Details

Finite Elements


Finite Elements

Computational Engineering Sciences
1. Aufl.

von: A. J. Baker

95,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.08.2012
ISBN/EAN: 9781118379929
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b><i>Approaches computational engineering sciences from the perspective of engineering applications</i></b></p> <p>Uniting theory with hands-on computer practice, this book gives readers a firm appreciation of the error mechanisms and control that underlie discrete approximation implementations in the engineering sciences.</p> <p>Key features:</p> <ul> <li>Illustrative examples include heat conduction, structural mechanics, mechanical vibrations, heat transfer with convection and radiation, fluid mechanics and heat and mass transport</li> <li>Takes a cross-discipline continuum mechanics viewpoint</li> <li>Includes Matlab toolbox and .m data files on a companion website, immediately enabling hands-on computing in all covered disciplines</li> <li>Website also features eight topical lectures from the author’s own academic courses</li> </ul> <p>It provides a holistic view of the topic from covering the different engineering problems that can be solved using finite element to how each particular method can be implemented on a computer. Computational aspects of the method are provided on a companion website facilitating engineering implementation in an easy way.</p>
Preface viii <p>Notation xi</p> <p><b>1 COMPUTATIONAL ENGINEERING SCIENCE</b> 1</p> <p>1.1 Engineering simulation 1</p> <p>1.2 A problem solving environment 2</p> <p>1.3 Problem statements in engineering 4</p> <p>1.4 Decisions on forming WS<i><sup>N</sup></i> 6</p> <p>1.5 Discrete approximate WS<i><sup>h</sup></i> implementation 8</p> <p>1.6 Chapter summary 9</p> <p>1.7 Chapter references 10</p> <p><b>2 PROBLEM STATEMENTS</b> 11</p> <p>2.1 Engineering simulation 11</p> <p>2.2 Continuum mechanics viewpoint 12</p> <p>2.3 Continuum conservation law forms 12</p> <p>2.4 Constitutive closure for conservation law PDEs 14</p> <p>2.5 Engineering science continuum mechanics 18</p> <p>2.6 Chapter references 20</p> <p><b>3 SOME INTRODUCTORY MATERIAL</b> 21</p> <p>3.1 Introduction 21</p> <p>3.2 Multi-dimensional PDEs, separation of variables 22</p> <p>3.3 Theoretical foundations, GWS<i><sup>h</sup></i> 27</p> <p>3.4 A legacy FD construction 28</p> <p>3.5 An FD approximate solution 30</p> <p>3.6 Lagrange interpolation polynomials 31</p> <p>3.7 Chapter summary 32</p> <p>3.8 Exercises 34</p> <p>3.9 Chapter references 34</p> <p><b>4 HEAT CONDUCTION</b>35</p> <p>4.1 A steady heat conduction example 35</p> <p>4.2 Weak form approximation, error minimization 37</p> <p>4.3 GWS<i><sup>N</sup></i> discrete implementation, FE basis38</p> <p>4.4 Finite element matrix statement 41</p> <p>4.5 Assembly of {WS}<i><sub>e</sub></i> to form algebraic GWS<i><sup>h</sup></i> 43</p> <p>4.6 Solution accuracy, error distribution 45</p> <p>4.7 Convergence, boundary heat flux 47</p> <p>4.8 Chapter summary 47</p> <p>4.9 Exercises 48</p> <p>4.10 Chapter reference 48</p> <p><b>5 STEADY HEAT TRANSFER, <i>n</i> =1</b>49</p> <p>5.1 Introduction 49</p> <p>5.2 Steady heat transfer, <i>n</i> = 1 50</p> <p>5.3 FE <i>k</i> = 1 trial space basis matrix library 52</p> <p>5.4 Object-oriented GWS<i><sup>h</sup></i> programming 55</p> <p>5.5 Higher completeness degree trial space bases58</p> <p>5.6 Global theory, asymptotic error estimate 62</p> <p>5.7 Non-smooth data, theory generalization 66</p> <p>5.8 Temperature dependent conductivity, non-linearity 69</p> <p>5.9 Static condensation, <i>p</i>-elements 72</p> <p>5.10 Chapter summary 75</p> <p>5.11 Exercises 76</p> <p>5.12 Computer labs 77</p> <p>5.13 Chapter references 78</p> <p><b>6 ENGINEERING SCIENCES, <i>n</i> =1</b> 79</p> <p>6.1 Introduction 79</p> <p>6.2 The Euler-Bernoulli beam equation 80</p> <p>6.3 Euler-Bernoulli beam theory GWS<i><sup>h</sup></i> reformulation 85</p> <p>6.4 The Timoshenko beam theory 92</p> <p>6.5 Mechanical vibrations of a beam 99</p> <p>6.6 Fluid mechanics, potential flow 106</p> <p>6.7 Electromagnetic plane wave propagation110</p> <p>6.8 Convective-radiative finned cylinder heat transfer 112</p> <p>6.9 Chapter summary 120</p> <p>6.10 Exercises122</p> <p>6.10 Computer labs 123</p> <p>6.11 Chapter references 124</p> <p><b>7 STEADY HEAT TRANSFER, <i>n</i> > 1</b> 125</p> <p>7.1 Introduction 125</p> <p>7.2 Multi-dimensional FE bases and DOF 126</p> <p>7.3 Multi-dimensional FE operations 129</p> <p>7.4 The NC <i>k</i> = 1,2 basis FE matrix library 132</p> <p>7.5 NC basis {WS}<i><sub>e</sub></i> template, accuracy, convergence 136</p> <p>7.6 The tensor product basis element family 139</p> <p>7.7 Gauss numerical quadrature, <i>k</i> = 1 TP basis library 141</p> <p>7.8 Convection-radiation BC GWS<i><sup>h</sup></i> implementation 146</p> <p>7.9 Linear basis GWS<i><sup>h</sup></i> template unification 150</p> <p>7.10 Accuracy, convergence revisited 152</p> <p>7.11 Chapter summary 153</p> <p>7.12 Exercises155</p> <p>7.13 Computer labs 155</p> <p>7.14 Chapter references 156</p> <p><b>8 FINITE DIFFERENCES OF OPINION</b> 159</p> <p>8.1 The FD-FE correlation159</p> <p>8.2 The FV-FE correlation162</p> <p>8.3 Chapter summary 167</p> <p>8.4 Exercises168</p> <p><b>9 CONVECTION-DIFFUSION</b>, <b><i>n</i> = 1</b> 169</p> <p>9.1 Introduction169</p> <p>9.2 The Galerkin weak statement 170</p> <p>9.3 GWS<i><sup>h</sup></i> completion for time dependence172</p> <p>9.4 GWS<i><sup>h</sup></i> + qTS algorithm templates 173</p> <p>9.5 GWS<i><sup>h</sup></i> + qTS algorithm asymptotic error estimates 175</p> <p>9.6 Performance verification test cases 177</p> <p>9.7 Dispersive error characterization 180</p> <p>9.8 A modified Galerkin weak statement 184</p> <p>9.9 Verification problem statements revisited 187</p> <p>9.10 Unsteady heat conduction 190</p> <p>9.11 Chapter summary 193</p> <p>9.12 Exercises 193</p> <p>9.13 Computer labs 194</p> <p>9.14 Chapter references 195</p> <p><b>10 CONVECTION-DIFFUSION, <i>n</i> > 1</b> 197</p> <p>10.1 The problem statement 197</p> <p>10.2 GWS<i><sup>h</sup></i> + qTS formulation reprise 198</p> <p>10.3 Matrix library additions, templates 200</p> <p>10.4 <i>m</i>PDE Galerkin weak forms, theoretical analyses 202</p> <p>10.5 Verification, benchmarking and validation 207</p> <p>10.6 Mass transport, the rotating cone verification 208</p> <p>10.7 The gaussian plume benchmark 211</p> <p>10.8 The steady <i>n</i>-D Peclet problem verification 213</p> <p>10.9 Mass transport, a validated <i>n</i> = 3 experiment 215</p> <p>10.10 Numerical linear algebra, matrix iteration 222</p> <p>10.11 Newton and AF TP jacobian templates 227</p> <p>10.12 Chapter summary 229</p> <p>10.13 Exercises231</p> <p>10.14 Computer labs 231</p> <p>10.15 Chapter references232</p> <p><b>11 ENGINEERING SCIENCES, <i>n</i> > 1</b> 235</p> <p>11.1 Introduction 235</p> <p>11.2 Structural mechanics236</p> <p>11.3 Structural mechanics, virtual work FE form 240</p> <p>11.4 Plane stress/strain, GWS<i><sup>h</sup></i> implementation 242</p> <p>11.5 Elasticity computer lab 246</p> <p>11.6 Fluid mechanics, incompressible-thermal flow 251</p> <p>11.7 Vorticity-streamfunction GWS<i><sup>h</sup></i> + qTS algorithm 254</p> <p>11.8 An isothermal INS validation experiment 258</p> <p>11.9 Multi-mode convection heat transfer262</p> <p>11.10 Mechanical vibrations, normal mode GWS<i><sup>h</sup></i> 267</p> <p>11.11 Normal modes of a vibrating membrane270</p> <p>11.12 Multi-physics solid-fluid mass transport 276</p> <p>11.13 Chapter summary 280</p> <p>11.14 Exercises 282</p> <p>11.15 Computer labs283</p> <p>11.14 Chapter references 284</p> <p><b>12 CONCLUSION</b> 287</p> <p>Index 289</p>
<p><b>A. J. Baker</b> is Professor Emeritus, Engineering Science and Computational Engineering, The University of Tennessee, USA. He is an elected Fellow of the International Association for Computational Mechanics (IACM) and the US Association for Computational Mechanics (USACM) and an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA).</p>
<p>Uniting weak form theory fundamentals with hands-on computer practice, this book gives readers a firm appreciation of control of error mechanisms that underlie discrete approximation algorithms in the engineering sciences.  The focus is rigorous computable formulations relevant to the computational engineering sciences, discretely implemented via finite element (FE) trial space bases, for a diverse range of topics including; solid mechanics and vibrations; heat conduction and heat transfer; fluid mechanics and heat/mass convective transport. </p> <p>It provides a holistic view of the topic ranging distinct engineering problem statements that can be solved via weak form based FE algorithms, to each specific development completely implemented for computing. Additional computational aspects of FE methodology are provided at a companion website facilitating broadly coupled engineering multi-physics implementations. </p> <p><b>Key features:-</b></p> <ul> <li>Avoids abstract mathematical concepts while emphasising the integration of theory with discrete computational implementation via calculus</li> <li>Website features eight topical lectures from the author’s own academic course</li> </ul> <ul> <li>Takes a cross-discipline continuum mechanics viewpoint</li> <li>Includes Matlab toolbox and .m files, downloadable from a companion website, immediately enabling hands-on computing in all covered disciplines</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
PDF ebook
139,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €