Details

Functional Foods and Beverages


Functional Foods and Beverages

In vitro Assessment of Nutritional, Sensory, and Safety Properties
Institute of Food Technologists Series 1. Aufl.

von: Nicolas Bordenave, Mario G. Ferruzzi

169,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 22.06.2018
ISBN/EAN: 9781118823200
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A much-needed guide to <i>in vitro</i> food functionality evaluation principles, processes, and state-of-the-art modeling</b> </p> <p>There are more than a few books devoted to the assessment of food functionality but, until now, there were no comprehensive guides focusing on the increasingly important subject of <i>in vitro</i> food evaluation. With contributions from the world’s foremost experts in the field, this book brings readers up to speed on the state-of-the-art in <i>in vitro</i> modeling, from its physiological bases to its conception, current uses, and future developments.</p> <p>Food functionality is a broad concept encompassing nutritional and health functionality, food safety and toxicology, as well as a broad range of visual and organoleptic properties of food. <i>In vitro</i> techniques bridge the gap between standard analytical techniques, including chemical and biochemical approaches and <i>in vivo </i>human testing, which remains the ultimate translational goal for evaluation of the functionality of food. Although it is a well- established field, <i>in vitro</i> food testing continues to evolve toward ever more accurate predictions of <i>in vivo</i> properties and outcomes. Both ethical and highly economical, these approaches allow for detailed mechanistic insights into food functionalities and, therefore, a better understanding of the interactions of food and human physiology.</p> <ul> <li>Reviews the core concepts of food functionality and functionality evaluation methodologies</li> <li>Provides an overview of the physiology of the gastrointestinal tract, including host-microbial interactions within it</li> <li>Delves into the physiology of sensory perception of food, taste and texture as they relate to <i>in vitro</i> modeling</li> <li>Explores the challenges of linking <i>in vitro</i> analysis of taste, aroma and flavor to their actual perception</li> <li>Addresses <i>in vitro</i> models of the digestion and absorption of macronutrients, micronutrients, and phytonutrients</li> <li>Describes <i>in vitro</i> evaluations of toxicants, allergens and other specific food hazards</li> </ul> <p><i>Functional Foods and Beverages</i> is an indispensable working resource for food scientists as well as researchers working in government facilities dedicated to tracking food safety.</p> <p> </p>
<p>List of Contributors xv</p> <p>Preface xvii</p> <p>Acknowledgements xix</p> <p><b>1 Overview of Functional Foods 1<br /></b><i>Robin A. Ralston, Amy D. Mackey, Christopher T. Simons and Steven J. Schwartz</i></p> <p>1.1 Overview of Functional Foods 1</p> <p>1.1.1 Foods and Nutrients are Linked to Health and Disease 1</p> <p>1.1.2 Definition of Functional Foods 2</p> <p>1.1.3 Functional Foods Market 2</p> <p>1.1.4 How Functional Foods are Studied 3</p> <p>1.2 Functional Foods and their Regulatory Aspects 6</p> <p>1.3 Nanotechnologies in Functional Foods 7</p> <p>1.4 Sensory Functionalities of Foods 9</p> <p>References 11</p> <p><b>2 The In vivo Foundations for In vitro Testing of Functional Foods: The Gastrointestinal System 15<br /></b><i>Edwin K. McDonald, Heather Rasmussen, Christopher Forsyth and Ali Keshavarzian</i></p> <p>2.1 Introduction 15</p> <p>2.2 Overview of the Structure of the Gastrointestinal Tract 16</p> <p>2.2.1 Mucosa 17</p> <p>2.2.2 Submucosa 17</p> <p>2.2.3 Muscularis (or Muscularis Propria) and Serosa (or Adventitia) 18</p> <p>2.2.4 Additional Components of the Gastrointestinal Tract: Accessory Organs, Vasculature, Innervation, Gut?-Associated Lymphoid Tissue, and Microbiome 18</p> <p>2.2.4.1 Accessory Organs of the GIT 18</p> <p>2.2.4.2 Vasculature of the GIT: Blood and Lymphatic Supply 19</p> <p>2.2.4.3 GIT Innervation 19</p> <p>2.2.4.4 Gut?-Associated Lymphoid Tissue 19</p> <p>2.2.4.5 Intestinal Microbiome 20</p> <p>2.3 Functions of the GIT and Associated In vitroModeling 20</p> <p>2.3.1 Motility 21</p> <p>2.3.1.1 The Foundations of GIT Motility: Smooth Muscle Cell Contractions (SMC) and ENS Regulation 22</p> <p>2.3.1.2 In vitro Motility Modeling 23</p> <p>2.3.2 Barrier Function, Secretion, and Absorption 24</p> <p>2.3.2.1 Tight Junctions and the Barrier Function of the GIT 25</p> <p>2.3.2.2 Intestinal Permeability: Definitions and the Role of Tight Junctions 26</p> <p>2.3.2.3 Influences on Permeability 26</p> <p>2.3.2.4 Absorption and Secretion 27</p> <p>2.3.2.5 In vitro Models of Barrier Function, Absorption, and Secretion 28</p> <p>2.3.3 Regulation of Immune Response 32</p> <p>2.3.3.1 The Mucosal Immune Response Depends on IECs and GALT 32</p> <p>2.3.3.2 Antigen Exclusion: The Importance of Secretory IgA 32</p> <p>2.3.3.3 Antigen Sampling is Necessary for Immune Homeostasis 33</p> <p>2.3.3.4 Antigen Presenting Cells and IECs Modulate T?-cell Adaptive Immune Responses 34</p> <p>2.3.3.5 In vitro Models of Mucosal Immunity 34</p> <p>2.3.4 Storage, Fermentation, and Removal of Fecal Matter 35</p> <p>2.3.4.1 Storage and Removal of Fecal Matter 35</p> <p>2.3.4.2 Colonic Fermentation 36</p> <p>2.3.4.3 Short-Chain Fatty Acids 37</p> <p>2.3.4.4 In vitro Models of Fermentation 37</p> <p>2.4 Limitations of In vitro Modeling of the Gastrointestinal Tract 38</p> <p>2.5 Dynamic In vitro Models of Digestion 40</p> <p>2.6 Conclusions 40</p> <p>References 41</p> <p><b>3 In vivo Foundations of Sensory In vitro Testing Systems 53<br /></b><i>James Hollis</i></p> <p>3.1 Introduction 53</p> <p>3.2 Taste 54</p> <p>3.2.1 Overview 54</p> <p>3.2.2 Taste Anatomy 55</p> <p>3.2.3 Taste Coding 58</p> <p>3.2.4 Transduction Mechanisms 58</p> <p>3.2.4.1 Overview 58</p> <p>3.2.4.2 Sour 59</p> <p>3.2.4.3 Salt 60</p> <p>3.2.4.4 Bitter 60</p> <p>3.2.4.5 Sweet 61</p> <p>3.2.4.6 Umami 62</p> <p>3.2.4.7 Downstream Signaling of T1R and T2R 62</p> <p>3.2.5 Non?-Canonical Taste Modalities 63</p> <p>3.2.5.1 Fat Taste 63</p> <p>3.2.5.2 Calcium 64</p> <p>3.3 Factors that Influence Taste Acuity 65</p> <p>3.3.1 Saliva 65</p> <p>3.3.2 Genetic Differences 66</p> <p>3.4 Chemesthesis 66</p> <p>3.5 The Olfactory System 67</p> <p>3.5.1 Olfactory Anatomy 68</p> <p>3.5.2 Olfactory Binding Proteins 68</p> <p>3.5.3 Olfactory Receptors 69</p> <p>3.5.4 Transduction Mechanisms 70</p> <p>3.6 Texture 70</p> <p>3.6.1 Mechanoreceptors 71</p> <p>3.6.2 Proprioreceptors 71</p> <p>3.6.3 Periodontal Receptors 72</p> <p>3.6.4 Central Processing of Texture 72</p> <p>3.7 Convergence of Taste, Smell and Texture to Produce Flavor 73</p> <p>3.8 Concluding Remarks 73</p> <p>References 74</p> <p><b>4 In vitro Models of Host–Microbial Interactions Within the Gastrointestinal Tract 87<br /></b><i>Ezgi Özcan, Rachel Levantovsky, and David A. Sela</i></p> <p>4.1 Introduction: The Human Gastrointestinal Tract 87</p> <p>4.2 The Current State of In vitro Model Systems to Model Gut Ecosystems 91</p> <p>4.3 Batch Culture Systems to Model the Gut Microbial Consortium 93</p> <p>4.4 Continuous Systems to Model the Human GIT 96</p> <p>4.5 Mucus?-Immobilized Models of the Gut 107</p> <p>4.6 Models to Simulate Complex Host–Microbial Interactions 111</p> <p>4.7 Gastric–Small Intestine Model Systems 113</p> <p>References 120</p> <p><b>5 Macronutrient Nutritional Functionality of Carbohydrates, Proteins and Lipids: Digestibility, Absorption and Interactions 137<br /></b><i>Amanda Wright and Susan M. Tosh</i></p> <p>5.1 Introduction 137</p> <p>5.2 Applications and Considerations 139</p> <p>5.2.1 Carbohydrates 139</p> <p>5.2.2 Proteins 141</p> <p>5.2.3 Triglycerides 142</p> <p>5.3 Simulating Digestive Processes 143</p> <p>5.3.1 Oral Food Processing and Implications for Sample Preparation 143</p> <p>5.3.2 Gastric Phase 145</p> <p>5.3.3 Upper Intestinal Phase 147</p> <p>5.4 Interactions and Structural Considerations 150</p> <p>5.5 Post?-Digestion Analysis 151</p> <p>5.6 In vitro Models 154</p> <p>5.6.1 Static Models 154</p> <p>5.6.1.1 INFOGEST Method for General Nutrient Digestion 154</p> <p>5.6.1.2 Englyst Method for Rate for Carbohydrate Digestion 158</p> <p>5.6.1.3 Streamlined Protein Digestibility 159</p> <p>5.6.1.4 pH Stat Method for Testing Emulsified Lipids 160</p> <p>5.6.2 Dynamic 160</p> <p>5.7 Limitation of In vitro Digestion Tests 162</p> <p>5.8 Conclusions 163</p> <p>References 164</p> <p><b>6 In vitro Approaches for Investigating the Bioaccessibility and Bioavailability of Dietary Nutrients and</b> <b>Bioactive Metabolites 171<br /></b><i>Chureeporn Chitchumroonchokchai and Mark L. Failla</i></p> <p>6.1 Introduction 171</p> <p>6.2 Static Models of In vitro Digestion 173</p> <p>6.3 Dynamic Models of In vitro Digestion 176</p> <p>6.4 Application of In vitro Digestion Method for Determining the Digestive Stability and Bioaccessibility of Dietary Compounds 177</p> <p>6.5 Caco?-2 Cell Model 180</p> <p>6.6 Examples of the Effects of Bioaccessible Dietary Compounds on the Functions of Absorptive Intestinal Epithelial Cells 183</p> <p>6.7 Coupling the In vitro Digestion and Caco?]2 Cell Models 185</p> <p>6.8 Co?-culture Models Using Caco?-2 Cells 187</p> <p>6.9 Conclusions 192</p> <p>References 192</p> <p><b>7 In vitro Models for Testing Toxicity in the Gastrointestinal Tract 201<br /></b><i>Ioannis Trantakis</i></p> <p>7.1 Introduction 201</p> <p>7.2 Advantages of In vitro Tests 203</p> <p>7.3 Limitations of Established Cell Line Models 204</p> <p>7.4 Single Cell Lines 205</p> <p>7.5 Co?-culture Cell Models 207</p> <p>7.6 3D Co?-culture Models 209</p> <p>7.7 Organs on a Chip 210</p> <p>7.8 Summary and Conclusions 214</p> <p>References 214</p> <p><b>8 In vitro Methods for Assessing Food Protein Allergenicity 219<br /></b><i>Ossanna Nashalian, Nicolas Bordenave and Chibuike Udenigwe</i></p> <p>8.1 Introduction 219</p> <p>8.2 Food Sensitization, Hypersensitivity and Allergy 220</p> <p>8.2.1 The Mechanism of Developing Food Hypersensitivities 222</p> <p>8.2.2 The Exposure to Allergens 224</p> <p>8.2.2.1 The Gastrointestinal (GI) Route 225</p> <p>8.2.2.2 The Respiratory Tract Route 231</p> <p>8.2.2.3 The Cutaneous Route 231</p> <p>8.3 Safety Needs and Regulatory Consideration in Detecting Allergens in Food 231</p> <p>8.4 In vitro Analytical Methods for Testing Known Allergens 234</p> <p>8.4.1 Protein?-Based Approaches 234</p> <p>8.4.2 Immunoassay Approaches 238</p> <p>8.4.2.1 Enzyme?-Linked Immunosorbent Assay (ELISA) 238</p> <p>8.4.2.2 Other Immunoassay?-based Methods 240</p> <p>8.4.3 DNA?-based Approaches 242</p> <p>8.4.3.1 Real?-Time PCR 242</p> <p>8.4.3.2 Microarray Assay 242</p> <p>8.4.4 Mass Spectrometry?-based Approaches 243</p> <p>8.4.5 In vitro Cell?-based Methods for the Prediction of Food Allergenicity 243</p> <p>8.4.6 In Silico Methods for the Prediction of Food Allergenicity 246</p> <p>References 251</p> <p><b>9 Challenges of Linking In vitro Analysis to Flavor Perception 263<br /></b><i>Avinash Kant and Rob Linforth</i></p> <p>9.1 Introduction 263</p> <p>9.2 What is “Flavor”? 264</p> <p>9.2.1 Flavor Analysis Overview 264</p> <p>9.2.2 Significance of Aroma Compounds 265</p> <p>9.2.3 Challenges of Food Flavor Compounds 266</p> <p>9.3 Overview of Flavor Analysis Techniques 269</p> <p>9.3.1 Key Isolation Techniques 269</p> <p>9.3.2 Taste Compound Isolation 270</p> <p>9.3.3 Aroma Compound Isolation 270</p> <p>9.3.3.1 Solvent Extraction 270</p> <p>9.3.3.2 Distillation 271</p> <p>9.3.3.3 Headspace 271</p> <p>9.3.4 Taste Compound Detection 272</p> <p>9.3.5 Aroma Compound Separation and Detection 272</p> <p>9.4 Further Developments in Aroma Analysis 273</p> <p>9.4.1 Gas Chromatography–Olfactometry 273</p> <p>9.4.2 Interpretation of GC–Olfactometry Data 274</p> <p>9.4.3 Recent Advances in Aroma Extract Preparation 277</p> <p>9.4.4 Solid-Phase MicroExtraction 277</p> <p>9.4.5 Advances in Solvent Assisted Flavor Extraction 279</p> <p>9.4.6 Challenges of Single Aroma Compound Data Interpretation 280</p> <p>9.4.7 Correlation of the Sensory Experience with GC Data 281</p> <p>9.5 Recent Advances Developing In vitro Flavor Analysis Tools 282</p> <p>9.5.1 Electronic Devices for Flavor Assessment 282</p> <p>9.5.2 eNose 283</p> <p>9.5.3 eTongue 284</p> <p>9.5.4 Further Developments in Electronic Flavor Devices 285</p> <p>9.6 Model Mouth Systems 286</p> <p>9.7 Real Time Studies of Flavor Delivery 287</p> <p>9.8 Future Direction of In vitro Flavor Studies 292</p> <p>9.8.1 Taste Research 292</p> <p>9.8.2 Taste Cell Model Systems 294</p> <p>9.8.3 Odor Receptors 295</p> <p>9.8.4 Sensomics Approach 296</p> <p>9.8.5 Interaction Effects and Multi?-modal Perception 297</p> <p>9.8.6 Brain Imaging by fMRI 297</p> <p>9.9 Summary 298</p> <p>References 300</p> <p>Index 305</p>
<p> <b>Nicolas Bordenave, PhD,</b> Assistant Professor, Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Canada <p><b>Mario G. Ferruzzi, PhD,</b> Professor of Food Science and Nutrition, Department of Food, Bioprocessing and Nutrition Science, Plants for Human Health Institute, North Carolina State University, Raleigh, USA
<p><b>A New Guide to <i>In vitro</i> Food Functionality Evaluation Principles, Processes, and Modeling</b> <p>There have been a number of books devoted to the assessment of food functionality but, until now, none focused on the increasingly important subject of <i>in vitro</i> food evaluation. With contributions from the world's foremost experts in the field, this comprehensive guide brings readers up to speed with the state-of-the-art in <i>in vitro</i> modeling, from its physiological bases to its current uses and future developments. <p>Food functionality is a broad concept that encompasses nutritional and health functionality, food safety and toxicology, and the diverse visual and organoleptic properties of food. <i>In vitro</i> techniques enhance the evaluation of food functionality by bridging the gap between standard analytical methods – such as chemical or biochemical analysis – and <i>in vivo</i> human testing. Although it is a well-established field, <i>in vitro</i> food testing continues to evolve toward ever – more accurate predictions of <i>in vivo</i> properties and outcomes. Both ethical and highly economical, this approach allows for detailed insights into food functionalities and, therefore, a better understanding of the interactions between food and human physiology. This text: <ul> <li>Reviews the core concepts of food functionality and functionality evaluation methodologies</li> <li>Provides an overview of the physiology of the gastrointestinal tract, including host – microbial interactions within it</li> <li>Explores the physiologies of taste, texture, and aroma, and considers how their sensory perception relates to their <i>in vitro</i> modeling and analysis</li> <li>Addresses <i>in vitro</i> models of the digestion and absorption of macronutrients, micronutrients, and phytonutrients</li> <li>Describes <i>in vitro</i> evaluations of toxicants, allergens, and other specific food hazards</li> </ul> <p><i>Functional Foods and Beverages</i> is an indispensable resource for food scientists, researchers, and anyone involved with the tracking of food safety.

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €