Details

Enzymatic Fuel Cells


Enzymatic Fuel Cells

From Fundamentals to Applications
1. Aufl.

von: Heather R. Luckarift, Plamen B. Atanassov, Glenn R. Johnson

113,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.04.2014
ISBN/EAN: 9781118869864
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Summarizes research encompassing all of the aspects required to understand, fabricate and integrate enzymatic fuel cells</p> <ul> <li>Contributions span the fields of bio-electrochemistry and biological fuel cell research</li> <li>Teaches the reader to optimize fuel cell performance to achieve long-term operation and realize commercial applicability</li> <li>Introduces the reader  to the scientific aspects of bioelectrochemistry including electrical wiring of enzymes and charge transfer in enzyme fuel cell electrodes</li> <li>Covers unique engineering problems of enzyme fuel cells such as design and optimization</li> </ul>
<p><i>Preface xv</i></p> <p><i>Contributors xvii</i></p> <p><b>1 Introduction 1</b><br /> <i>Heather R. Luckarift, Plamen Atanassov, and Glenn R. Johnson</i></p> <p>List of Abbreviations, 3</p> <p><b>2 Electrochemical Evaluation of Enzymatic Fuel Cells and Figures of Merit 4</b><br /> <i>Shelley D. Minteer, Heather R. Luckarift, and Plamen Atanassov</i></p> <p>2.1 Introduction, 4</p> <p>2.2 Electrochemical Characterization, 5</p> <p>2.2.1 Open-Circuit Measurements, 5</p> <p>2.2.2 Cyclic Voltammetry, 5</p> <p>2.2.3 Electron Transfer, 6</p> <p>2.2.4 Polarization Curves, 6</p> <p>2.2.5 Power Curves, 8</p> <p>2.2.6 Electrochemical Impedance Spectroscopy, 8</p> <p>2.2.7 Multienzyme Cascades, 8</p> <p>2.2.8 Rotating Disk Electrode Voltammetry, 9</p> <p>2.3 Outlook, 9</p> <p>Acknowledgment, 10</p> <p>List of Abbreviations, 10</p> <p>References, 10</p> <p><b>3 Direct Bioelectrocatalysis: Oxygen Reduction for Biological Fuel Cells 12</b><br /> <i>Dmitri M. Ivnitski, Plamen Atanassov, and Heather R. Luckarift</i></p> <p>3.1 Introduction, 12</p> <p>3.2 Mechanistic Studies of Intramolecular Electron Transfer, 13</p> <p>3.2.1 Determining the Redox Potential of MCO, 13</p> <p>3.2.2 Effect ofpHand Inhibitors on the Electrochemistry ofMCO, 17</p> <p>3.3 Achieving DET of MCO by Rational Design, 18</p> <p>3.3.1 Surface Analysis of Enzyme-Modified Electrodes, 20</p> <p>3.3.2 Design of MCO-Modified Biocathodes Based on Direct Bioelectrocatalysis, 21<br /> <br /> 3.3.3 Design of MCO-Modified “Air-Breathing” Biocathodes, 22</p> <p>3.4 Outlook, 25</p> <p>Acknowledgments, 26</p> <p>List of Abbreviations, 26</p> <p>References, 27</p> <p><b>4 Anodic Catalysts for Oxidation of Carbon-Containing Fuels 33</b><br /> <i>Rosalba A. Rincón, Carolin Lau, Plamen Atanassov, and Heather R. Luckarift</i></p> <p>4.1 Introduction, 33</p> <p>4.2 Oxidases, 34</p> <p>4.2.1 Electron Transfer Mechanisms of Glucose Oxidase, 34</p> <p>4.3 Dehydrogenases, 35</p> <p>4.3.1 The NADH Reoxidation Issue, 35</p> <p>4.3.2 Mediators for Electrochemical Oxidation of NADH, 37</p> <p>4.3.3 Electropolymerization of Azines, 38</p> <p>4.3.4 Alcohol Dehydrogenase as a Model System, 41</p> <p>4.4 PQQ-Dependent Enzymes, 42</p> <p>4.5 Outlook, 44</p> <p>Acknowledgment, 45</p> <p>List of Abbreviations, 45</p> <p>References, 45</p> <p><b>5 Anodic Bioelectrocatalysis: From Metabolic Pathways to Metabolons 53</b><br /> <i>Shuai Xu, Lindsey N. Pelster, Michelle Rasmussen, and Shelley D. Minteer</i></p> <p>5.1 Introduction, 53</p> <p>5.2 Biological Fuels, 53</p> <p>5.3 Promiscuous Enzymes Versus Multienzyme Cascades Versus Metabolons, 55</p> <p>5.3.1 Promiscuous Enzymes, 55</p> <p>5.3.2 Multienzyme Cascades, 56</p> <p>5.3.3 Metabolons, 56</p> <p>5.4 Direct and Mediated Electron Transfer, 57</p> <p>5.5 Fuels, 58</p> <p>5.5.1 Hydrogen, 58</p> <p>5.5.2 Ethanol, 58</p> <p>5.5.3 Methanol, 60</p> <p>5.5.4 Methane, 61</p> <p>5.5.5 Glucose, 61</p> <p>5.5.6 Sucrose, 65</p> <p>5.5.7 Trehalose, 65</p> <p>5.5.8 Fructose, 67</p> <p>5.5.9 Lactose, 68</p> <p>5.5.10 Lactate, 68</p> <p>5.5.11 Pyruvate, 69</p> <p>5.5.12 Glycerol, 70</p> <p>5.5.13 Fatty Acids, 70</p> <p>5.6 Outlook, 72</p> <p>Acknowledgment, 72</p> <p>List of Abbreviations, 73</p> <p>References, 73</p> <p><b>6 Bioelectrocatalysis of Hydrogen Oxidation/Reduction by Hydrogenases 80</b><br /> <i>Anne K. Jones, Arnab Dutta, Patrick Kwan, Chelsea L. McIntosh, Souvik Roy, and Sijie Yang</i></p> <p>6.1 Introduction, 80</p> <p>6.2 Hydrogenases, 81</p> <p>6.3 Biological Fuel Cells Using Hydrogenases: Electrocatalysis, 85</p> <p>6.4 Electrocatalysis by Functional Mimics of Hydrogenases, 92</p> <p>6.4.1 [FeFe]-Hydrogenase Models, 92</p> <p>6.4.2 [NiFe]-Hydrogenase Models, 95</p> <p>6.4.3 Incorporation of Outer Coordination Sphere Features, 97</p> <p>6.5 Outlook, 97</p> <p>Acknowledgments, 98</p> <p>List of Abbreviations, 98</p> <p>References, 99</p> <p><b>7 Protein Engineering for Enzymatic Fuel Cells 109</b><br /> <i>Elliot Campbell and Scott Banta</i></p> <p>7.1 Engineering Enzymes for Catalysis, 109</p> <p>7.2 Engineering Other Properties of Enzymes, 112</p> <p>7.2.1 Stability, 112</p> <p>7.2.2 Size, 113</p> <p>7.2.3 Cofactor Specificity, 113</p> <p>7.3 Enzyme Immobilization and Self-Assembly, 115</p> <p>7.3.1 Engineering for Supermolecular Assembly, 116</p> <p>7.4 Artificial Metabolons, 117</p> <p>7.4.1 DNA-Templated Metabolons, 117</p> <p>7.5 Outlook, 118</p> <p>List of Abbreviations, 118</p> <p>References, 118</p> <p><b>8 Purification and Characterization of Multicopper Oxidases for Enzyme Electrodes 123</b><br /> <i>D. Matthew Eby and Glenn R. Johnson</i></p> <p>8.1 Introduction, 123</p> <p>8.2 General Considerations for MCO Expression and Purification, 124</p> <p>8.3 MCO Production and Expression Systems, 125</p> <p>8.4 MCO Purification, 128</p> <p>8.5 Copper Stability and Specific Considerations for MCO Production, 133</p> <p>8.6 Spectroscopic Monitoring and Characterization of Copper Centers, 136</p> <p>8.7 Outlook, 139</p> <p>Acknowledgment, 140</p> <p>List of Abbreviations, 140</p> <p>References, 140</p> <p><b>9 Mediated Enzyme Electrodes 146</b><br /> <i>Joshua W. Gallaway</i></p> <p>9.1 Introduction, 146</p> <p>9.2 Fundamentals, 147</p> <p>9.2.1 Electron Transfer Overpotentials, 147</p> <p>9.2.2 Electron Transfer Rate, 151</p> <p>9.2.3 Enzyme Kinetics, 151</p> <p>9.3 Types of Mediation, 152</p> <p>9.3.1 Freely Diffusing Mediator in Solution, 152</p> <p>9.3.2 Mediation in Cross-Linked Redox Polymers, 154</p> <p>9.3.3 Further Redox Polymer Mediation, 156</p> <p>9.3.4 Mediation in Other Immobilized Layers, 160</p> <p>9.4 Aspects of Mediator Design I: Mediator Overpotentials, 162</p> <p>9.4.1 Considering Species Potentials in a Methanol–Oxygen BFC, 162</p> <p>9.4.2 The Earliest Methanol-Oxidizing BFC Anodes, 162</p> <p>9.4.3 A Four-Enzyme Methanol-Oxidizing Anode, 164</p> <p>9.5 Aspects of Mediator Design II: Saturated Mediator Kinetics, 165</p> <p>9.5.1 An Immobilized Laccase Cathode, 166</p> <p>9.5.2 Potential of the Osmium Redox Polymer, 167</p> <p>9.5.3 Concentration of Redox Sites in the Mediator Film, 170</p> <p>9.6 Outlook, 172</p> <p>List of Abbreviations, 172</p> <p>References, 172</p> <p><b>10 Hierarchical Materials Architectures for Enzymatic Fuel Cells 181</b><br /> <i>Guinevere Strack and Glenn R. Johnson</i></p> <p>10.1 Introduction, 181</p> <p>10.2 Carbon Nanomaterials and the Construction of the Bio–Nano Interface, 184</p> <p>10.2.1 Carbon Black Nanomaterials, 184</p> <p>10.2.2 Carbon Nanotubes, 185</p> <p>10.2.3 Graphene, 187</p> <p>10.2.4 CNT-Decorated Porous Carbon Architectures, 188</p> <p>10.2.5 Buckypaper, 188</p> <p>10.3 Biotemplating: The Assembly of Nanostructured Biological–Inorganic Materials, 191</p> <p>10.3.1 Protein-Mediated 3D Biotemplating, 192</p> <p>10.4 Fabrication of Hierarchically Ordered 3D Materials for Enzyme and Microbial Electrodes, 194</p> <p>10.4.1 Chitosan–CNT Conductive Porous Scaffolds, 195</p> <p>10.4.2 Polymer/Carbon Architectures Fabricated Using Solid Templates, 196</p> <p>10.5 Incorporating Conductive Polymers into Bioelectrodes for Fuel Cell Applications, 198</p> <p>10.5.1 Conductive Polymer-Facilitated DET Between Laccase and a Conductive Surface, 198</p> <p>10.5.2 Materials Design for MFC, 200</p> <p>10.6 Outlook, 201</p> <p>Acknowledgment, 201</p> <p>List of Abbreviations, 201</p> <p>References, 202</p> <p><b>11 Enzyme Immobilization for Biological Fuel Cell Applications 208</b><br /> <i>Lorena Betancor and Heather R. Luckarift</i></p> <p>11.1 Introduction, 208</p> <p>11.2 Immobilization by Physical Methods, 209</p> <p>11.2.1 Adsorption, 209</p> <p>11.3 Entrapment as a Pre- and Post-Immobilization Strategy, 211</p> <p>11.3.1 Stabilization via Encapsulation, 212</p> <p>11.3.2 Redox Hydrogels, 212</p> <p>11.4 Enzyme Immobilization via Chemical Methods, 213</p> <p>11.4.1 Covalent Immobilization, 213</p> <p>11.4.2 Molecular Tethering, 213</p> <p>11.4.3 Self-Assembly, 215</p> <p>11.5 Orientation Matters, 216</p> <p>11.6 Outlook, 218</p> <p>Acknowledgment, 219</p> <p>List of Abbreviations, 219</p> <p>References, 219</p> <p><b>12 Interrogating Immobilized Enzymes in Hierarchical Structures 225</b><br /> <i>Michael J. Cooney and Heather R. Luckarift</i></p> <p>12.1 Introduction, 225</p> <p>12.2 Estimating the Bound Active (Redox) Enzyme, 227</p> <p>12.2.1 Modeling the Performance of Immobilized Redox Enzymes in Flow-Through Mode to Estimate the Concentration of Substrate at the Enzyme Surface, 229</p> <p>12.3 Probing the Distribution of Immobilized Enzyme Within Hierarchical Structures, 232</p> <p>12.4 Probing the Immediate Chemical Microenvironments of Enzymes in Hierarchical Structures, 235</p> <p>12.5 Enzyme Aggregation in a Hierarchical Structure, 236</p> <p>12.6 Outlook, 238</p> <p>Acknowledgment, 239</p> <p>List of Abbreviations, 239</p> <p>References, 239</p> <p><b>13 Imaging and Characterization of the Bio–Nano Interface 242</b><br /> <i>Karen E. Farrington, Heather R. Luckarift, D. Matthew Eby, and Kateryna Artyushkova</i></p> <p>13.1 Introduction, 242</p> <p>13.2 Imaging the Bio–Nano Interface, 243</p> <p>13.2.1 Scanning Electron Microscopy, 243</p> <p>13.2.2 Transmission Electron Microscopy, 248</p> <p>13.3 Characterizing the Bio–Nano Interface, 248</p> <p>13.3.1 X-Ray Photoelectron Spectroscopy, 248</p> <p>13.3.2 Surface Plasmon Resonance, 256</p> <p>13.4 Interrogating the Bio–Nano Interface, 256</p> <p>13.4.1 Atomic Force Microscopy, 256</p> <p>13.5 Outlook, 267</p> <p>Acknowledgment, 267</p> <p>List of Abbreviations, 267</p> <p>References, 268</p> <p><b>14 Scanning Electrochemical Microscopy for Biological Fuel Cell Characterization 273</b><br /> <i>Ramaraja P. Ramasamy</i></p> <p>14.1 Introduction, 273</p> <p>14.2 Theory and Operation, 274</p> <p>14.3 Ultramicroelectrodes, 275</p> <p>14.3.1 Approach Curve Method of Analysis, 276</p> <p>14.4 Modes of SECM Operation, 278</p> <p>14.4.1 Negative Feedback Mode, 278</p> <p>14.4.2 Positive Feedback Mode, 279</p> <p>14.4.3 Generation–Collection Mode, 279</p> <p>14.4.4 Induced Transfer Mode, 280</p> <p>14.5 SECM for BFC Anodes, 281</p> <p>14.5.1 Enzyme-Mediated Feedback Imaging, 281</p> <p>14.5.2 Generation–Collection Mode Imaging, 284</p> <p>14.6 SECM for BFC Cathodes, 285</p> <p>14.6.1 Tip Generation–Substrate Collection Mode, 286</p> <p>14.6.2 Redox Competition Mode, 289</p> <p>14.7 Catalyst Screening Using SECM, 290</p> <p>14.8 SECM for Membranes, 291</p> <p>14.9 Probing Single Enzyme Molecules Using SECM, 293</p> <p>14.10 Combining SECM with Other Techniques, 293</p> <p>14.10.1 Atomic Force Microscopy, 294</p> <p>14.10.2 Confocal Laser Scanning Microscopy, 295</p> <p>14.11 Outlook, 297</p> <p>List of Abbreviations, 297</p> <p>References, 298</p> <p><b>15 In Situ X-Ray Spectroscopy of Enzymatic Catalysis: Laccase-Catalyzed Oxygen Reduction 304</b><br /> <i>Sanjeev Mukerjee, Joseph Ziegelbauer, Thomas M. Arruda, Kateryna Artyushkova, and Plamen Atanassov</i></p> <p>15.1 Introduction, 304</p> <p>15.2 Defining the Enzyme/Electrode Interface, 305</p> <p>15.3 Direct Electron Transfer Versus Mediated Electron Transfer, 306</p> <p>15.3.1 Mediated Electron Transfer, 307</p> <p>15.4 The Blue Copper Oxidases, 308</p> <p>15.4.1 Laccase, 309</p> <p>15.5 In Situ XAS, 310</p> <p>15.5.1 Os L3-Edge, 314</p> <p>15.5.2 uMET, 317</p> <p>15.5.3 Mediated Electron Transfer, 319</p> <p>15.5.4 FEFF8.0 Analysis, 323</p> <p>15.6 Proposed ORR Mechanism, 327</p> <p>15.7 Outlook, 331</p> <p>Acknowledgments, 331</p> <p>List of Abbreviations, 331</p> <p>References, 332</p> <p><b>16 Enzymatic Fuel Cell Design, Operation, and Application 337</b><br /> <i>Vojtech Svoboda and Plamen Atanassov</i></p> <p>16.1 Introduction, 337</p> <p>16.2 Biobatteries and EFCs, 338</p> <p>16.3 Components, 339</p> <p>16.3.1 Anodes, 339</p> <p>16.3.2 Cathodes, 340</p> <p>16.3.3 Separator and Membrane, 341</p> <p>16.3.4 Reference Electrode, 342</p> <p>16.3.5 Fuel and Electrolyte, 342</p> <p>16.4 Single-Cell Design, 345</p> <p>16.4.1 Design of Single-Cell EFC Compartment, 345</p> <p>16.5 Microfluidic EFC Design, 348</p> <p>16.6 Stacked Cell Design, 348</p> <p>16.6.1 Series-Connected EFC Stack, 348</p> <p>16.6.2 Parallel-Connected EFC Stack, 349</p> <p>16.7 Bipolar Electrodes, 350</p> <p>16.8 Air/Oxygen Supply, 351</p> <p>16.9 Fuel Supply, 351</p> <p>16.9.1 Fuel Flow-Through, 352</p> <p>16.9.2 Fuel Flow-Through System, 354</p> <p>16.9.3 Fuel Flow-Through Operation and Fuel Waste Management, 355</p> <p>16.10 Storage and Shelf Life, 356</p> <p>16.11 EFC Operation, Control, and Integration with Other Power Sources, 356</p> <p>16.11.1 Activation, 356</p> <p>16.12 EFC Control, 357</p> <p>16.13 Power Conditioning, 357</p> <p>16.14 Outlook, 358</p> <p>List of Abbreviations, 359</p> <p>References, 359</p> <p><b>17 Miniature Enzymatic Fuel Cells 361</b><br /> <i>Takeo Miyake and Matsuhiko Nishizawa</i></p> <p>17.1 Introduction, 361</p> <p>17.2 Insertion MEFC, 362</p> <p>17.2.1 Insertion MEFC with Needle Anode and Gas Diffusion Cathode, 363</p> <p>17.2.2 Windable, Replaceable Enzyme Electrode Films, 364</p> <p>17.3 Microfluidic MEFC, 366</p> <p>17.3.1 Effects of Structural Design on Cell Performances, 366</p> <p>17.3.2 Automatic Air Valve System, 367</p> <p>17.3.3 SPG System, 369</p> <p>17.4 Flexible Sheet MEFC, 370</p> <p>17.5 Outlook, 371</p> <p>List of Abbreviations, 372</p> <p>References, 372</p> <p><b>18 Switchable Electrodes and Biological Fuel Cells 374</b><br /> <i>Evgeny Katz, Vera Bocharova, and Jan Halámek</i></p> <p>18.1 Introduction, 374</p> <p>18.2 Switchable Electrodes for Bioelectronic Applications, 375</p> <p>18.3 Light-Switchable Modified Electrodes Based on Photoisomerizable Materials, 376</p> <p>18.4 Magnetoswitchable Electrochemical Reactions Controlled by Magnetic Species Associated with Electrode Interfaces, 378</p> <p>18.5 Modified Electrodes Switchable by Applied Potentials Resulting in Electrochemical Transformations at Functional Interfaces, 381</p> <p>18.6 Chemically/Biochemically Switchable Electrodes, 383</p> <p>18.7 Coupling of Switchable Electrodes with Biomolecular Computing Systems, 389</p> <p>18.8 BFCs with Switchable/Tunable Power Output, 396</p> <p>18.8.1 Switchable/Tunable BFCs Controlled by Electrical Signals, 397</p> <p>18.8.2 Switchable/Tunable BFCs Controlled by Magnetic Signals, 399</p> <p>18.8.3 BFCs Controlled by Logically Processed Biochemical Signals, 402</p> <p>18.9 Outlook, 412</p> <p>Acknowledgments, 413</p> <p>List of Abbreviations, 413</p> <p>References, 414</p> <p><b>19 Biological Fuel Cells for Biomedical Applications 422</b><br /> <i>Magnus Falk, Sergey Shleev, Claudia W. Narváez Villarrubia, Sofia Babanova, and Plamen Atanassov</i></p> <p>19.1 Introduction, 422</p> <p>19.2 Definition and Classification of BFCs, 424</p> <p>19.2.1 Cell- and Organelle-Based Fuel Cells, 425</p> <p>19.2.2 Enzymatic Fuel Cells, 426</p> <p>19.3 Design Aspects of EFCs, 427</p> <p>19.3.1 Electron Transfer, 427</p> <p>19.3.2 Enzymes, 428</p> <p>19.3.3 Electrodes and Electrode Materials, 430</p> <p>19.3.4 Biodevice Design, 431</p> <p>19.4 In Vitro and In Vivo BFC Studies, 433</p> <p>19.4.1 In Vitro BFCs, 433</p> <p>19.4.2 In Vivo Operating BFCs, 435</p> <p>19.5 Outlook, 440</p> <p>List of Abbreviations, 442</p> <p>References, 443</p> <p><b>20 Concluding Remarks and Outlook 451</b><br /> <i>Glenn R. Johnson, Heather R. Luckarift, and Plamen Atanassov</i></p> <p>20.1 Introduction, 451</p> <p>20.2 Primary System Engineering: Design Determinants, 453</p> <p>20.3 Fundamental Advances in Bioelectrocatalysis, 454</p> <p>20.4 Design Opportunities from EFC Operation, 454</p> <p>20.5 Fundamental Drivers for EFC Miniaturization, 455</p> <p>20.6 Commercialization of EFCs: Strategies and Opportunities, 455</p> <p><i>Acknowledgment, 457</i></p> <p><i>List of Abbreviations, 457</i></p> <p><i>References, 457</i></p> <p><i>Index 459</i></p>
<p><b>HEATHER R. LUCKARIFT</b> is the Senior Research Scientist for Universal Technology Corporation at the Air Force Civil Engineer Center (formerly the Microbiology & Applied Biochemistry team at the Air Force Research Laboratory). She is the author of over fifty peer-reviewed publications and invited reviews.</p> <p><b>PLAMEN ATANASSOV</b> is a Professor of Chemical & Nuclear Engineering and the founding director of The University of New Mexico Center for Emerging Energy Technologies. He was the principal investigator on an Air Force Office of Scientific Research Multi-University Research Initiative program: “Fundamentals and Bioengineering of Enzymatic Fuel Cells.” He is the author of more than 220 publications, including twelve reviews.</p> <p><b>GLENN R. JOHNSON</b> is the Chief Scientist and founder of Hexpoint Technologies and the former principal investigator of the Microbiology & Applied Biochemistry team within the Air Force Research Laboratory. He is the author of over fifty peer-reviewed publications and invited reviews.</p>
<p><b>A thorough and illuminating look at enzymatic fuel cells and their place in our current and future world</b></p> <p>With their use in biomedical applications and for portable electronics, enzymatic fuel cells offer an alternative power source to meet our world’s increasing energy demands.</p> <p>Outlining the fundamentals, design, optimization, integration, and future trends of enzymatic fuel cells, <i>Enzymatic Fuel Cells: From Fundamentals to Applications</i> presents a comprehensive overview of enzymatic fuel cell research—with a special emphasis on methodology, fabrication, integration, and testing of enzymatic fuel cells.</p> <p>The book provides introductory reading with a concise scheme of illustrations and:</p> <ul> <li>Covers fundamentals of enzymatic fuel cells as well as their design, optimization, and integration</li> <li>Introduces the reader to the scientific aspects of bioelectrochemistry and the unique engineering problems of enzymatic fuel cells</li> <li>Offers an outlook on the practical applications of enzymatic fuel cells such as powering of microdevices, biomedical applications, and in autonomous systems</li> <li>Details future developments and emerging applications of enzymatic fuel cells</li> </ul> <p><i>Enzymatic Fuel Cells</i> is an ideal book for readers in the areas of electrochemistry, biochemistry, materials science, biosensors, biotechnology, environmental and chemical engineering, wastewater, and biology.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €