>13.9 ImmunoFETs 507</p> <p>13.10 Summary and Outlook 511</p> <p>References 512</p> <p><b>14 Polymer–Nanomaterial Composites for Optoacoustic Conversion 519<br /></b><i>Taehwa Lee, HyoungWon Baac, Jong G. Ok, and L. Jay Guo</i></p> <p>14.1 Introduction 519</p> <p>14.2 Optoacoustic Conversion in Nanomaterials 520</p> <p>14.2.1 Fundamentals of Optoacoustic Generation 520</p> <p>14.2.2 Heat Transfer from the Nanomaterial Absorber to the Surrounding Polymer 521</p> <p>14.3 Polymer–Nanomaterial Composite for Optoacoustic Conversion 522</p> <p>14.3.1 Polymer Materials with Light-Absorbing Carbon Fillers 522</p> <p>14.3.1.1 Carbon Nanotube (CNT) Composite 523</p> <p>14.3.1.2 Other Carbon-Based Composites 523</p> <p>14.3.2 Metal-Based Polymer Composites 527</p> <p>14.3.2.1 Polymer–Metal Nanoparticle Composites 528</p> <p>14.3.2.2 Polymer–Metal Film Composites 529</p> <p>14.3.3 Performance Comparison 531</p> <p>14.4 Applications of Optoacoustic Conversion in Nanocomposites 531</p> <p>14.4.1 Optoacoustic Generation of Focused Ultrasound for Therapeutic Applications 531</p> <p>14.4.2 Optoacoustic Generation in Polymer Composites for Ultrasound Imaging 537</p> <p>14.4.3 CNT–PDMS Composite for Real-Time Terahertz Detection 539</p> <p>14.5 Outlook and Future Direction 541</p> <p>14.5.1 New High-Efficiency Optoacoustic Composites with Mechanical Robustness 541</p> <p>14.5.2 New Optoacoustic Applications 543</p> <p>References 544</p> <p><b>15 Functional Nanostructured Conjugated Polymers 547<br /></b><i>Satoshi Matsushita, Benedict San Jose, and Kazuo Akagi</i></p> <p>15.1 Introduction 547</p> <p>15.1.1 Circularly Polarized Luminescence 547</p> <p>15.1.2 CPL in Conjugated Polymers 547</p> <p>15.1.3 CPL with High gem Using Selective Reflection Property of N∗-LCs 548</p> <p>15.1.4 Dynamic Switching of CPL 549</p> <p>15.1.5 Chirality Transfer and Chiral Transcription 549</p> <p>15.1.6 Polyacetylenes 550</p> <p>15.2 DiLCPAs with Blue and Green LPL 551</p> <p>15.2.1 Liquid Crystallinity of diLCPAs 552</p> <p>15.2.2 Linearly Polarized Luminescence of diLCPAs 553</p> <p>15.3 Lyotropic N∗ diLCPAs with Green CPL 554</p> <p>15.3.1 Liquid Crystallinity of diLCPAs 555</p> <p>15.3.2 Circularly Polarized Luminescence of diLCPAs 557</p> <p>15.4 Dynamic Switching of CPL by Selective Reflection through a Thermotropic N∗-LC 558</p> <p>15.4.1 Preparation of N∗-LC Cells 559</p> <p>15.4.2 Dynamic Switching of CPL 559</p> <p>15.5 Liquid-Crystallinity-Enforced Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 561</p> <p>15.5.1 Liquid Crystallinity of MonoPAs 563</p> <p>15.5.2 Chirality of MonoPAs 565</p> <p>15.5.3 Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 566</p> <p>15.6 Conclusions and Outlook 567</p> <p>Acknowledgments 568</p> <p>References 569</p> <p><b>16 Nanostructured Self-Organized Heliconical Nematic Liquid Crystals: Twist-Bend Nematic Phase 575<br /></b><i>Hari K. Bisoyi and Quan Li</i></p> <p>16.1 Introduction 575</p> <p>16.1.1 Liquid Crystals 575</p> <p>16.1.2 Twist-Bend Nematic (Ntb) Phase 578</p> <p>16.2 Characterization of Ntb Phase 581</p> <p>16.3 Ntb Phase in Different Classes of Liquid Crystal Compounds 583</p> <p>16.3.1 Ntb Phase in a Bent-Core Compound 583</p> <p>16.3.2 Ntb Phase in Dimers 585</p> <p>16.3.2.1 Methylene-Linked Dimers 585</p> <p>16.3.2.2 Ether-Linked Dimers 594</p> <p>16.3.2.3 Imino-Linked Dimers 595</p> <p>16.3.2.4 Other Dimers 597</p> <p>16.3.3 Ntb Phase in Trimers 600</p> <p>16.3.4 Ntb Phase in Tetramers 603</p> <p>16.4 Ntb Phase in Mixtures 604</p> <p>16.5 Heliconical Cholesteric Phase 606</p> <p>16.6 Summary and Outlook 609</p> <p>References 610</p> <p>Index 623</p>
Quan Li is Director of Organic Synthesis and Advanced Materials Laboratory at Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He, as a Principal Investigator and Project Director, has directed the cutting edge research projects funded by U.S. Air Force Office of Scientific Research, U.S. Air Force Research Laboratory, U.S. Army Research Office, U.S. Department of Defense Multidisciplinary University Research Initiative, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. Department of Energy, Ohio Board of Regents under Its Research Challenge Program, Ohio Third Frontier, Samsung Electronics, etc. He received his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences (CAS) in Shanghai, where he was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry in February of 1998. He was a recipient of CAS One-Hundred Talents Award (BeiRenJiHua) in 1999. He was Alexander von Humboldt Fellow in Germany. He has won Kent State University Outstanding Research and Scholarship Award. He has also been honored as Guest Professor and Chair Professor by several Universities.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €