Details

Foundations of Space Dynamics


Foundations of Space Dynamics


Aerospace Series 1. Aufl.

von: Ashish Tewari, Peter Belobaba, Jonathan Cooper, Allan Seabridge

68,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.11.2020
ISBN/EAN: 9781119455332
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An introduction to orbital mechanics and spacecraft attitude dynamics</b></p> <p><i>Foundations of Space Dynamics</i> offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author a noted expert in the field covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples.</p> <p>Written in an accessible and concise style, <i>Foundations of Space Dynamics</i> highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples.</p> <p><b>This important book:</b></p> <ul> <li><b>Covers space dynamics with a systematic and comprehensive approach</b></li> <li><b>Is designed to be a practical text filled with real-world examples</b></li> <li><b>Contains information on the most current applications</b></li> <li><b>Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization</b></li> <li><b>Offers a deep understanding of space dynamics often lacking in other textbooks</b></li> </ul> <p>Written for undergraduate and graduate students and professionals in aerospace engineering, <i>Foundations of Space Dynamics</i> offers an introduction to the most current information on orbital mechanics and dynamics.</p>
<p>Preface xiii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Space Flight 1</p> <p>1.1.1 Atmosphere as Perturbing Environment 1</p> <p>1.1.2 Gravity as the Governing Force 4</p> <p>1.1.3 Topics in Space Dynamics 5</p> <p>1.2 Reference Frames and Time Scales 5</p> <p>1.2.1 Sidereal Frame 5</p> <p>1.2.2 Celestial Frame 8</p> <p>1.2.3 Synodic Frame 8</p> <p>1.2.4 Julian Date 8</p> <p>1.3 Classification of Space Missions 10</p> <p>Exercises 10</p> <p>References 11</p> <p><b>2 Dynamics 13</b></p> <p>2.1 Notation and Basics 13</p> <p>2.2 Plane Kinematics 14</p> <p>2.3 Newton’s Laws 16</p> <p>2.4 Particle Dynamics 17</p> <p>2.5 The <i>n</i>-Body Problem 20</p> <p>2.6 Dynamics of a Body 24</p> <p>2.7 Gravity Field of a Body 27</p> <p>2.7.1 Legendre Polynomials 29</p> <p>2.7.2 Spherical Coordinates 31</p> <p>2.7.3 Axisymmetric Body 34</p> <p>2.7.4 Spherical Body with Radially Symmetric Mass Distribution 37</p> <p>Exercises 37</p> <p>References 40</p> <p><b>3 Keplerian Motion 41</b></p> <p>3.1 The Two-Body Problem 41</p> <p>3.2 Orbital Angular Momentum 43</p> <p>3.3 Orbital Energy Integral 45</p> <p>3.4 Orbital Eccentricity 46</p> <p>3.5 Orbit Equation 49</p> <p>3.5.1 Elliptic Orbit 53</p> <p>3.5.2 Parabolic Orbit 56</p> <p>3.5.3 Hyperbolic Orbit 56</p> <p>3.5.4 Rectilinear Motion 58</p> <p>3.6 Orbital Velocity and Flight Path Angle 60</p> <p>3.7 Perifocal Frame and Lagrange’s Coefficients 63</p> <p>Exercises 65</p> <p><b>4 Time in Orbit 69</b></p> <p>4.1 Position and Velocity in an Elliptic Orbit 70</p> <p>4.2 Solution to Kepler’s Equation 75</p> <p>4.2.1 Newton’s Method 76</p> <p>4.2.2 Solution by Bessel Functions 78</p> <p>4.3 Position and Velocity in a Hyperbolic Orbit 80</p> <p>4.4 Position and Velocity in a Parabolic Orbit 84</p> <p>4.5 Universal Variable for Keplerian Motion 86</p> <p>Exercises 88</p> <p>References 89</p> <p><b>5 Orbital Plane 91</b></p> <p>5.1 Rotation Matrix 91</p> <p>5.2 Euler Axis and Principal Angle 94</p> <p>5.3 Elementary Rotations and Euler Angles 97</p> <p>5.4 Euler-Angle Representation of the Orbital Plane 101</p> <p>5.4.1 Celestial Reference Frame 103</p> <p>5.4.2 Local-Horizon Frame 104</p> <p>5.4.3 Classical Euler Angles 106</p> <p>5.5 Planet-Fixed Coordinate System 111</p> <p>Exercises 114</p> <p><b>6 Orbital Manoeuvres 117</b></p> <p>6.1 Single-Impulse Orbital Manoeuvres 119</p> <p>6.2 Multi-impulse Orbital Transfer 123</p> <p>6.2.1 Hohmann Transfer 124</p> <p>6.2.2 Rendezvous in Circular Orbit 127</p> <p>6.2.3 Outer Bi-elliptic Transfer 130</p> <p>6.3 Continuous Thrust Manoeuvres 133</p> <p>6.3.1 Planar Manoeuvres 134</p> <p>6.3.2 Constant Radial Acceleration from Circular Orbit 135</p> <p>6.3.3 Constant Circumferential Acceleration from Circular Orbit 136</p> <p>6.3.4 Constant Tangential Acceleration from Circular Orbit 139</p> <p>Exercises 141</p> <p>References 143</p> <p><b>7 Relative Motion in Orbit 145</b></p> <p>7.1 Hill-Clohessy-Wiltshire Equations 148</p> <p>7.2 Linear State-Space Model 151</p> <p>7.3 Impulsive Manoeuvres About a Circular Orbit 153</p> <p>7.3.1 Orbital Rendezvous 153</p> <p>7.4 Keplerian Relative Motion 155</p> <p>Exercises 158</p> <p><b>8 Lambert’s Problem 161</b></p> <p>8.1 Two-Point Orbital Transfer 161</p> <p>8.1.1 Transfer Triangle and Terminal Velocity Vectors 162</p> <p>8.2 Elliptic Transfer 164</p> <p>8.2.1 Locus of the Vacant Focii 165</p> <p>8.2.2 Minimum-Energy and Minimum-Eccentricity Transfers 166</p> <p>8.3 Lambert’s Theorem 168</p> <p>8.3.1 Time in Elliptic Transfer 169</p> <p>8.3.2 Time in Hyperbolic Transfer 173</p> <p>8.3.3 Time in Parabolic Transfer 175</p> <p>8.4 Solution to Lambert’s Problem 177</p> <p>8.4.1 Parameter of Transfer Orbit 178</p> <p>8.4.2 Stumpff Function Method 179</p> <p>8.4.3 Hypergeometric Function Method 185</p> <p>Exercises 188</p> <p>References 190</p> <p><b>9 Orbital Perturbations 191</b></p> <p>9.1 Perturbing Acceleration 191</p> <p>9.2 Osculating Orbit 192</p> <p>9.3 Variation of Parameters 194</p> <p>9.3.1 Lagrange Brackets 197</p> <p>9.4 Lagrange Planetary Equations 199</p> <p>9.5 Gauss Variational Model 209</p> <p>9.6 Variation of Vectors 214</p> <p>9.7 Mean Orbital Perturbation 219</p> <p>9.8 Orbital Perturbation Due to Oblateness 220</p> <p>9.8.1 Sun-Synchronous Orbits 225</p> <p>9.8.2 Molniya Orbits 226</p> <p>9.9 Effects of Atmospheric Drag 227</p> <p>9.9.1 Life of a Satellite in a Low Circular Orbit 228</p> <p>9.9.2 Effect on Orbital Angular Momentum 229</p> <p>9.9.3 Effect on Orbital Eccentricity and Periapsis 231</p> <p>9.10 Third-Body Perturbation 235</p> <p>9.10.1 Lunar and Solar Perturbations on an Earth Satellite 238</p> <p>9.10.2 Sphere of Influence and Conic Patching 243</p> <p>9.11 Numerical Methods for Perturbed Keplerian Motion 246</p> <p>9.11.1 Cowell’s Method 246</p> <p>9.11.2 Encke’s Method 246</p> <p>Exercises 250</p> <p>References 254</p> <p><b>10 Three-Body Problem 255</b></p> <p>10.1 Equations of Motion 256</p> <p>10.2 Particular Solutions by Lagrange 257</p> <p>Equilibrium Solutions in a Rotating Frame 257</p> <p>Conic Section Solutions 259</p> <p>10.3 Circular Restricted Three-Body Problem 261</p> <p>10.3.1 Equations of Motion in the Inertial Frame 261</p> <p>10.4 Non-dimensional Equations in the Synodic Frame 263</p> <p>10.5 Lagrangian Points and Stability 267</p> <p>10.5.1 Stability Analysis 268</p> <p>10.6 Orbital Energy and Jacobi’s Integral 270</p> <p>10.6.1 Zero-Relative-Speed Contours 272</p> <p>10.6.2 Tisserand’s Criterion 275</p> <p>10.7 Canonical Formulation 276</p> <p>10.8 Special Three-Body Trajectories 278</p> <p>10.8.1 Perturbed Orbits About a Primary 279</p> <p>10.8.2 Free-Return Trajectories 279</p> <p>Exercises 282</p> <p>Reference 283</p> <p><b>11 Attitude Dynamics 285</b></p> <p>11.1 Euler’s Equations of Attitude Kinetics 286</p> <p>11.2 Attitude Kinematics 288</p> <p>11.3 Rotational Kinetic Energy 290</p> <p>11.4 Principal Axes 292</p> <p>11.5 Torque-Free Rotation of Spacecraft 294</p> <p>11.5.1 Stability of Rotational States 295</p> <p>11.6 Precession and Nutation 298</p> <p>11.7 Semi-Rigid Spacecraft 299</p> <p>11.7.1 Dual-Spin Stability 301</p> <p>11.8 Solution to Torque-Free Euler’s Equations 303</p> <p>11.8.1 Axisymmetric Spacecraft 304</p> <p>11.8.2 Jacobian Elliptic Functions 307</p> <p>11.8.3 Runge-Kutta Solution 308</p> <p>11.9 Gravity-Gradient Stabilization 312</p> <p>Exercises 321</p> <p><b>12 Attitude Manoeuvres 323</b></p> <p>12.1 Impulsive Manoeuvres with Attitude Thrusters 323</p> <p>12.1.1 Single-Axis Rotation 324</p> <p>12.1.2 Rigid Axisymmetric Spin-Stabilized Spacecraft 326</p> <p>12.1.3 Spin-Stabilized Asymmetric Spacecraft 330</p> <p>12.2 Attitude Manoeuvres with Rotors 330</p> <p>12.2.1 Reaction Wheel 332</p> <p>12.2.2 Control-Moment Gyro 333</p> <p>12.2.3 Variable-Speed Control-Moment Gyro 334</p> <p>Exercises 335</p> <p>References 337</p> <p><b>A Numerical Solution of Ordinary Differential Equations 339</b></p> <p>A.1 Fixed-Step Runge-Kutta Algorithms 339</p> <p>A.2 Variable-Step Runge-Kutta Algorithms 340</p> <p>A.3 Runge-Kutta-Nyström Algorithms 342</p> <p>References 343</p> <p><b>B Jacobian Elliptic Functions 345</b></p> <p>Reference 346</p> <p>Index 347</p>
<p><b>Ashish Tewari</b> <i>is a Professor in the Department of Aerospace Engineering at IIT Kanpur. He specializes in flight mechanics and control.</i>
<p><b>An introduction to orbital mechanics and spacecraft attitude dynamics</b></p> <p><i>Foundations of Space Dynamics</i> offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author - a noted expert in the field - covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples.</p> <p>Written in an accessible and concise style, <i>Foundations of Space Dynamics</i> highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples.</p> <p><b>This important book:</b></p> <ul> <li><b>Covers space dynamics with a systematic and comprehensive approach</b></li> <li><b>Is designed to be a practical text filled with real-world examples</b></li> <li><b>Contains information on the most current applications</b></li> <li><b>Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization</b></li> <li><b>Offers a deep understanding of space dynamics often lacking in other textbooks</b></li> </ul> <p>Written for undergraduate and graduate students and professionals in aerospace engineering, <i>Foundations of Space Dynamics</i> offers an introduction to the most current information on orbital mechanics and dynamics.</p>

Diese Produkte könnten Sie auch interessieren:

Computational Acoustics
Computational Acoustics
von: David R. Bergman
EPUB ebook
116,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €