Details

Essential Concepts in MRI


Essential Concepts in MRI

Physics, Instrumentation, Spectroscopy and Imaging
1. Aufl.

von: Yang Xia

50,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 12.05.2022
ISBN/EAN: 9781119798231
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>ESSENTIAL CONCEPTS IN MRI</b> <p><b>A concise and complete introductory treatment of NMR and MRI</b><p> <p><i>Essential Concepts in MRI</i> delivers the first comprehensive look at magnetic resonance imaging with a practical focus on nuclear magnetic resonance spectroscopy applications. The book includes the essential components of MRI and NMR and is written for anyone new to the field of MRI who seeks to gain a complete understanding of all four essential components of MRI: physics theory, instrumentation, spectroscopy, and imaging. <p>Highly visual and including numerous full color figures that provide crucial graphical descriptions of key concepts discussed in the book, <i>Essential Concepts in MRI</i> includes discussions of quantitative and creative MRI, as well as spatial mapping in MRI and the effects of the field gradient and k-space imaging. The book also covers: <ul><li>A thorough introduction to essential concepts in nuclear magnetic resonance, including classical descriptions of NMR and quantum mechanical descriptions of NMR</LI> <li>Comprehensive explorations of essential concepts in NMR instrumentation, including magnets, radio-frequency coils, transmitters, and receivers</LI> <li>Practical discussions of essential concepts in NMR spectroscopy, including simple 1D spectroscopy, double resonance, and dipolar interactions in two-spin systems</li> <li>In-depth examinations of essential concepts in MRI, including the design of MRI pulse sequences and the elements of MRI instrumentation, with a special focus on quantitative MRI</li></ul> <P><I>Essential Concepts in MRI</I> is a must-read reference for upper-level undergraduate and postgraduate students in the physical and medical sciences, especially radiology, MRI, and imaging courses. It is also essential for students and researchers in the biomedical sciences and engineering.
<p>Preface xi</p> <p><b>Chapter 1 Introduction 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Major Steps in an NMR or MRI Experiment, and Two Conventions in Direction 2</p> <p>1.3 Major Milestones in the History of NMR and MRI 4</p> <p>1.4 The Organization for a One-semester Course 6</p> <p><b>Part I Essential Concepts in NMR 9</b></p> <p><b>Chapter 2 Classical Description of Magnetic Resonance 11</b></p> <p>2.1 Fundamental Assumptions 11</p> <p>2.2 Nuclear Magnetic Moment 12</p> <p>2.3 The Time Evolution of Nuclear Magnetic Moment 15</p> <p>2.4 Macroscopic Magnetization 16</p> <p>2.5 Rotating Reference Frame 18</p> <p>2.6 Spin Relaxation Processes 22</p> <p>2.7 Bloch Equation 24</p> <p>2.8 Fourier Transform and Spectral Line Shapes 25</p> <p>2.9 CW NMR 28</p> <p>2.10 Radio-frequency Pulses in NMR 29</p> <p>2.11 FT NMR 30</p> <p>2.12 Signal Detection in NMR 32</p> <p>2.13 Phases of the NMR Signal 33</p> <p><b>Chapter 3 Quantum Mechanical Description of Magnetic Resonance 37</b></p> <p>3.1 Nuclear Magnetism 37</p> <p>3.2 Energy Difference 39</p> <p>3.3 Macroscopic Magnetization 40</p> <p>3.4 Measurement of the X Component of Angular Momentum 41</p> <p>3.5 Macroscopic Magnetization for Spin 1/2 42</p> <p>3.6 Resonant Excitation 43</p> <p>3.7 Mechanisms of Spin Relaxation 43</p> <p><b>Chapter 4 Nuclear Interactions 51</b></p> <p>4.1 Dipolar Interaction 51</p> <p>4.2 Chemical Shift Interaction 54</p> <p>4.3 Scalar Interaction 57</p> <p>4.4 Quadrupole Interaction 61</p> <p>4.5 Summary of Nuclear Interactions 61</p> <p><b>Part II Essential Concepts in NMR Instrumentation 65</b></p> <p><b>Chapter 5 Instrumentation 67</b></p> <p>5.1 Magnets 67</p> <p>5.2 Radio-frequency Coil, Its Resonant Circuitry, and the Probe 72</p> <p>5.3 Frequency Management 75</p> <p>5.4 Transmitter 76</p> <p>5.5 Receiver 78</p> <p>5.6 Pulse Programmer and Computer 78</p> <p>5.7 Other Components 78</p> <p><b>Chapter 6 NMR Experimental 81</b></p> <p>6.1 Shimming 81</p> <p>6.2 Preparing Samples 82</p> <p>6.3 Pulse Sequences and FID 83</p> <p>6.4 Digitization Rate and Digital Resolution 85</p> <p>6.5 Dynamic Range 87</p> <p>6.6 Phase Cycling 89</p> <p>6.7 Data Accumulation 91</p> <p>6.8 Pre-FFT Processing Techniques 92</p> <p>6.9 Fast Fourier Transform 95</p> <p>6.10 Post-FFT Processing 95</p> <p>6.11 Signal-to-Noise Ratio 97</p> <p><b>Chapter 7 Spin Manipulations by Pulse Sequences 101</b></p> <p>7.1 Single Pulse: 90<sup>˚</sup>| <sub>X</sub> , 90<sup>˚</sup>| <sub>Y</sub> , 90<sup>˚</sup>| <sub>-x</sub> , 90<sup>˚</sup>| <sub>-y</sub> 101</p> <p>7.2 Inversion Recovery Sequence, Saturation Recovery Sequence, and <i>T<sub>1</sub> Relaxation 103</i></p> <p>7.3 Spin-Echo Sequence (Hahn Echo) and T<sub>2</sub> Relaxation 106</p> <p>7.4 CPMG Echo Train 110</p> <p>7.5 Stimulated Echo Sequence 111</p> <p>7.6 Spin-locking and T <sub>1ρ </sub>Relaxation 112</p> <p>7.7 How to Select the Delays in Relaxation Measurement 113</p> <p><b>Part III Essential Concepts in NMR Spectroscopy 117</b></p> <p><b>Chapter 8 First-order 1D Spectroscopy 119</b></p> <p>8.1 Nomenclature of the Spin System 119</p> <p>8.2 Peak Shift – the Effect of Chemical Shift 120</p> <p>8.3 Peak Area – Reflecting the Number of Protons 122</p> <p>8.4 Peak Splitting – the Consequence of J Coupling 122</p> <p>8.5 Examples of 1D Spectra 128</p> <p><b>Chapter 9 Advanced Topics in Spectroscopy 137</b></p> <p>9.1 Double Resonance 137</p> <p>9.2 Dipolar Interaction in a Two-spin System 141</p> <p>9.3 Magic Angle 142</p> <p>9.4 Chemical Exchange 143</p> <p>9.5 Magnetization Transfer 144</p> <p>9.6 Selective Polarization Inversion/ Transfer 146</p> <p>9.7 Radiation Damping 147</p> <p><b>Chapter 10 2D NMR Spectroscopy 151</b></p> <p>10.1 Essence of 2D NMR Spectroscopy 151</p> <p>10.2 COSY – Correlation Spectroscopy 153</p> <p>10.3 J-resolved Spectroscopy 157</p> <p>10.4 Examples of 2D NMR Spectroscopy 162</p> <p><b>Part IV Essential Concepts in MRI 167</b></p> <p><b>Chapter 11 Effect of the Field Gradient and k-space Imaging 169</b></p> <p>11.1 Spatially Encoding Nuclear Spin Magnetization 170</p> <p>11.2 k Space in MRI 173</p> <p>11.3 Mapping of k Space 174</p> <p>11.4 Gradient Echo 174</p> <p><b>Chapter 12 Spatial Mapping in MRI 179</b></p> <p>12.1 Slice Selection in 2D MRI 180</p> <p>12.2 Reading a Graphical Imaging Sequence 186</p> <p>12.3 2D Filtered Back-Projection Reconstruction 189</p> <p>12.4 2D Fourier Imaging Reconstruction191</p> <p>12.5 Sampling Patterns Between the Cartesian and Radial Grids 194</p> <p>12.6 3D Imaging 196</p> <p>12.7 Fast Imaging in MRI 198</p> <p>12.8 Ultra-short Echo and ZTE MRI 202</p> <p>12.9 MRI in Other Dimensions (4D, 1D, and One Voxel) 203</p> <p>12.10 Resolution in MRI 206</p> <p><b>Chapter 13 Imaging Instrumentation and Experiments 209</b></p> <p>13.1 Shaped Pulses 209</p> <p>13.2 The Gradient Units 211</p> <p>13.3 Instrumentation Configurations for MRI 215</p> <p>13.4 Imaging Parameters in MRI 217</p> <p>13.5 Image Processing Software 219</p> <p>13.6 Best Test Samples for MRI 219</p> <p><b>Part V Quantitative and Creative MRI 223</b></p> <p><b>Chapter 14 Image Contrast in MRI 225</b></p> <p>14.1 Non-trivial Relationship Between Spin Density and Image Intensity 225</p> <p>14.2 Image Contrast in MRI 227</p> <p>14.3 How to Obtain Useful Information from Image Contrast? 229</p> <p>14.4 Magnetization-prepared Sequences in Quantitative MRI 231</p> <p><b>Chapter 15 Quantitative MRI 235</b></p> <p>15.1 Quantitative Imaging of Velocity V and Molecular Diffusion D 235</p> <p>15.2 Quantitative Imaging of Relaxation Times T<sub>1</sub> , T<sub>2</sub> , T<sub>1ρ</sub> 247</p> <p>15.3 Quantitative Imaging of Chemical Shift δ 254</p> <p>15.4 Secondary Image Contrasts in MRI259 15.5 Potential Issues and Practical Strategies in Quantitative MRI 264</p> <p><b>Chapter 16 Advanced Topics in Quantitative MRI 275</b></p> <p>16.1 Anisotropy and Tensor Properties in Quantitative MRI 277</p> <p>16.2 Multi-Component Nature in Quantitative MRI 285</p> <p>16.3 Quantitative Phase Information in the FID Data – SWI and QSM 288</p> <p>16.4 Functional MRI (fMRI) 290</p> <p>16.5 Optical Pumping and Hyperpolarization in MRI 290</p> <p><b>Chapter 17 Reading the Binary Data 295</b></p> <p>17.1 Formats of Data 295</p> <p>17.2 Formats of Data Storage 296</p> <p>17.3 Reading Unknown Binary Data 298</p> <p>17.4 Examples of Specific Formats 301</p> <p><b>Appendices 305</b></p> <p><b>Appendix 1 Background in Mathematics 307</b></p> <p>A1.1 Elementary Mathematics 307</p> <p>A1.2 Fourier Transform 311</p> <p><b>Appendix 2 Background in Quantum Mechanics 317</b></p> <p>A2.1 Operators 317</p> <p>A2.2 Expansion of a Wave Function 319</p> <p>A2.3 Spin Operator I 320</p> <p>A2.4 Raising and Lowering Operators I + and I - 320</p> <p>A2.5 Spin-1/2 Operator (in the Formalism of Pauli’s Spin Matrices) 321</p> <p>A2.6 Density Matrix Operator ρ 323</p> <p><b>Appendix 3 Background in Electronics 325</b></p> <p>A3.1 Ohm’s Law for DC and AC Circuits 325</p> <p>A3.2 Electronics at Radio Frequency 327</p> <p><b>Appendix 4 Sample Syllabi for a One-semester Course 329</b></p> <p><b>Appendix 5 Homework Problems 331</b></p> <p>Index 337</p>
<P><B>Yang Xia, PhD,</B> is Distinguished Professor of Physics in the Department of Physics at Oakland University, USA. Dr. Xia is a Fellow of the American Physical Society, the International Society for Magnetic Resonance in Medicine, and the American Institute for Medical and Biological Engineering.</P>
<p><b>A concise and complete introductory treatment of NMR and MRI</b><p> <p><i>Essential Concepts in MRI</i> delivers the first comprehensive look at magnetic resonance imaging with a practical focus on nuclear magnetic resonance spectroscopy applications. The book includes the essential components of MRI and NMR and is written for anyone new to the field of MRI who seeks to gain a complete understanding of all four essential components of MRI: physics theory, instrumentation, spectroscopy, and imaging. <p>Highly visual and including numerous full color figures that provide crucial graphical descriptions of key concepts discussed in the book, <i>Essential Concepts in MRI</i> includes discussions of quantitative and creative MRI, as well as spatial mapping in MRI and the effects of the field gradient and k-space imaging. The book also covers: <ul><li>A thorough introduction to essential concepts in nuclear magnetic resonance, including classical descriptions of NMR and quantum mechanical descriptions of NMR</LI> <li>Comprehensive explorations of essential concepts in NMR instrumentation, including magnets, radio-frequency coils, transmitters, and receivers</LI> <li>Practical discussions of essential concepts in NMR spectroscopy, including simple 1D spectroscopy, double resonance, and dipolar interactions in two-spin systems</li> <li>In-depth examinations of essential concepts in MRI, including the design of MRI pulse sequences and the elements of MRI instrumentation, with a special focus on quantitative MRI</li></ul> <P><I>Essential Concepts in MRI</I> is a must-read reference for upper-level undergraduate and postgraduate students in the physical and medical sciences, especially radiology, MRI, and imaging courses. It is also essential for students and researchers in the biomedical sciences and engineering.

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €