Details

End-to-End Quality of Service


End-to-End Quality of Service

Engineering in Next Generation Heterogenous Networks
1. Aufl.

von: Abdelhamid Mellouk

164,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.03.2013
ISBN/EAN: 9781118623251
Sprache: englisch
Anzahl Seiten: 458

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A modern communication network can be described as a large, complex, distributed system composed by higher interoperating, smaller sub-systems. Today, the proliferation and convergence of different types of wired, wireless, and mobile networks are crucial for the success of the next generation networking. However, these networks can hardly meet the requirements of future integrated-service networks, and are expected to carry multimedia traffic with various Quality of Experience (QoE) and Quality of Service (QoS) requirements. Providing all relevant QoS/QoE issues in these heterogeneous networks is then an important challenge for telecommunication operators, manufacturers, and companies. The impressive emergence and the important demand of the rising generation of real-time Multi-service (such as Data, Voice VoD, Video-Conference, etc.) over communication heterogeneous networks, require scalability while considering a continuous QoS.  This book presents and explains all the techniques in new generation networks which integrate efficient global control mechanisms in two directions: (1) maintain QoS requirements in order to maximize network resources utilization, and minimize operational costs on all the types of wired-wireless-mobile networks used to transport traffic, and (2) mix the QoS associated with home, access, and core networks in order to provide Quality of Service/Quality of Experience expected by users of new services.
<p><b>Chapter 1. Challenges for End-to-End Quality of Service over Heterogenous Networks 1</b><br /> <i>Abdelhamid MELLOUK</i></p> <p>1.1. Introduction 1</p> <p>1.2. Research challenges in end-to-end QoS 2</p> <p>1.3. Contents 4</p> <p>1.3.1. Chapter 2: principles and mechanisms for Quality of Service in networks 4</p> <p>1.3.2. Chapter 3: different approaches to guarantee Quality of Service 5</p> <p>1.3.3. Chapter 4: Quality of Service-based adaptive routing approaches 6</p> <p>1.3.4. Chapter 5: optical networks: new challenges and paradigms for Quality of Service 7</p> <p>1.3.5. Chapter 6: pushing Quality of Service across interdomain boundaries 8</p> <p>1.3.6. Chapter 7: Internet-based collaborative teleoperation: towards tailorable groupware for teleoperation 9</p> <p>1.3.7. Chapter 8: survivability-oriented Quality of Service in optical networks 10</p> <p>1.3.8. Chapter 9: MAC protocols for Quality of Service provisioning in mobile ad hoc networks10</p> <p>1.3.9. Chapter 10: Quality of Service-based scheduling mechanisms in mobile networks 11</p> <p>1.3.10. Chapter 11: Quality of Service in wireless ad hoc and sensor networks 12</p> <p>1.3.11. Chapter 12: Quality of Service challenges in WiMAX networks 13</p> <p>1.3.12. Chapter 13: Quality of Service support for MPLS-based wired-wireless domains 14</p> <p>1.3.13. Chapter 14: Quality of Service control in VoIP applications 15</p> <p>1.3.14. Chapter 15: towards collaborative teleoperation based on human scale networked mixed reality environments. 16</p> <p>1.3.15. Chapter 16: Quality of Service driven context awareness using semantic sensors infrastructure 17</p> <p>1.3.16. Chapter 17: effect of transmission delay on haptic perception in shared virtual environments 18</p> <p>1.4. Conclusion 19</p> <p><b>Chapter 2. Principles and Mechanisms for Quality of Service in Networks 21</b><br /> <i>Zoubir MAMMERI</i></p> <p>2.1. Introduction 21</p> <p>2.2. Concepts and definitions 23</p> <p>2.2.1. Definitions of QoS in a networking context 23</p> <p>2.2.2. End-to-end QoS 24</p> <p>2.2.3. Classes (levels) of service 24</p> <p>2.2.4. Differentiated classes of service 26</p> <p>2.3. QoS parameters and application classification 26</p> <p>2.3.1. QoS parameter types 26</p> <p>2.3.2. Application classification 29</p> <p>2.3.3. QoS parameter specification 32</p> <p>2.3.4. Traffic models 32</p> <p>2.3.5. Service level agreements 34</p> <p>2.4. Mechanisms and functions for QoS provisioning 35</p> <p>2.4.1. General issues 35</p> <p>2.4.2. QoS establishment 36</p> <p>2.4.3. Admission control 36</p> <p>2.4.4. QoS negotiation and renegotiation 37</p> <p>2.4.5. Resource management 38</p> <p>2.4.6. QoS signaling protocols 39</p> <p>2.4.7. Routing 39</p> <p>2.4.8. Traffic control mechanisms 41</p> <p>2.4.9. QoS control, maintenance, monitoring 45</p> <p>2.4.10. QoS policy 45</p> <p>2.4.11. QoS mapping and translation 46</p> <p>2.5. Overview of IntServ, DiffServ and MPLS 47</p> <p>2.5.1. Integrated services architecture 47</p> <p>2.5.2. DiffServ architecture 48</p> <p>2.5.3. MPLS 50</p> <p>2.6. Conclusion 51</p> <p>2.7. References 51</p> <p><b>Chapter 3. Different Approaches to Guarantee Quality of Service 55</b><br /> <i>Pascale MINET</i></p> <p>3.1. Introduction to QoS 55</p> <p>3.1.1. Different QoS requirements 56</p> <p>3.1.2. Organization of chapter 58</p> <p>3.2. Means of managing an end-to-end time constraint 59</p> <p>3.2.1. Components of an end-to-end response time 59</p> <p>3.2.2. Different methods to ensure that D is met 61</p> <p>3.2.3. Discussion 65</p> <p>3.2.4. A producer/consumer scheme avoiding starvation 66</p> <p>3.2.5. Example of a video-on-demand multimedia system 67</p> <p>3.3. Evaluation of the end-to-end response time 68</p> <p>3.3.1. The holistic approach 68</p> <p>3.3.2. Network calculus 69</p> <p>3.3.3. Trajectory approach 71</p> <p>3.3.4. Comparison between the holistic and trajectory approaches 74</p> <p>3.3.5. Flow shaping 77</p> <p>3.4. Probabilistic guarantee of the end-to-end response time 79</p> <p>3.4.1. Principles for a probabilistic guarantee 79</p> <p>3.4.2. Examples 80</p> <p>3.4.3. Probabilistic versus deterministic guarantee 81</p> <p>3.5. QoS support in a mobile ad hoc network 81</p> <p>3.5.1. Specificities of MANETs 81</p> <p>3.5.2. The OLSR routing protocol 82</p> <p>3.5.3. QoS architecture and QoS OLSR 83</p> <p>3.6. Conclusion and perspectives 87</p> <p>3.7. References 89</p> <p><b>Chapter 4. Quality of Service-based Adaptive Routing Approaches 93</b><br /> <i>Abdelhamid MELLOUK and Saïd HOCEINI</i></p> <p>4.1. Introduction 93</p> <p>4.2. QoS-based routing algorithms 95</p> <p>4.2.1. Classical routing algorithms 97</p> <p>4.3. QoS-based routing approaches 99</p> <p>4.4. Inductive approaches based on machine learning paradigms 99</p> <p>4.4.1. Cognitive Packet Networks (CPN) 100</p> <p>4.4.2. Swarm ant colony optimization (AntNet) 100</p> <p>4.4.3. Reinforcement learning routing approaches 101</p> <p>4.5. Neural net-based approach for adaptive routing policy 102</p> <p>4.6. State-dependent KOQRA algorithm 105</p> <p>4.6.1. First stage: constructing K optimal paths 105</p> <p>4.6.2. Second stage: optimizing the end-to-end delay with the Q-learning algorithm 107</p> <p>4.6.3. Third stage: adaptive probabilistic path selection 108</p> <p>4.7. Conclusion 108</p> <p>4.8. References 109</p> <p><b>Chapter 5. Optical Networks: New Challenges and Paradigms for Quality of Service 115</b><br /> <i>Ken CHEN and Wisssam FAWAZ</i></p> <p>5.1. Introduction 115</p> <p>5.2. Optical communication: from transmission to networking 116</p> <p>5.2.1. Fiber optic cable 116</p> <p>5.2.2. WDM technology 117</p> <p>5.2.3. From transmission to networking 118</p> <p>5.3. Optical networks as a pillar for future network infrastructure 119</p> <p>5.4. Routing and wavelength assignment 121</p> <p>5.5. GMPLS 122</p> <p>5.5.1. MPLS 122</p> <p>5.5.2. Principle of the GMPLS extension 124</p> <p>5.5.3. GMPLS components 126</p> <p>5.6. Towards a new optical link-based architecture 129</p> <p>5.7. Protection against link failures 130</p> <p>5.8. Optical packet switch and optical burst switch 131</p> <p>5.8.1. Optical packet switching 131</p> <p>5.8.2. Optical burst switching 132</p> <p>5.9. Conclusion 133</p> <p>5.10. References 133</p> <p><b>Chapter 6. Pushing Quality of Service Across Inter-domain Boundaries 135</b><br /> <i>Bingjie FU, Cristel PELSSER, Steve UHLIG</i></p> <p>6.1. Introduction 135</p> <p>6.2. Background 136</p> <p>6.2.1. The Internet as a distributed system 137</p> <p>6.2.2. Business relationships between ASs 137</p> <p>6.2.3. Impact of inter-domain routing on path diversity 138</p> <p>6.2.4. Inter-AS LSP requirements 142</p> <p>6.3. RSVP-TE extensions to support inter-domain LSPs 143</p> <p>6.3.1. Explicit routing of an LSP 143</p> <p>6.3.2. RRO aggregation and the path key 144</p> <p>6.3.3. Protection of inter-AS LSPs 145</p> <p>6.3.4. End-to-end disjoint LSPs 146</p> <p>6.4. State of the art in inter-domain PCE 146</p> <p>6.4.1. PCE-based architecture 146</p> <p>6.4.2. Path computation methods 147</p> <p>6.4.3. Applicability of the path computation techniques 152</p> <p>6.5. Towards inter-AS QoS 152</p> <p>6.5.1. DistributingQoS Information for inter-AS LSPs 153</p> <p>6.5.2. Computing inter-AS LSPs with end-to-end QoS constraints 155</p> <p>6.6. Conclusion and perspectives 158</p> <p>6.7. Acknowledgments 159</p> <p>6.8. References 159</p> <p><b>Chapter 7. Internet-based Collaborative Teleoperation: Towards Tailorable Groupware for Teleoperation 163</b><br /> <i>Samir OTMANE, Nader CHEAIB and Malik MALLEM</i></p> <p>7.1. Introduction 163</p> <p>7.2. Teleoperation via the World Wide Web 164</p> <p>7.2.1. Non-collaborative teleoperation systems 166</p> <p>7.2.2. Towards collaborative teleoperation systems 170</p> <p>7.3. ARITI-C: a groupware for collaborative teleoperation via the Internet 172</p> <p>7.3.1. Software architecture of ARITI-C 173</p> <p>7.3.2. Human-machine interface of ARITI-C 177</p> <p>7.4. Integrating QoS in designing tailorable collaborative teleoperation systems 185</p> <p>7.4.1. Need for QoS in internet-based teleoperation185</p> <p>7.4.2. Need for tailorability in internet-based collaborative teleoperation 186</p> <p>7.4.3. Design of tailorable groupware for internet-based collaborative teleoperation 190</p> <p>7.5. Conclusion 192</p> <p>7.6. References 193</p> <p><b>Chapter 8. Survivability-Oriented Quality of Service in Optical Networks 197</b><br /> <i>Wissam FAWAZ and Ken CHEN</i></p> <p>8.1. Introduction 197</p> <p>8.2. Optical transport network failures 198</p> <p>8.2.1. Failure statistics 199</p> <p>8.2.2. Causes of failure 200</p> <p>8.3. Optical network survivability evolution 202</p> <p>8.3.1 Survivability in traditional carrier network architecture 202</p> <p>8.3.2. Protection at the IP layer? 204</p> <p>8.3.3 Why optical layer survivability? 205</p> <p>8.4. Optical WDM-layer survivability mechanisms 207</p> <p>8.4.1. Path protection 208</p> <p>8.4.2. Path restoration 209</p> <p>8.4.3. Link protection 209</p> <p>8.4.4. Link restoration 210</p> <p>8.5. Conclusion 210</p> <p>8.6. References 211</p> <p><b>Chapter 9. MAC Protocols for Quality of Service Provisioning in Mobile Ad Hoc Networks 213</b><br /> <i>Ghalem BOUDOUR, Mahboub A. BALI and Cédric TEYSSIÉ</i></p> <p>9.1. Introduction 213</p> <p>9.2. IEEE 802.11 standard basics 216</p> <p>9.3. Prioritization-oriented MAC protocols 217</p> <p>9.3.1. RT-MAC protocol 217</p> <p>9.3.2. DCF-PC protocol 218</p> <p>9.3.3. HCF and IEEE 802.11e 219</p> <p>9.3.4. DPS protocol 221</p> <p>9.3.5. BB-DCF protocol 222</p> <p>9.3.6. ES-DCF and DB-DCF protocols 224</p> <p>9.4. Reservation-oriented protocols 226</p> <p>9.4.1. Reservation protocols with synchronization 227</p> <p>9.4.2. Reservation protocols without synchronization 231</p> <p>9.4.3. Limitations of reservation-based protocols 235</p> <p>9.5. Available bandwidth estimation methods for ad hoc networks 235</p> <p>9.5.1. General issues 235</p> <p>9.5.2. Methods for bandwidth estimation 237</p> <p>9.6. Conclusion 244</p> <p>9.7. References 245</p> <p><b>Chapter 10. Quality of Service Scheduling Mechanisms in Mobile Networks 249</b><br /> <i>Mohamed BRAHMA, Abdelhafid ABOUAÏSSA and Pascal LORENZ</i></p> <p>10.1. Introduction 249</p> <p>10.1.1. Mobile ad hoc networks (MANETs) 250</p> <p>10.1.2. Constraints 251</p> <p>10.2. Quality of Service 251</p> <p>10.2.1. Routing with QoS in the ad hoc network 251</p> <p>10.2.2. QoS models in ad hoc networks 252</p> <p>10.2.3. QoS MAC protocols 254</p> <p>10.3. Buffer and energy-based scheduling 256</p> <p>10.3.1. Marking MAC frames 258</p> <p>10.3.2. Adjusting the weight of each class queue 258</p> <p>10.3.3. Weight calculation algorithm 259</p> <p>10.4. Simulations and numerical results 260</p> <p>10.5. Conclusion 266</p> <p>10.6. References 266</p> <p><b>Chapter 11. Quality of Service inWireless Ad Hoc and Sensor Networks 269</b><br /> <i>Azzedine BOUKERCHE, Horacio A.B.F. OLIVEIRA, Eduardo F. NAKAMURA, Richard W.N. PAZZI and Antonio A.F. LOUREIRO</i></p> <p>11.1. Challenges for QoS in ad hoc and sensor networks 270</p> <p>11.2. QoS parameters in ad hoc and sensor networks 271</p> <p>11.3. Components of a QoS system 273</p> <p>11.4. MACmeasurement and reservation 274</p> <p>11.4.1. Q-MAC 277</p> <p>11.5. QoS routing discovery and maintenance 278</p> <p>11.5.1. Ticket-based probing 278</p> <p>11.5.2. QoS-based geographic routing 280</p> <p>11.5.3. Core extraction distributed ad hoc routing – CEDAR281</p> <p>11.5.4. EQoS 283</p> <p>11.5.5. The INSIGNIA QoS framework 283</p> <p>11.5.6. Ad hocQoS on-demand routing –AQOR 285</p> <p>11.6. Conclusions 287</p> <p>11.7. References 288</p> <p><b>Chapter 12. Quality of Service Challenges in WiMAX Networks 291</b><br /> <i>Sahar GHAZAL and Jalel BEN-OTHMAN</i></p> <p>12.1. Introduction 291</p> <p>12.2.QoS limitations in wireless networks 293</p> <p>12.3.QoS features in WiMAXnetworks 294</p> <p>12.3.1. Classification process 294</p> <p>12.3.2. Scheduling services 295</p> <p>12.3.3. Bandwidth management policies 296</p> <p>12.4. QoS parameter set and management messages 298</p> <p>12.4.1. Connection establishment 299</p> <p>12.4.2. Dynamic change of admitted QoS parameters 300</p> <p>12.5. MAC layer and QoS architecture 301</p> <p>12.6. PHY layer supports QoS 302</p> <p>12.7. QoS previous proposed solutions for WiMAX 303</p> <p>12.7.1. Proposed scheduling algorithms 303</p> <p>12.7.2. Proposed admission policies 304</p> <p>12.8. Conclusion 305</p> <p>12.9. References 305</p> <p><b>Chapter 13. Quality of Service Support for MPLS-based Wired-Wireless Domains 309</b><br /> <i>Scott FOWLER, Sherali ZEADALLY and Abdelhamid MELLOUK</i></p> <p>13.1. Abstract 309</p> <p>13.2. Introduction 310</p> <p>13.3. MPLS technology 310</p> <p>13.3.1. Label distribution protocol (LDP) 312</p> <p>13.4. Mobility and MPLS 314</p> <p>13.5. Hierarchical MIP 315</p> <p>13.6. Extending MPLS from wired networks to wireless networks 317</p> <p>13.6.1. Hierarchical mobile MPLS (H-MPLS) approach 317</p> <p>13.6.2. Hierarchical mobile IPv6withMPLS 321</p> <p>13.6.3. Micro-mobility with MPLS (MM-MPLS) approach 326</p> <p>13.6.4. The label edge mobility agent (LEMA) approach 328</p> <p>13.7. Multimedia support over MPLS-based networks 329</p> <p>13.7.1. MPLS support in DiffServ 331</p> <p>13.7.2. Resource reservation protocol traffic engineering (RSVP-TE) with MPLS 335</p> <p>13.7.3. Constraint-based routed label distribution protocol (CR-LDP) 336</p> <p>13.8. Emerging trends of MPLS-based networks 337</p> <p>13.8.1. Label management of MPLS 338</p> <p>13.8.2. MPLS support over heterogenous networks 339</p> <p>13.8.3. MPLS security 339</p> <p>13.8.4. QoS support over MPLS-based networks 339</p> <p>13.8.5. Fast handovers across MPLS-based wired-wireless networks 340</p> <p>13.9. Conclusion 340</p> <p>13.10. References 342</p> <p>13.11. Appendix – list of acronyms 344</p> <p><b>Chapter 14. Quality of Service Control in Voice-over IP Applications 347</b><br /> <i>Vincent LECUIRE and Mouna BENAISSA</i></p> <p>14.1. Introduction 347</p> <p>14.2. General structure of VoIP applications 348</p> <p>14.3. End-to-end delay analysis 351</p> <p>14.3.1. Coding/decoding delay 352</p> <p>14.3.2. Packetization delay 353</p> <p>14.3.3. Network delay 353</p> <p>14.3.4. Jitter compensation delay 353</p> <p>14.3.5. End-to-end delay calculation 354</p> <p>14.4. Quality of Service requirements for VoIP 354</p> <p>14.4.1. Delay constraint 354</p> <p>14.4.2. Packet loss constraint 355</p> <p>14.4.3. Jitter constraint 356</p> <p>14.5. Algorithms for adaptive playout buffering 357</p> <p>14.5.1. Approach based on linear filtering 359</p> <p>14.5.2. Approach based on adaptive filter 363</p> <p>14.5.3. Approach based on statistics distribution 364</p> <p>14.6. Forward error correction mechanisms for packet loss repair 367</p> <p>14.6.1. Media-specific FEC 368</p> <p>14.6.2. Media-independent FEC 369</p> <p>14.7. Joint playout buffering and packet-level FEC algorithms 370</p> <p>14.7.1. Virtual delay algorithms 371</p> <p>14.7.2. Delay aware algorithm 371</p> <p>14.8. Conclusion 372</p> <p>14.9. References 372</p> <p><b>Chapter 15. Towards Collaborative Teleoperation Based On Human-Scale Networked Mixed Reality Environments 377</b><br /> <i>Samir OTMANE, Nassima OURAMDANE and Malik MALLEM</i></p> <p>15.1. Introduction 377</p> <p>15.2. Teleoperation and telerobotics 378</p> <p>15.2.1. Brief background 379</p> <p>15.2.2. Teleoperation 379</p> <p>15.2.3. Telerobotics 382</p> <p>15.2.4. Some application domains 383</p> <p>15.3. Augmented reality assisted teleoperation 389</p> <p>15.4. Human-scale collaborative teleoperation 393</p> <p>15.4.1. Collaborative working environments. 394</p> <p>15.4.2. Interactions in human-scale teleoperation 395</p> <p>15.4.3. Distributed software architecture for human-scale collaborative teleoperation 398</p> <p>15.5. Synthesis and problematics 401</p> <p>15.6. References 403</p> <p><b>Chapter 16. QoS-driven Context Awareness Using Semantic Sensors Infrastructure 407</b><br /> <i>Abdelghani CHIBANI and Yacine AMIRAT</i></p> <p>16.1. Introduction 407</p> <p>16.2. Context-aware pervasive computing 408</p> <p>16.3. Service agent middleware for decentralized context management 409</p> <p>16.3.1. Context service agent 410</p> <p>16.3.2. Context aggregation agent 411</p> <p>16.3.3. Context services composition 413</p> <p>16.4. Context service discovery 415</p> <p>16.4.1. QoS-driven context directories management 416</p> <p>16.4.2. Contextual knowledge modeling 416</p> <p>16.4.3. Contextual service modeling419</p> <p>16.4.4. Context service semantic matching 420</p> <p>16.5. Semantic context sensor scenarios 422</p> <p>16.5.1. Scenario 1: context-aware travel organizer service 423</p> <p>16.5.2. Scenario 2: context-aware services for healthcare ubiquitous robot 425</p> <p>16.5.3. Scenario 3: context sensor infrastructure for living lab services 426</p> <p>16.6. Conclusion 427</p> <p>16.7. References 428</p> <p><b>Chapter 17. Effect of Transmission Delay on Haptic Perception in Shared Virtual Environments 431</b><br /> <i>Hichem ARIOUI</i></p> <p>17.1. Introduction 431</p> <p>17.2. Haptic simulation in VR applications 433</p> <p>17.2.1. Haptic feedback device 433</p> <p>17.2.2. Applications of haptic systems 436</p> <p>17.3. Delayed force feedback systems 437</p> <p>17.3.1. Automatic control law, solutions and handicaps 437</p> <p>17.3.2. Remote programming, solutions and handicaps 441</p> <p>17.4. The Quality of Service for a good haptic rendering 442</p> <p>17.5. References 443</p> <p><i>List of Authors 445</i></p> <p><i>Index 451</i></p>
<p><b>Abdelhamid MELLOUK</b> (IEEE Senior Member) is a full professor at University of Paris-Est, Networks & Telecommunications, Department and LiSSi Laboratory, France. Founder of the Network Control Research activity with extensive international academic and industrial collaborations, his general area of research is in adaptive real-time control for high-speed new generation dynamic wired/wireless networking in order to maintain acceptable quality of service/experience for added value services. He is an active member of the IEEE Communications Society and held several offices including leadership positions in IEEE Communications Society Technical Committees.</p>

Diese Produkte könnten Sie auch interessieren:

Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Shaping Light in Nonlinear Optical Fibers
Shaping Light in Nonlinear Optical Fibers
von: Sonia Boscolo, Christophe Finot
PDF ebook
127,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
EPUB ebook
171,99 €