Details

Flat Panel Display Manufacturing


Flat Panel Display Manufacturing


Wiley Series in Display Technology 1. Aufl.

von: Jun Souk, Shinji Morozumi, Fang-Chen Luo, Ion Bita

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.07.2018
ISBN/EAN: 9781119161356
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays</b></p> <p>This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.</p> <p><i>Flat Panel Display Manufacturing</i> fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.</p> <ul> <li>Provides an overview of the evolution of display technologies and manufacturing</li> <li>Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications</li> <li>Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing</li> <li>Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing</li> <li>Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair</li> <li>Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing</li> </ul> <p><i>Flat Panel Display Manufacturing</i> will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.</p>
<p>List of Contributors xxi</p> <p>Series Editor’s Foreword xxv</p> <p>Preface xxvii</p> <p>1 Introduction 1<br /><i>Fang‐Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita</i></p> <p><b>1.1 Introduction 1</b></p> <p>1.2 Historic Review of TFT‐LCD Manufacturing Technology Progress 1</p> <p>1.2.1 Early Stage TFT and TFT‐Based Displays 2</p> <p>1.2.2 The 1990s: Initiation of TFT‐LCD Manufacturing and Incubation of TFT‐LCD Products 2</p> <p>1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4</p> <p>1.2.4 The 2000s: A Golden Time for LCD‐TV Manufacturing Technology Advances 4</p> <p>1.3 Analyzing the Success Factors in LCD Manufacturing 5</p> <p>1.3.1 Scaling the LCD Substrate Size 7</p> <p>1.3.2 Major Milestones in TFT‐LCD Manufacturing Technology 9</p> <p>1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9</p> <p>1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9</p> <p>1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10</p> <p>1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10</p> <p>References 11</p> <p><b>2 TFT Array Process Architecture and Manufacturing Process Flow 13<br /></b><i>Chiwoo Kim</i></p> <p>2.1 Introduction 13</p> <p>2.2 Material Properties and TFT Characteristics of a‐Si, LTPS, and Metal Oxide TFTs 15</p> <p>2.2.1 a‐Si TFT 15</p> <p>2.2.2 LTPS TFT 16</p> <p>2.2.2.1 Excimer Laser Annealing (ELA) 17</p> <p>2.2.3 Amorphous Oxide Semiconductor TFTs 22</p> <p>2.3 a‐Si TFT Array Process Architecture and Process Flow 22</p> <p>2.3.1 Four‐Mask Count Process Architecture for TFT‐LCDs 24</p> <p>2.4 Poly‐Si TFT Architecture and Fabrication 27</p> <p>2.5 Oxide Semiconductor TFT Architecture and Fabrication 30</p> <p>2.6 TFT LCD Applications 32</p> <p>2.7 Development of SLS‐Based System on Glass Display [1, 11, 14, 15] 33</p> <p>References 35</p> <p><b>3 Color Filter Architecture, Materials, and Process Flow 39<br /></b><i>Young Seok Choi, Musun Kwak, and Youn Sung Na</i></p> <p>3.1 Introduction 39</p> <p>3.2 Structure and Role of the Color Filter 39</p> <p>3.2.1 Red, Green, and Blue (RGB) Layer 40</p> <p>3.2.1.1 Color Coordinate and Color Gamut 41</p> <p>3.2.2 Black Matrix 44</p> <p>3.2.3 Overcoat and Transparent Electrode 45</p> <p>3.2.4 Column Spacer 46</p> <p>3.3 Color Filter Manufacturing Process Flow 46</p> <p>3.3.1 Unit Process 46</p> <p>3.3.1.1 Formation of Black Matrix 46</p> <p>3.3.1.2 Formation of RGB Layer 48</p> <p>3.3.1.3 Overcoat (OC) 51</p> <p>3.3.1.4 Formation of ITO Electrodes 53</p> <p>3.3.1.5 Column Spacer (Pattern Spacer) 53</p> <p>3.3.2 Process Flow for Different LC Mode 54</p> <p>3.3.2.1 Color Filter for the TN Mode 54</p> <p>3.3.2.2 Color Filter for the IPS Mode 54</p> <p>3.3.2.3 Color Filter for the VA Mode 55</p> <p>3.4 New Color Filter Design 55</p> <p>3.4.1 White Color (Four Primary Colors) Technology 55</p> <p>3.4.2 Color Filter on TFT 56</p> <p>References 57</p> <p><b>4 Liquid Crystal Cell Process 59<br /></b><i>Heung‐Shik Park and Ki‐Chul Shin</i></p> <p>4.1 Introduction 59</p> <p>4.2 Liquid Crystal Cell Process 59</p> <p>4.2.1 Alignment Layer Treatment 61</p> <p>4.2.2 Process of Applying PI Layers 62</p> <p>4.2.3 Rubbing Process 63</p> <p>4.2.4 Photo‐Alignment Process 64</p> <p>4.2.5 LC Filling Process 65</p> <p>4.2.5.1 Vacuum Filling Method 66</p> <p>4.2.5.2 End Seal Process 66</p> <p>4.2.5.3 One Drop Filling (ODF) Method 67</p> <p>4.2.6 Vacuum Assembly Process 68</p> <p>4.2.7 Polarizer Attachment Process 69</p> <p>4.3 Conclusions 70</p> <p>Acknowledgments 70</p> <p>References 70</p> <p><b>5 TFT‐LCD Module and Package Process 73<br /></b><i>Chun Chang Hung</i></p> <p>5.1 Introduction 73</p> <p>5.2 Driver IC Bonding: TAB and COG 73</p> <p>5.3 Introduction to Large‐Panel JI Process 74</p> <p>5.3.1 COF Bonding 75</p> <p>5.3.1.1 Edge Clean 75</p> <p>5.3.1.2 ACF Attachment 76</p> <p>5.3.1.3 COF Pre‐Bonding 77</p> <p>5.3.1.4 COF Main Bonding 78</p> <p>5.3.1.5 Lead Check 78</p> <p>5.3.1.6 Silicone Dispensing 78</p> <p>5.3.2 PCB Bonding 79</p> <p>5.3.3 PCB Test 79</p> <p>5.3.4 Press Heads: Long Bar or Short Bar 79</p> <p>5.4 Introduction to Small‐Panel JI Process 79</p> <p>5.4.1 Beveling 80</p> <p>5.4.2 Panel Cleaning 80</p> <p>5.4.3 Polarizer Attachment 80</p> <p>5.4.4 Chip on Glass (COG) Bonding 81</p> <p>5.4.5 FPC on Glass (FOG) Bonding 81</p> <p>5.4.6 Optical Microscope (OM) Inspection 81</p> <p>5.4.7 UV Glue Dispense 82</p> <p>5.4.8 Post Bonding Inspection (PBI) 82</p> <p>5.4.9 Protection Glue Dispensing 82</p> <p>5.5 LCD Module Assembly 83</p> <p>5.6 Aging 84</p> <p>5.7 Module in Backlight or Backlight in Module 85</p> <p>References 86</p> <p><b>6 LCD Backlights 87<br /></b><i>Insun Hwang and Jae‐Hyeon Ko</i></p> <p>6.1 Introduction 87</p> <p>6.2 LED Sources 90</p> <p>6.2.1 GaN Epi‐Wafer on Sapphire 92</p> <p>6.2.2 LED Chip 93</p> <p>6.2.3 Light Extraction 94</p> <p>6.2.4 LED Package 96</p> <p>6.2.5 SMT on FPCB 97</p> <p>6.3 Light Guide Plate 98</p> <p>6.3.1 Optical Principles of LGP 98</p> <p>6.3.2 Optical Pattern Design 99</p> <p>6.3.3 Manufacturing of LGP 101</p> <p>6.3.3.1 Injection Molding 101</p> <p>6.3.3.2 Screen Printing 102</p> <p>6.3.3.3 Other Methods 103</p> <p>6.4 Optical Films 104</p> <p>6.4.1 Diffuser 106</p> <p>6.4.2 Prism Film 107</p> <p>6.4.3 Reflector 108</p> <p>6.4.4 Other Films 108</p> <p>6.5 Direct‐Type BLU 111</p> <p>6.6 Summary 111</p> <p>References 112</p> <p><b>7 TFT Backplane and Issues for OLED 115<br /></b><i>Chiwoo Kim</i></p> <p>7.1 Introduction 115</p> <p>7.2 LTPS TFT Backplane for OLED Films 116</p> <p>7.2.1 Advanced Excimer Laser Annealing (AELA) for Large‐Sized AMOLED Displays 117</p> <p>7.2.2 Line‐Scan Sequential Lateral Solidification Process for AMOLED Application 120</p> <p>7.3 Oxide Semiconductor TFT for OLED 122</p> <p>7.3.1 Oxide TFT–Based OLED for Large‐Sized TVs 123</p> <p>7.4 Best Backplane Solution for AMOLED 125</p> <p>References 127</p> <p><b>8A OLED Manufacturing Process for Mobile Application 129<br /></b><i>Jang Hyuk Kwon and Raju Lampande</i></p> <p>8A.1 Introduction 129</p> <p>8A.2 Current Status of AMOLED for Mobile Display 130</p> <p>8A.2.1 Top Emission Technology 130</p> <p>8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133</p> <p>8A.4 Encapsulation Techniques for OLEDs 135</p> <p>8A.4.1 Frit Sealing 135</p> <p>8A.4.2 Thin‐Film Encapsulation 136</p> <p>8A.5 Flexible OLED technology 137</p> <p>8A.6 AMOLED Manufacturing Process 137</p> <p>8A.7 Summary 140</p> <p>References 140</p> <p><b>8B OLED Manufacturing Process for TV Application 143<br /></b><i>Chang Wook Han and Yoon Heung Tak</i></p> <p>8B.1 Introduction 143</p> <p>8B.2 Fine Metal Mask (FMM) 144</p> <p>8B.3 Manufacturing Process for White OLED and Color Filter Methods 147</p> <p>8B.3.1 One‐Stacked White OLED Device 149</p> <p>8B.3.2 Two‐Stacked White OLED Device 152</p> <p>8B.3.3 Three‐Stacked White‐OLED Device 155</p> <p>References 157</p> <p><b>9 OLED Encapsulation Technology 159<br /></b><i>Young‐Hoon Shin</i></p> <p>9.1 Introduction 159</p> <p>9.2 Principles of OLED Encapsulation 159</p> <p>9.2.1 Effect of H2O 160</p> <p>9.3 Classification of Encapsulation Technologies 162</p> <p>9.3.1 Edge Seal 163</p> <p>9.3.2 Frit Seal 164</p> <p>9.3.3 Dam and Fill 166</p> <p>9.3.4 Face Seal 167</p> <p>9.3.5 Thin‐Film Encapsulation (TFE) 168</p> <p>9.4 Summary 170</p> <p>References 170</p> <p><b>10 Flexible OLED Manufacturing 173<br /></b><i>Woojae Lee and Jun Souk</i></p> <p>10.1 Introduction 173</p> <p>10.2 Critical Technologies in Flexible OLED Display 174</p> <p>10.2.1 High‐Temperature PI Film 175</p> <p>10.2.2 Encapsulation Layer 176</p> <p>10.2.2.1 Thin‐Film Encapsulation (TFE) Method 176</p> <p>10.2.2.2 Hyrid Encapsulation Method 177</p> <p>10.2.2.3 Other Encapsulation Methods 178</p> <p>10.2.2.4 Measurement of Barrier Performance 179</p> <p>10.2.3 Laser Lift‐Off 180</p> <p>10.2.4 Touch Sensor on F‐OLED 181</p> <p>10.3 Process Flow of F‐OLED 181</p> <p>10.3.1 PI Film Coating and Curing 181</p> <p>10.3.2 LTPS TFT Backplane Process 183</p> <p>10.3.3 OLED Deposition Process 183</p> <p>10.3.4 Thin‐Film Encapsulation 185</p> <p>10.3.5 Laser Lift‐Off 185</p> <p>10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185</p> <p>10.3.7 Touch Sensor Attach 186</p> <p>10.3.8 Circular Polarizer Attach 186</p> <p>10.3.9 Module Assembly (Bonding Drive IC) 186</p> <p>10.4 Foldable OLED 186</p> <p>10.5 Summary 188</p> <p>References 189</p> <p><b>11A Metal Lines and ITO PVD 193<br /></b><i>Hyun Eok Shin, Chang Oh Jeong, and Junho Song</i></p> <p>11A.1 Introduction 193</p> <p>11A.1.1 Basic Requirements of Metallization for Display 193</p> <p>11A.1.2 Thin‐Film Deposition by Sputtering 195</p> <p>11A.2 Metal Line Evolution in Past Years of TFT‐LCD 198</p> <p>11A.2.1 Gate Line Metals 199</p> <p>11A.2.1.1 Al and Al Alloy Electrode 199</p> <p>11A.2.1.2 Cu Electrode 201</p> <p>11A.2.2 Data line (Source/Drain) Metals 202</p> <p>11A.2.2.1 Data Al Metal 202</p> <p>11A.2.2.2 Data Cu Metal 203</p> <p>11A.2.2.3 Data Chromium (Cr) Metal 203</p> <p>11A.2.2.4 Molybdenum (Mo) Metal 203</p> <p>11A.2.2.5 Titanium (Ti) Metal 204</p> <p>11A.3 Metallization for OLED Display 205</p> <p>11A.3.1 Gate Line Metals 205</p> <p>11A.3.2 Source/Drain Metals 205</p> <p>11A.3.3 Pixel Anode 206</p> <p>11A.4 Transparent Electrode 207</p> <p>References 208</p> <p><b>11B Thin‐Film PVD: Materials, Processes, and Equipment 209<br /></b><i>Tetsuhiro Ohno</i></p> <p>11B.1 Introduction 209</p> <p>11B.2 Sputtering Method 210</p> <p>11B.3 Evolution of Sputtering Equipment for FPD Devices 212</p> <p>11B.3.1 Cluster Tool for Gen 2 Size 212</p> <p>11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213</p> <p>11B.3.3 Vertical Cluster Tool for Gen 8 Size 213</p> <p>11B.4 Evolution of Sputtering Cathode 215</p> <p>11B.4.1 Cathode Structure Evolution 215</p> <p>11B.4.2 Dynamic Multi Cathode for LTPS 217</p> <p>11B.4.3 Cathode Selection Strategy 217</p> <p>11B.5 Transparent Oxide Semiconductor (TOS) Thin‐Film Deposition Technology 218</p> <p>11B.5.1 Deposition Equipment for TOS‐TFT 218</p> <p>11B.5.2 New Cathode Structure for TOS‐TFT 219</p> <p>11B.6 Metallization Materials and Deposition Technology 221</p> <p>References 223</p> <p><b>11C Thin‐Film PVD (Rotary Target) 225</b></p> <p><i>Marcus Bender</i></p> <p>11C. 1 Introduction 225</p> <p>11C.2 Source Technology 227</p> <p>11C.2.1 Planar Cathodes 227</p> <p>11C.2.2 Rotary Cathodes 229</p> <p>11C.2.3 Rotary Cathode Array 230</p> <p>11C.3 Materials, Processes, and Characterization 232</p> <p>11C.3.1 Introduction 232</p> <p>11C.3.2 Backplane Metallization 232</p> <p>11C.3.3 Layers for Metal‐Oxide TFTs 234</p> <p>11C.3.4 Transparent Electrodes 236</p> <p>11C.3.5 Adding Touch Functionality and Improving End‐User Experience 238</p> <p>References 239</p> <p><b>12A Thin‐Film PECVD (AKT) 241<br /></b><i>Tae Kyung Won, Soo Young Choi, and John M. White</i></p> <p>12A.1 Introduction 241</p> <p>12A.2 Process Chamber Technology 243</p> <p>12A.2.1 Electrode Design 243</p> <p>12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243</p> <p>12A.2.1.2 Gas Flow Control 245</p> <p>12A.2.1.3 Susceptor 245</p> <p>12A.2.2 Chamber Cleaning 246</p> <p>12A.3 Thin‐Film Material, Process, and Characterization 248</p> <p>12A.3.1 Amorphous Si (a‐Si) TFT 248</p> <p>12A.3.1.1 Silicon Nitride (SiN) 248</p> <p>12A.3.1.2 Amorphous Silicon (a‐Si) 253</p> <p>12A.3.1.3 Phosphorus‐Doped Amorphous Silicon (n+ a‐Si) 257</p> <p>12A.3.2 Low‐Temperature Poly Silicon (LTPS) TFT 258</p> <p>12A.3.2.1 Silicon Oxide (SiO) 259</p> <p>12A.3.2.2 a‐Si Precursor Film (Dehydrogenation) 260</p> <p>12A.3.3 Metal‐Oxide (MO) TFT 263</p> <p>12A.3.3.1 Silicon Oxide (SiO) 265</p> <p>12A.3.4 Thin‐Film Encapsulation (TFE) 269</p> <p>12A.3.4.1 Barrier Layer (Silicon Nitride) 269</p> <p>12A.3.4.2 Buffer Layer 271</p> <p>References 271</p> <p><b>12B Thin‐Film PECVD (Ulvac) 273<br /></b><i>Masashi Kikuchi</i></p> <p>12B.1 Introduction 273</p> <p>12B.2 Plasma of PECVD 273</p> <p>12B.3 Plasma Modes and Reactor Configuration 273</p> <p>12B.3.1 CCP‐Type Reactor 274</p> <p>12B.3.2 Microwave‐Type Reactor 274</p> <p>12B.3.3 ICP‐Type Reactor 275</p> <p>12B.4 PECVD Process for Display 276</p> <p>12B.4.1 a‐Si Film for a‐Si TFT 276</p> <p>12B.4.2 a‐Si Film for LTPS 277</p> <p>12B.4.3 SiNx Film 278</p> <p>12B.4.4 TEOS SiO2 Film 279</p> <p>12B.5 PECVD System Overview 279</p> <p>12B.6 Remote Plasma Cleaning 279</p> <p>12B.6.1 Gas Flow Style of Remote Plasma Cleaning 281</p> <p>12B.6.2 Cleaning and Corrosion 281</p> <p>12B.7 Passivation Layer for OLED 282</p> <p>12B.7.1 Passivation by Single/Double/Multi‐Layer 282</p> <p>12B.8 PECVD Deposition for IGZO TFT 283</p> <p>12B.8.1 Gate Insulator for IGZO TFT 283</p> <p>12B.8.2 Passivation Film for IGZO TFT 284</p> <p>12B.9 Particle Generation 284</p> <p>References 286</p> <p><b>13 Photolithography 287<br /></b><i>Yasunori Nishimura, Kozo Yano, Masataka Itoh, and Masahiro Ito</i></p> <p>13.1 Introduction 287</p> <p>13.2 Photolithography Process Overview 288</p> <p>13.2.1 Cleaning 289</p> <p>13.2.2 Preparation 289</p> <p>13.2.3 Photoresist Coating 289</p> <p>13.2.4 Exposure 289</p> <p>13.2.5 Development 289</p> <p>13.2.6 Etching 289</p> <p>13.2.7 Resist Removal 289</p> <p>13.3 Photoresist Coating 290</p> <p>13.3.1 Evolution of Photoresist Coating 290</p> <p>13.3.2 Slit Coating 290</p> <p>13.3.2.1 Principles of Slit Coating 290</p> <p>13.3.2.2 Slit‐Coating System 291</p> <p>13.4 Exposure 292</p> <p>13.4.1 Photoresist and Exposure 292</p> <p>13.4.1.1 Photoresist 292</p> <p>13.4.1.2 Color Resist 292</p> <p>13.4.1.3 UV Light Source for Exposure 292</p> <p>13.4.2 General Aspects of Exposure Systems 292</p> <p>13.4.3 Stepper 293</p> <p>13.4.4 Projection Scanning Exposure System 294</p> <p>13.4.5 Mirror Projection Scan System (Canon) 296</p> <p>13.4.6 Multi‐Lens Projection System (Nikon) 296</p> <p>13.4.6.1 Multi‐Lens Optics 296</p> <p>13.4.6.2 Multi‐Lens Projection System 296</p> <p>13.4.7 Proximity Exposure 297</p> <p>13.5 Photoresist Development 300</p> <p>13.6 Inline Photolithography Processing Equipment 301</p> <p>13.7 Photoresist Stripping 302</p> <p>13.8 Photolithography for Color Filters 303</p> <p>13.8.1 Color Filter Structures 303</p> <p>13.8.1.1 TN 304</p> <p>13.8.1.2 VA 304</p> <p>13.8.1.3 IPS 304</p> <p>13.8.2 Materials for Color Filters 305</p> <p>13.8.2.1 Black Matrix Materials 305</p> <p>13.8.2.2 RGB Color Materials 305</p> <p>13.8.2.3 PS (Photo Spacer) Materials 306</p> <p>13.8.3 Photolithography Process for Color Filters 307</p> <p>13.8.3.1 Color Resist Coating 307</p> <p>13.8.3.2 Exposure 307</p> <p>13.8.3.3 Development 308</p> <p>13.8.4 Higher‐Performance Color Filters 309</p> <p>13.8.4.1 Mobile Applications 309</p> <p>13.8.4.2 TV Applications 309</p> <p>References 310</p> <p><b>14A Wet Etching Processes and Equipment 311<br /></b><i>Kazuo Jodai</i></p> <p>14A.1 Introduction 311</p> <p>14A.2 Overview of TFT Process 312</p> <p>14A.3 Applications and Equipment of Wet Etching 313</p> <p>14A.3.1 Applications 313</p> <p>14A.3.2 Equipment (Outline) 313</p> <p>14A.3.3 Substrate Transferring System 315</p> <p>14A.3.4 Dip Etching System 316</p> <p>14A.3.5 Cascade Rinse System 316</p> <p>14A.4 Problems Due to Increased Mother Glass Size and Solutions 317</p> <p>14A.4.1 Etchant Concentration Management 317</p> <p>14A.4.2 Quick Rinse 317</p> <p>14A.4.3 Other Issues 318</p> <p>14A.5 Conclusion 318</p> <p>References 318</p> <p><b>14B Dry Etching Processes and Equipment 319<br /></b><i>Ippei Horikoshi</i></p> <p>14B.1 Introduction 319</p> <p>14B.2 Principle of Dry Etching 319</p> <p>14B.2.1 Plasma 320</p> <p>14B.2.2 Ions 321</p> <p>14B.2.3 Radicals 321</p> <p>14B.3 Architecture for Dry Etching Equipment 322</p> <p>14B.4 Dry Etching Modes 323</p> <p>14B.4.1 Conventional Etching Mode and Each Characteristic 324</p> <p>14B.4.2 Current Etching Mode and Each Characteristic 325</p> <p>14B.5 TFT Process 325</p> <p>14B.5.1 a‐Si Process 325</p> <p>14B.5.2 LTPS Process 326</p> <p>14B.5.3 Oxide Process 327</p> <p>References 328</p> <p><b>15 TFT Array: Inspection, Testing, and Repair 329<br /></b><i>Shulik Leshem, Noam Cohen, Savier Pham, Mike Lim, and Amir Peled</i></p> <p>15.1 Defect Theory 329</p> <p>15.1.1 Typical Production Defects 329</p> <p>15.1.1.1 Pattern Defects 329</p> <p>15.1.1.2 Foreign Particles 331</p> <p>15.1.2 Understanding the Nature of Defects 332</p> <p>15.1.2.1 Critical and Non‐Critical Defects 332</p> <p>15.1.2.2 Electrical and Non‐Electrical Defects 333</p> <p>15.1.3 Effect of Defects on Final FPD Devices and Yields 333</p> <p>15.2 AOI (Automated Optical Inspection) 334</p> <p>15.2.1 The Need 334</p> <p>15.2.2 AOI Tasks, Functions, and Sequences 335</p> <p>15.2.2.1 Image Acquisition 335</p> <p>15.2.2.2 Defect Detection 336</p> <p>15.2.2.3 Defect Classification 336</p> <p>15.2.2.4 Review Image Grabbing 337</p> <p>15.2.2.5 Defect Reporting and Judgment 337</p> <p>15.2.3 AOI Optical Concept 337</p> <p>15.2.3.1 Image Quality Criteria 338</p> <p>15.2.3.2 Scan Cameras 339</p> <p>15.2.3.2.1 Camera Type 339</p> <p>15.2.3.2.2 Resolution Changer 339</p> <p>15.2.3.2.3 Backside Inspection 339</p> <p>15.2.3.3 Scan Illumination 339</p> <p>15.2.3.3.1 Types of Illumination 339</p> <p>15.2.3.4 Video Grabbing for Defect Review and Metrology 340</p> <p>15.2.3.4.1 Review/Metrology Cameras 340</p> <p>15.2.3.4.2 On‐the‐Fly Video Grabbing 340</p> <p>15.2.3.4.3 Alternative to Video Images 340</p> <p>15.2.4 AOI Defect Detection Principles 341</p> <p>15.2.4.1 Gray Level Concept 342</p> <p>15.2.4.2 Comparison of Gray Level Values Between Neighboring Cells 342</p> <p>15.2.4.3 Detection Sensitivity 342</p> <p>15.2.4.4 Detection Selectivity 344</p> <p>15.2.5 AOI Special Features 344</p> <p>15.2.5.1 Detection of Special Defect Types 344</p> <p>15.2.5.2 Inspection of In‐Cell Touch Panels 345</p> <p>15.2.5.3 Peripheral Area Inspection 346</p> <p>15.2.5.4 Mura Defects 346</p> <p>15.2.5.5 Cell Process Inspection 347</p> <p>15.2.5.6 Defect Classification 347</p> <p>15.2.5.7 Metrology: CD/O Measurement 349</p> <p>15.2.5.8 Automatic Judgment 350</p> <p>15.2.6 Offline Versus Inline AOI 350</p> <p>15.2.7 AOI Usage, Application and Trends 351</p> <p>15.3 Electrical Testing 352</p> <p>15.3.1 The Need 352</p> <p>15.3.2 Array Tester Tasks, Functions, and Sequences 353</p> <p>15.3.2.1 Panel Signal Driving 353</p> <p>15.3.2.1.1 Shorting Bar Probing Method 354</p> <p>15.3.2.1.2 Full Contact Probing Method 354</p> <p>15.3.2.2 Contact or Non‐Contact Sensing 354</p> <p>15.3.2.2.1 Contact Sensing 355</p> <p>15.3.2.2.2 Non‐Contact Sensing Methods 355</p> <p>15.3.2.3 Panel Image Processing and Defect Detection 355</p> <p>15.3.2.4 Post‐Defect Detection Processes 355</p> <p>15.3.3 Array Tester System Design Concept 356</p> <p>15.3.3.1 Signal Driving Probing 357</p> <p>15.3.3.2 Ultra‐High‐Resolution Testing 357</p> <p>15.3.3.3 System TACT 358</p> <p>15.3.3.4 “High‐Channel” Testing 358</p> <p>15.3.3.5 Advanced Process Technology Testing (AMOLED, FLEX OLED) 358</p> <p>15.3.4 Array Tester Special Features 359</p> <p>15.3.4.1 GOA, ASG, and IGD Testing 359</p> <p>15.3.4.2 Electro Mura Monitoring 359</p> <p>15.3.4.3 Free‐Form Panel Testing 361</p> <p>15.3.5 Array Tester Usage, Application, and Trends 361</p> <p>15.3.5.1 Source Drain Layer Testing for LTPS LCD/OLED 362</p> <p>15.3.5.2 New Probing Concept 363</p> <p>15.3.5.3 In‐Cell Touch Panel Testing 363</p> <p>15.4 Defect Repair 363</p> <p>15.4.1 The Need 363</p> <p>15.4.2 Repair System in the Production Process 364</p> <p>15.4.2.1 In‐Process Repair 364</p> <p>15.4.2.2 Final Repair 364</p> <p>15.4.3 Repair Sequence 364</p> <p>15.4.4 Short‐Circuit Repair Method 365</p> <p>15.4.4.1 Laser Ablation Concept 365</p> <p>15.4.4.1.1 Thermal Ablation 366</p> <p>15.4.4.1.2 Cold Ablation 366</p> <p>15.4.4.1.3 Photochemical Ablation 366</p> <p>15.4.4.2 Laser Light Wavelengths and their Typical Applications 366</p> <p>15.4.4.2.1 Laser Matter Interaction 366</p> <p>15.4.4.2.2 Using DUV Laser Light (266 nm) for Short‐Circuit Defect Repair 367</p> <p>15.4.4.2.3 Using Infrared Laser Light (1,064 nm) for Short‐Circuit Defect Repair 367</p> <p>15.4.4.3.4 Using Green Laser Light (532 nm) for Short‐Circuit Defect Repair 367</p> <p>15.4.4.3 Typical Applications of the Short‐Circuit Repair Method 367</p> <p>15.4.4.3.1 Cutting 367</p> <p>15.4.4.3.2 Welding 368</p> <p>15.4.5 Open‐Circuit Repair Method 369</p> <p>15.4.5.1 LCVD (Laser Chemical Vapor Deposition) 369</p> <p>15.4.5.2 Metal Ink Deposition Repair 370</p> <p>15.4.5.2.1 Dispensing 370</p> <p>15.4.5.2.2 Metal Inkjet Deposition 370</p> <p>15.4.5.2.3 LIFT (Laser‐Induced Forward Transfer) Deposition 371</p> <p>15.4.5.3 Main Applications of the Deposition Repair (Open‐Circuit Repair) 372</p> <p>15.4.6 Photoresist (PR) Repair 372</p> <p>15.4.6.1 Main Applications of the Photoresist Repair 373</p> <p>15.4.6.2 Photoresist Repair Technology 373</p> <p>15.4.6.2.1 Using DMD for Patterning 373</p> <p>15.4.6.2.2 Using FSM for Patterning 373</p> <p>15.4.7 Special Features of the Repair System 375</p> <p>15.4.7.1 Line Defect Locator (LDL) 375</p> <p>15.4.7.2 Parallel Repair Mode for Maximum System Throughput 375</p> <p>15.4.8 Repair Technology Trends 376</p> <p>15.4.8.1 Cold Ablation 376</p> <p>15.4.8.2 Full Automatic Repair Solution 377</p> <p>15.4.9 Summary 377</p> <p><b>16 LCM Inspection and Repair 379<br /></b><i>Chun Chang Hung 379</i></p> <p>16.1 Introduction 379</p> <p>16.2 Functional Defects Inspection 379</p> <p>16.3 Cosmetic Defects Inspection 381</p> <p>16.4 Key Factors for Proper Inspection 383</p> <p>16.4.1 Variation Between Inspectors 383</p> <p>16.4.2 Testing Environments 385</p> <p>16.4.3 Inspection Distance, Viewing Angle, and Sequence of Test Patterns 385</p> <p>16.4.4 Characteristics of Product and Components 387</p> <p>16.5 Automatic Optical Inspection (AOI) 388</p> <p>16.6 LCM Defect Repair 388</p> <p>References 391</p> <p><b>17 Productivity and Quality Control Overview 393<br /></b><i>Kozo Yano, Yasunori Nishimura, and Masataka Itoh</i></p> <p>17.1 Introduction 393</p> <p>17.2 Productivity Improvement 394</p> <p>17.2.1 Challenges for Productivity Improvement 394</p> <p>17.2.2 Enlargement of Glass Substrate 395</p> <p>17.2.2.1 Productivity Improvement and Cost Reduction by Glass Size Enlargement 397</p> <p>17.3 Yield Management 399</p> <p>17.3.1 Yield Analysis 399</p> <p>17.3.1.1 Inspection and Yield 399</p> <p>17.3.1.2 Failure Mode Analysis 401</p> <p>17.3.2 Yield Improvement Activity 404</p> <p>17.3.2.1 Process Yield Improvement 404</p> <p>17.3.2.2 Systematic Failure Minimization 404</p> <p>17.3.2.3 Random Failure Minimization by Clean Process 404</p> <p>17.3.2.4 Yield Improvement by Repairing 406</p> <p>17.4 Quality Control System 406</p> <p>17.4.1 Materials (IQC) 407</p> <p>17.4.2 Facility Control 408</p> <p>17.4.3 Process Quality Control 408</p> <p>17.4.3.1 TFT Array Process 409</p> <p>17.4.3.2 Color Filter Process 410</p> <p>17.4.3.3 LCD Cell Process 412</p> <p>17.4.3.4 Modulization Process 412</p> <p>17.4.4 Organization and Key Issues for Quality Control 413</p> <p>References 417</p> <p><b>18 Plant Architectures and Supporting Systems 419<br /></b><i>Kozo Yano and Michihiro Yamakawa</i></p> <p>18.1 Introduction 419</p> <p>18.2 General Issues in Plant Architecture 420</p> <p>18.2.1 Plant Overview 420</p> <p>18.2.2 Plant Design Procedure and Baseline 422</p> <p>18.3 Clean Room Design 423</p> <p>18.3.1 Clean Room Evolution 423</p> <p>18.3.2 Floor Structure for Clean Room 424</p> <p>18.3.3 Clean Room Ceiling Height 424</p> <p>18.3.4 Air Flow and Circulation Design 427</p> <p>18.3.5 Cleanliness Control 428</p> <p>18.3.6 Air Flow Control Against Particle 428</p> <p>18.3.7 Chemical Contamination Countermeasures 431</p> <p>18.3.8 Energy Saving in FFU 433</p> <p>18.4 Supporting Systems with Environmental Consideration 433</p> <p>18.4.1 Incidental Facilities 433</p> <p>18.4.2 Water and Its Recycle 434</p> <p>18.4.3 Chemicals 436</p> <p>18.4.4 Gases 436</p> <p>18.4.5 Electricity 437</p> <p>18.5 Production Control System 437</p> <p>References 440</p> <p><b>19 Green Manufacturing 441<br /></b><i>YiLin Wei, Mona Yang, and Matt Chien</i></p> <p>19.1 Introduction 441</p> <p>19.2 Fabrication Plant (Fab) Design 441</p> <p>19.2.1 Fab Features 441</p> <p>19.2.2 Green Building Design 442</p> <p>19.3 Product Material Uses 443</p> <p>19.3.1 Material Types and Uses 443</p> <p>19.3.2 Hazardous Substance Management 444</p> <p>19.3.3 Material Hazard and Green Trend 446</p> <p>19.3.4 Conflict Minerals Control 446</p> <p>19.4 Manufacturing Features and Green Management 447</p> <p>19.4.1 The Manufacturing Processes 447</p> <p>19.4.2 Greenhouse Gas Inventory 448</p> <p>19.4.3 Energy Saving in Manufacturing 449</p> <p>19.4.4 Reduction of Greenhouse Gas from Manufacturing 449</p> <p>19.4.5 Air Pollution and Control 451</p> <p>19.4.6 Water Management and Emissions Control 452</p> <p>19.4.7 Waste Recycling and Reuse 453</p> <p>19.5 Future Challenges 453</p> <p>References 454</p> <p>Index 457</p>
"If there is only one book on flat panel displays that is going to be on your bookshelf, then I would highly recommend this one. It will be a text that you refer to time and again for clear and concise explanations of how LCD and OLED displays are constructed and the processes used to make them into commercially successful products. As you use it, you will find yourself drawn in by the clear and colorful illustrations and will find it hard to not read more than you first intended." <p> Aris Silzars Ph.D., Member of the Board of Advisors, NanoLumens, Inc. and Past President of SID, USA
<p> <b>JUN SOUK, P<small>H</small>D</b><b></b> is a Professor in the Department of Electronic Engineering, Hanyang University, South Korea. <p><b>SHINJI MOROZUMI, P<small>H</small>D</b><b></b> is the founder and chairman of Crystage Inc., Japan. <p><b>FANG-CHEN LUO, P<small>H</small>D</b> is advisor to the President and Fellow of AU Optronics, Taiwan. <p><b>ION BITA, P<small>H</small>D</b> leads development of display technologies and components at Apple Inc., USA.
<p><b>AN EXTENSIVE INTRODUCTION TO THE ENGINEERING AND MANUFACTURE OF CURRENT AND NEXT-GENERATION FLAT PANEL DISPLAYS</b> <p>This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies. <p><i>Flat Panel Display Manufacturing</i> fills an important gap in the current book literature, describing the state of the art in display manufacturing for today's displays, and looks to create a reference of the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA. <ul> <li>Provides an overview of the evolution of display technologies and manufacturing</li> <li>Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications</li> <li>Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing</li> <li>Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing</li> <li>Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection and repair</li> <li>Introduces key topics in display manufacturing science and engineering, including productivity and quality, factory architectures, and green manufacturing</li> </ul> <p><i>Flat Panel Display Manufacturing</i> will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays. <p>WILEY SID Series in <b>Display Technology</b> <p>Series Editor: Ian Sage, Abelian Services, Malvern, UK <p>The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.
"If there is only one book on flat panel displays that is going to be on your bookshelf, then I would highly recommend this one. It will be a text that you refer to time and again for clear and concise explanations of how LCD and OLED displays are constructed and the processes used to make them into commercially successful products. As you use it, you will find yourself drawn in by the clear and colorful illustrations and will find it hard to not read more than you first intended." <p> Aris Silzars Ph.D., Member of the Board of Advisors, NanoLumens, Inc. and Past President of SID, USA

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €