Details

Energy Efficient Buildings


Energy Efficient Buildings

Fundamentals of Building Science and Thermal Systems
1. Aufl.

von: Zhiqiang John Zhai

80,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.08.2022
ISBN/EAN: 9781119881957
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Energy Efficient Buildings</b> <p><b>A complete and authoritative discussion of the fundamentals of designing and engineering energy efficient buildings </b> <p>In <i>Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems</i>, distinguished engineer and architect Dr. John Zhai delivers a comprehensive exploration of the design and engineering fundamentals of energy efficient buildings. The book introduces the fundamental knowledge, calculations, analyses, and principles used by designers of energy efficient buildings and addresses all essential elements of the discipline. <p>An essential guide for students studying civil, architectural, mechanical, and electrical engineering with a focus on energy, building systems, and building science, the book provides practical in-class materials, examples, and actual design practices, as well as end-of-chapter questions (with solutions) and sample group projects. <p>Readers will find: <ul><li>A thorough introduction to the cross-disciplinary approach to the design of energy efficient buildings</li> <li>Comprehensive explorations of all critical elements of energy efficient building design, including standards and codes, psychometrics, microclimate, thermal comfort, indoor air quality, HVAC systems, and more</li> <li>In-depth discussions of the foundational knowledge, calculations, analysis, and principles needed to design energy efficient buildings</li> <li>Practical in-class examples and end-of-chapter questions with solutions for students, and design guidance and sample group projects for use in course lectures and actual design practices.</li></ul> <p> Perfect for graduate and advanced undergraduate students studying building environmental systems, building systems in construction, and mechanical and electrical systems in construction, <i>Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems</i> will also earn a place in the libraries of practicing civil, architectural, and mechanical engineers.
<p><b>1 Sustainable Building 1</b></p> <p>1.1 Building Functions 1</p> <p>1.2 Building Elements 2</p> <p>1.2.1 Input: Energy 2</p> <p>1.2.2 Input: Water 3</p> <p>1.2.3 Input: Materials 5</p> <p>1.2.4 Output: Waste 6</p> <p>1.2.5 Output: Pollution 7</p> <p>1.2.6 Output: Poor Health 7</p> <p>1.3 Definition of Sustainable Building 7</p> <p>1.4 Origin and Significance of Sustainable Building 8</p> <p>1.5 Sustainable Principles 11</p> <p>1.5.1 Reduce 12</p> <p>1.5.2 Reuse 13</p> <p>1.5.3 Recycle 13</p> <p>1.5.4 Regenerate 13</p> <p>1.6 Three-Layer Design Approach 14</p> <p>1.7 Three-Tier Design Approach 16</p> <p>1.8 Two Case Studies 18</p> <p>Homework Problems 20</p> <p>References 21</p> <p><b>2 Life Cycle Cost Analysis 23</b></p> <p>2.1 Life Phases of a Building 23</p> <p>2.2 Design Process of a Building 24</p> <p>2.3 Integrated Design Process of a Sustainable Building 27</p> <p>2.4 Basics of Cost and Economic Analysis 30</p> <p>2.5 Life Cycle Cost Analysis 35</p> <p>2.5.1 Terminologies 35</p> <p>2.5.2 Life Cycle Cost 36</p> <p>2.5.3 Life Cycle Savings 37</p> <p>2.6 Life Cycle Cost Analysis Based Optimization 40</p> <p>Homework Problems 43</p> <p><b>3 Building Standards and Codes 45</b></p> <p>3.1 Impacts of Building Codes 45</p> <p>3.2 Types of Design Regulations 45</p> <p>3.2.1 Federal Regulations 45</p> <p>3.2.2 Building Codes 48</p> <p>3.2.3 Building Standards 49</p> <p>3.2.4 Building Guidelines 50</p> <p>3.2.5 Building Assessment and Rating Systems 51</p> <p>3.3 Integrative Use of All 56</p> <p>3.3.1 Integrated Design 56</p> <p>3.3.2 Life Cycle Cost Analysis Based Design 57</p> <p>3.3.3 Building Information Modeling 58</p> <p>Homework Problems 59</p> <p>References 59</p> <p><b>4 Air Properties and Psychrometric Chart 61</b></p> <p>4.1 Air Composition 61</p> <p>4.2 Moist Air and Its Properties 62</p> <p>4.2.1 Ideal Gas Law 62</p> <p>4.2.2 Properties 62</p> <p>4.2.2.1 Pressure: P (Unit: Pa) 62</p> <p>4.2.2.2 Temperature: T (Unit: K, C, F, R) 64</p> <p>4.2.2.3 Humidity Ratio: W (Unit: Kg/Kg<sub>dry-air</sub>) 64</p> <p>4.2.2.4 Relative Humidity: ϕ (Unit: %) 65</p> <p>4.2.2.5 Dewpoint Temperature: T<sub>dew</sub> (Unit: K, C, F, R) 66</p> <p>4.2.2.6 Wet-Bulb Temperature: T<sub>wet</sub> (Unit: K, C, F, R) 66</p> <p>4.2.2.7 Enthalpy: h (Unit: kJ/kg<sub>dry-air</sub>, Btu/lb<sub>dry-air</sub>) 67</p> <p>4.3 Construction of a Psychrometric Chart 70</p> <p>4.3.1 Construction of Air Saturation Line as a Function of Temperature 70</p> <p>4.3.2 Construction of Relative Humidity Lines 71</p> <p>4.3.3 Construction of Enthalpy Lines 71</p> <p>4.3.4 Construction of Wet-Bulb Temperature Lines 72</p> <p>4.3.5 The Final Format of a Psychrometric Chart 74</p> <p>Homework Problems 77</p> <p><b>5 Climate and Site Analysis 79</b></p> <p>5.1 Climate Analysis 79</p> <p>5.1.1 Meteorological Year Data 79</p> <p>5.1.2 Typical Meteorological Year (TMY) Data on Psychrometric Chart 80</p> <p>5.2 Heating and Cooling Design Climatic Data 99</p> <p>5.3 Site Analysis 104</p> <p>Homework Problems 108</p> <p><b>6 Indoor Thermal Comfort 109</b></p> <p>6.1 Indoor Environment Quality 109</p> <p>6.2 Indoor Thermal Comfort 109</p> <p>6.2.1 Heat and Mass Transfer Mechanisms 109</p> <p>6.2.2 Energy Conservation Equation 111</p> <p>6.2.3 Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD) due to Thermal Comfort 114</p> <p>6.3 Comfort Zone 118</p> <p>6.4 Approaches to Improving Indoor Thermal Comfort 125</p> <p>6.5 Other Thermal Comfort Factors 127</p> <p>6.5.1 Draft 127</p> <p>6.5.2 Asymmetry of Radiation 127</p> <p>6.5.3 Thermal Stratification 128</p> <p>6.5.4 Thermal Variations with Time 129</p> <p>6.5.5 Floor Surface Temperature 129</p> <p>Homework Problems 130</p> <p>References 131</p> <p><b>7 Indoor Air Quality, Ventilation, and Infiltration 133</b></p> <p>7.1 Indoor Air Quality 133</p> <p>7.1.1 Causes of Sickness 133</p> <p>7.1.2 Control of Indoor Contaminants 136</p> <p>7.2 Ventilation 137</p> <p>7.2.1 Ventilation Rate Procedure (VRP) 137</p> <p>7.2.2 Indoor Air Quality Procedure (IAQP) 141</p> <p>7.3 Air Purification 143</p> <p>7.4 Infiltration 149</p> <p>7.5 Blower Door Test 153</p> <p>Homework Problems 157</p> <p>References 158</p> <p><b>8 Heat Transfer through Building Envelope 159</b></p> <p>8.1 Latent Heat Transfer 159</p> <p>8.2 Sensible Heat Transfer 160</p> <p>8.2.1 Heat/Thermal Storage 160</p> <p>8.2.2 Conduction: Conductive Heat Transfer 163</p> <p>8.2.3 Convection: Convective Heat Transfer 173</p> <p>8.2.4 Radiation: Radiative Heat Transfer 181</p> <p>8.3 Practical Heat Transfer through Building Envelope 189</p> <p>8.4 Ground Heat Transfer 196</p> <p>8.4.1 Slab-on-Grade 196</p> <p>8.4.2 Below-Grade Heat Transfer: Basement Wall and Floor 198</p> <p>Homework Problems 203</p> <p><b>9 Sun and Solar Radiation 207</b></p> <p>9.1 Sun and Solar 207</p> <p>9.2 Solar Angles 209</p> <p>9.3 Sky Dome and Sun-Path Diagrams 212</p> <p>9.4 Solar Shading 215</p> <p>9.5 Solar Radiation on External Walls 218</p> <p>9.6 Solar Radiation on Windows 221</p> <p>Homework Problems 229</p> <p><b>10 Passive Building Systems 233</b></p> <p>10.1 Introduction 233</p> <p>10.2 Overview of Passive Cooling 234</p> <p>10.3 Overview of Passive Heating 235</p> <p>10.4 Prescreening Feasibility of Passive Cooling and Heating Techniques 236</p> <p>10.5 Natural Ventilation 239</p> <p>10.5.1 Principle 239</p> <p>10.5.2 Performance 239</p> <p>10.5.3 Design Considerations 240</p> <p>10.6 Night Cooling with Thermal Mass 243</p> <p>10.6.1 Principle 243</p> <p>10.6.2 Performance 244</p> <p>10.6.3 Design Considerations 244</p> <p>10.7 Direct/Indirect Evaporative Cooling 246</p> <p>10.7.1 Principle 246</p> <p>10.7.2 Performance 247</p> <p>10.7.3 Design Considerations 249</p> <p>10.8 Trombe Wall 250</p> <p>10.8.1 Principle 250</p> <p>10.8.2 Performance 251</p> <p>10.8.3 Design Considerations 251</p> <p>10.9 Sunspace 252</p> <p>10.9.1 Principle 252</p> <p>10.9.2 Performance 252</p> <p>10.9.3 Design Considerations 253</p> <p>10.10 Double Skin Façade 254</p> <p>10.10.1 Principle 254</p> <p>10.10.2 Performance 254</p> <p>10.10.3 Design Considerations 255</p> <p>10.11 Phase Change Material 258</p> <p>10.11.1 Principle 258</p> <p>10.11.2 Performance 258</p> <p>10.11.3 Design Considerations 260</p> <p>Homework Problems 262</p> <p>References 263</p> <p><b>11 Building Load Calculation 265</b></p> <p>11.1 Residential and Light Commercial Buildings 265</p> <p>11.1.1 Heating Load Calculation 266</p> <p>11.1.1.1 Through Envelope Structures and Windows 267</p> <p>11.1.1.2 Through Infiltration 267</p> <p>11.1.2 Cooling Load Calculation 267</p> <p>11.1.2.1 Through Envelope Structures 267</p> <p>11.1.2.2 Through Envelope Glasses 268</p> <p>11.1.2.3 Through Infiltration 270</p> <p>11.1.2.4 Due to Occupants and Appliances 270</p> <p>11.2 Commercial Buildings 271</p> <p>Homework Problems 276</p> <p><b>12 Heating, Cooling, and Ventilation Systems 279</b></p> <p>12.1 Basics of Heating and Cooling Systems 279</p> <p>12.1.1 Heating Systems 279</p> <p>12.1.1.1 Fire Pit and Fireplace 279</p> <p>12.1.1.2 Hot Water Heating Systems 279</p> <p>12.1.1.3 Hot Air Heating Systems 281</p> <p>12.1.1.4 Electrical Heating Systems 286</p> <p>12.1.2 Cooling Systems 286</p> <p>12.1.2.1 Principles of Compressive Refrigeration 286</p> <p>12.1.2.2 Various Air-Conditioning Systems 289</p> <p>12.2 Basics of Heating and Cooling Distribution Systems 289</p> <p>12.2.1 All Air System 290</p> <p>12.2.2 All Water System 292</p> <p>12.2.3 Air Water System 292</p> <p>12.3 Heating and Cooling on Psychrometric Chart 293</p> <p>12.3.1 Change of Sensible Heat 293</p> <p>12.3.2 Humidification and Dehumidification 297</p> <p>12.3.3 Cooling and Dehumidification 298</p> <p>12.3.4 Heating and Humidification 299</p> <p>12.3.5 Adiabatic Mixing of Air 301</p> <p>12.4 Central HVAC Systems on Psychrometric Chart 302</p> <p>12.5 Coil Sizing and Selection 305</p> <p>Homework Problems 311</p> <p>Reference 314</p> <p><b>13 Building Energy Consumption 315</b></p> <p>13.1 Manual Calculation 315</p> <p>13.1.1 The Degree-Day Method 315</p> <p>13.1.2 The Bin Method 318</p> <p>13.2 Computer Simulation 318</p> <p>13.2.1 Introduction 318</p> <p>13.2.2 Fundamentals of EnergyPlus (E+) 321</p> <p>13.2.2.1 General Descriptions of EnergyPlus 321</p> <p>13.2.2.2 Heat Balance Method of EnergyPlus 322</p> <p>13.2.3 A Case Study of EnergyPlus (E+) 326</p> <p>13.2.3.1 EnergyPlus Model Input Uncertainty 329</p> <p>13.2.3.2 EnergyPlus Model Calibration 329</p> <p>13.2.3.3 EnergyPlus Model Results 330</p> <p>13.2.3.4 Summary 335</p> <p>Homework Problems 336</p> <p>References 337</p> <p><b>14 Building Energy Analysis and Optimization 339</b></p> <p>14.1 Overview 339</p> <p>14.2 Simulation Tools 341</p> <p>14.3 Benchmark Model Development 341</p> <p>14.3.1 Developing the Benchmark Model 341</p> <p>14.3.2 Chinese Office Benchmark Description for the Cold Climate Region 341</p> <p>14.3.3 Chinese Office Benchmark Performance 343</p> <p>14.4 Parametric Analysis 344</p> <p>14.5 Energy Efficiency Measures 344</p> <p>14.5.1 Selecting Energy Efficiency Measures for the Initial Optimization 344</p> <p>14.5.2 Energy Efficiency Measures for the Initial Optimization 345</p> <p>14.6 Initial Optimization 345</p> <p>14.6.1 Optimization Fundamentals 345</p> <p>14.6.2 Chinese Office Benchmark Initial Optimization 346</p> <p>14.7 Sensitivity Analysis 347</p> <p>14.8 Second Optimization and Recommendations 348</p> <p>14.9 Conclusions 349</p> <p>Homework Problems 350</p> <p>References 352</p> <p>Index 353</p>
<p><b>Zhiqiang (John) Zhai, PhD, </b> is Professor for Building Systems Engineering in the Department of Civil, Environmental and Architectural Engineering at the University of Colorado at Boulder. He obtained his first doctorate in Engineering at the Tsinghua University and his second doctorate in Architecture at the Massachusetts Institute of Technology, and his research is focused on thermal and environmental systems, indoor and outdoor environmental quality, and sustainable and immune buildings. </p>
<p><b>A complete and authoritative discussion of the fundamentals of designing and engineering energy efficient buildings </b></p> <p>In <i>Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems</i>, distinguished engineer and architect Dr. John Zhai delivers a comprehensive exploration of the design and engineering fundamentals of energy efficient buildings. The book introduces the fundamental knowledge, calculations, analyses, and principles used by designers of energy efficient buildings and addresses all essential elements of the discipline. <p>An essential guide for students studying civil, architectural, mechanical, and electrical engineering with a focus on energy, building systems, and building science, the book provides practical in-class materials, examples, and actual design practices, as well as end-of-chapter questions (with solutions) and sample group projects. <p>Readers will find: <ul><li>A thorough introduction to the cross-disciplinary approach to the design of energy efficient buildings</li> <li>Comprehensive explorations of all critical elements of energy efficient building design, including standards and codes, psychometrics, microclimate, thermal comfort, indoor air quality, HVAC systems, and more</li> <li>In-depth discussions of the foundational knowledge, calculations, analysis, and principles needed to design energy efficient buildings</li> <li>Practical in-class examples and end-of-chapter questions with solutions for students, and design guidance and sample group projects for use in course lectures and actual design practices.</li></ul> <p>Perfect for graduate and advanced undergraduate students studying building environmental systems, building systems in construction, and mechanical and electrical systems in construction, <i>Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems</i> will also earn a place in the libraries of practicing civil, architectural, and mechanical engineers.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €