Details

Engineering Solutions for CO2 Conversion


Engineering Solutions for CO2 Conversion


1. Aufl.

von: Tomas Ramirez Reina, Jose A. Odriozola, Harvey Arellano-Garcia

151,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 25.02.2021
ISBN/EAN: 9783527346509
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions</b></p> <p>The race to reduce CO2 emissions continues to be an urgent global challenge. <i>Engineering Solutions for CO2 Conversion</i> offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion.</p> <p><i>Engineering Solutions for CO2 Conversion</i> explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more.</p> <p>This important resource:</p> <ul> <li>Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels</li> Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies <li>Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization</li> <li>Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion</li> </ul> <p>Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, <i>Engineering Solutions for CO2 Conversion</i> provides the most current and expert information on the many aspects and challenges of CO2 conversion.</p>
<p><b>1 CO2 Capture – A Brief Review of Technologies and Its Integration 1</b><br /><i>Mónica García, Theo Chronopoulos, and Rubén M. Montañés</i></p> <p>1.1 Introduction: The Role of Carbon Capture 1</p> <p>1.2 CO2 Capture Technologies 2</p> <p>1.3 Integration of Post-combustion CO2 Capture in the Power Plant and Electricity Grid 17</p> <p>1.4 CO2 Capture in the Industrial Sector 21</p> <p>1.5 Conclusions 22</p> <p><b>2 Advancing CCSU Technologies with Computational Fluid Dynamics (CFD): A Look at the Future by Linking CFD and Process Simulations 29</b><br /><i>Daniel Sebastia-Saez, Evgenia Mechleri, and Harvey Arellano-García</i></p> <p>2.1 Sweep Across the General Simulation Techniques Available 29</p> <p>2.2 Multi-scale Approach for CFD Simulation of Amine Scrubbers 32</p> <p>2.3 Eulerian, Eulerian–Lagrangian, and Discrete Element Methods for the Simulation of Calcium Looping, Mineral Carbonation, and Adsorption in Other Solid Particulate Materials 38</p> <p>2.4 CFD for Oxy-fuel Combustion Technologies: The Application of Single-Phase Reactive Flows and Particle Tracking Algorithms 41</p> <p>2.5 CFD for Carbon Storage and Enhanced Oil Recovery (EOR): The Link Between Advanced Imaging Techniques and CFD 41</p> <p>2.6 CFD for Carbon Utilization with Chemical Conversion: The Importance of Numerical Techniques on the Study of New Catalysts 44</p> <p>2.7 CFD for Biological Utilization: Microalgae Cultivation 46</p> <p>2.8 What Does the Future Hold? 47</p> <p><b>3 Membranes Technologies for Efficient CO2 Capture–Conversion 55</b><br /><i>Sonia Remiro-Buenamañana, Laura Navarrete, Julio Garcia-Fayos, Sara Escorihuela, Sonia Escolastico, and José M. Serra</i></p> <p>3.1 Introduction 55</p> <p>3.2 Polymer Membranes 56</p> <p>3.3 Oxygen Transport Membranes for CO2 Valorization 60</p> <p>3.4 Protonic Membranes 65</p> <p>3.5 Membranes for Electrochemical Applications 69</p> <p>3.6 Conclusions and Final Remarks 78</p> <p><b>4 Computational Modeling of Carbon Dioxide Catalytic Conversion 85</b><br /><i>Javier Amaya Suárez, Elena R. Remesal, Jose J. Plata, Antonio M. Márquez, and Javier Fernández Sanz</i></p> <p>4.1 Introduction 85</p> <p>4.2 General Methods for Theoretical Catalysis Research 85</p> <p>4.3 Characterizing the Catalyst and Its Interaction with CO2 Using DFT Calculations 87</p> <p>4.4 Microkinetic Modeling in Heterogeneous Catalysis 89</p> <p>4.5 New Trends: High-Throughput Screening, Volcano Plots, and Machine Learning 92</p> <p><b>5 An Overview of the Transition to a Carbon-Neutral Steel Industry 105</b><br /><i>Juan C. Navarro, Pablo Navarro, Oscar H. Laguna, Miguel A. Centeno, and José A. Odriozola</i></p> <p>5.1 Introduction 105</p> <p>5.2 Global Relevance of the Steel Industry 106</p> <p>5.3 Current Trends in Emission Policies in the World's Leading Countries in Steel Industry 109</p> <p>5.4 Transition to a Carbon-Neutral Production. A Big Challenge for the Steel Industry 110</p> <p>5.5 CO2 Methanation: An Interesting Opportunity for the Valorization of the Steel Industry Emissions 114</p> <p>5.6 Relevant Projects Already Launched for the Valorization of the CO2 Emitted by the Steel Industry 116</p> <p>5.7 Concluding Remarks 119</p> <p><b>6 Potential Processes for Simultaneous Biogas Upgrading and Carbon Dioxide Utilization 125</b><br /><i>Francisco M. Baena-Moreno, Mónica Rodríguez-Galán, Fernando Vega, Isabel Malico, and Benito Navarrete</i></p> <p>6.1 Introduction 125</p> <p>6.2 Overview of Biogas General Characteristics and Upgrading Technologies to Bio-methane Production 127</p> <p>6.3 CCU Main Technologies 131</p> <p>6.4 Potential Processes for Biogas Upgrading and Carbon Utilization 133</p> <p>6.5 Conclusions 138</p> <p><b>7 Biogas Sweetening Technologies 145</b><br /><i>Nikolaos D. Charisiou, Savvas L. Douvartzides, and Maria A. Goula</i></p> <p>7.1 Introduction 145</p> <p>7.2 Biogas Purification Technologies 146</p> <p>7.3 Biogas Upgrading Technologies 157</p> <p>7.4 Conclusions 166</p> <p><b>8 CO2 Conversion to Value-Added Gas-Phase Products: Technology Overview and Catalysts Selection 175</b><br /><i>Qi Zhang, Laura Pastor-Pérez, Xiangping Zhang, Sai Gu, and Tomas R Reina</i></p> <p>8.1 Chapter Overview 175</p> <p>8.2 CO2 Methanation 176</p> <p>8.3 RWGS Reaction 183</p> <p>8.4 CO2 Reforming Reactions 188</p> <p>8.5 Conclusions and Final Remarks 195</p> <p><b>9 CO2 Utilization Enabled by Microchannel Reactors 205</b><br /><i>Luis F. Bobadilla, Lola Azancot, and José A. Odriozola</i></p> <p>9.1 Introduction 205</p> <p>9.2 Transport Phenomena and Heat Exchange in Microchannel Reactors 207</p> <p>9.3 Application of Microreactors in CO2 Capture, Storage, and Utilization Processes 212</p> <p>9.4 Concluding Remarks and Future Perspectives 221</p> <p><b>10 Analysis of High-Pressure Conditions in CO2 Hydrogenation Processes</b> 227<br /><i>Andrea Álvarez Moreno, Esmeralda Portillo, and Oscar Hernando Laguna</i></p> <p>10.1 Introduction 227</p> <p>10.2 Thermodynamic Aspects 229</p> <p>10.3 Overview of Some Industrial Approaches Focused on the Production of Valuable Compounds form CO2 Using a Carbon Capture and Utilization (CCU) Approach 234</p> <p>10.4 Techno-Economic Considerations for the Methanol Production from a CCU Approach with the Use of High Pressure 238</p> <p>10.5 Concluding Remarks 248</p> <p><b>11 Sabatier-Based Direct Synthesis of Methane and Methanol Using CO2 from Industrial Gas Mixtures </b>253<br /><i>K. Müller, J. Israel, F. Rachow, and D. Schmeißer</i></p> <p>11.1 Overview 253</p> <p>11.2 Methane Synthesis of Gas Mixtures 255</p> <p>11.3 Applications 260</p> <p>11.4 Methanol Synthesis 274</p> <p><b>12 Survey of Heterogeneous Catalysts for the CO2 Reduction to CO via Reverse Water Gas Shift </b>281<br /><i>Thomas Mathew, Simi Saju, and Shiju N. Raveendran</i></p> <p>12.1 Introduction 281</p> <p>12.2 RWGS Catalysts 281</p> <p>12.3 Mechanism of RWGS Reaction 306</p> <p><b>13 Electrocatalytic Conversion of CO2 to Syngas</b> 317<br /><i>Manuel Antonio Díaz-Pérez, A. de Lucas Consuegra, and Juan Carlos Serrano-Ruiz</i></p> <p>13.1 Introduction 317</p> <p>13.2 Production of Syngas 319</p> <p>13.3 Electroreduction of CO2/Water Mixtures to Syngas 320</p> <p>13.4 Conclusions 329</p> <p><b>14 Recent Progress on Catalyst Development for CO2 Conversion into Value-Added Chemicals by Photo- and Electroreduction</b> 335<br /><i>Luqman Atanda, Mohammad A. Wahab, and Jorge Beltramini</i></p> <p>14.1 Introduction 335</p> <p>14.2 CO2 Catalytic Conversion by Photoreduction 336</p> <p>14.3 CO2 Catalytic Conversion by Electroreduction 346</p> <p><b>15 Yolk@Shell Materials for CO2 Conversion: Chemical and Photochemical Applications</b> 361<br /><i>Cameron Alexander Hurd Price, Laura Pastor-Pérez, Tomas Ramirez-Reina, and Jian Liu</i></p> <p>15.1 Overview 361</p> <p>15.2 Key Benefits of Hierarchical Morphology 363</p> <p>15.3 Materials for Chemical CO2 Recycling Reactions 366</p> <p>15.4 Synthesis Techniques for CS/YS: A Brief Overview 372</p> <p>15.5 Future Advancement 375</p> <p><b>16 Aliphatic Polycarbonates Derived from Epoxides and CO2</b> 385<br /><i>Sebastian Kernbichl and Bernhard Rieger</i></p> <p>16.1 Introduction 385</p> <p>16.2 Aliphatic Polycarbonates 386</p> <p>16.3 Catalyst Systems for the CO2/Epoxide Copolymerization 392</p> <p>16.4 Conclusion 402</p> <p><b>17 Metal–Organic Frameworks (MOFs) for CO2 Cycloaddition Reactions</b> 407<br /><i>Ignacio Campello, Antonio Sepúlveda-Escribano, and Enrique V. Ramos-Fernández</i></p> <p>17.1 Introduction to MOF 407</p> <p>17.2 MOFs as Catalysts 407</p> <p>17.3 CO2 Cycloadditions 414</p> <p>17.4 Oxidative Carboxylation 420</p> <p><b>18 Plasma-Assisted Conversion of CO2</b> 429<br /><i>Kevin H. R. Rouwenhorst, Gerard J. van Rooij, and Leon Lefferts</i></p> <p>18.1 Introduction 429</p> <p>18.2 Plasma-catalytic CO2 Conversion 437</p> <p>18.3 Perspective 448</p> <p>18.4 Conclusion 450</p> <p>References 451</p> <p>Index 463</p>
<p><b>Tomas R. Reina, PhD,</b> is a Senior Lecturer in Chemical Engineering and Head of the Catalysis Unit at the University of Surrey, UK.</p> <p><b>José A. Odriozola, PhD,</b> is Chair of Inorganic Chemistry of the University of Sevilla, Spain.</p> <p><b>Harvey Arellano-Garcia, PhD,</b> is Director of Research and Professor of Energy and Chemical Engineering at the Department of Process and Plant Technology at BTU-Cottbus, Germany and Chair of Process and Systems Engineering at the Brandenburg University of Technology in Germany.</p>
<p><b>A comprehensive guide that offers a review of the current technologies that tackle CO<sub>2</sub> emissions</b> <p>The race to reduce CO<sub>2</sub> emissions continues to be an urgent global challenge. <i>Engineering Solutions for CO<sub>2</sub> Conversion</i> offers a thorough guide to the most current technologies designed to mitigate CO<sub>2</sub> emissions ranging from CO<sub>2</sub> capture to CO<sub>2</sub> utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO<sub>2</sub> conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO<sub>2</sub> conversion. <p><i>Engineering Solutions for CO<sub>2</sub> Conversion</i> explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO<sub>2</sub> capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO<sub>2</sub>, and much more. This important resource:<BR> <ul> <li>Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels</li> <li>Contains a review of the most current developments on the various aspects of CO<sub>2</sub> capture and utilization strategies</li> <li>Includes information on chemical, physical, engineering and economical facets of CO<sub>2</sub> capture and utilization</li> <li>Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO<sub>2</sub> capture and conversion</li> </ul> <p>Written for catalytic chemists, electrochemists, process engineers, chemical engineers, industrialists, photochemists, environmental engineers, theoretical chemists, environmental officers, <i>Engineering Solutions for CO<sub>2</sub> Conversion</i> provides the most current and expert information on the many aspects and challenges of CO<sub>2</sub> conversion.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €