Details

Emerging Technologies for Healthcare


Emerging Technologies for Healthcare

Internet of Things and Deep Learning Models
Machine Learning in Biomedical Science and Healthcare Informatics 1. Aufl.

von: Monika Mangla, Nonita Sharma, Poonam Garg, Vaishali Wadhwa, Thirunavukkarasu K, Shahnawaz Khan

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.07.2021
ISBN/EAN: 9781119792338
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>“Emerging Technologies for Healthcare” begins with an IoT-based solution for the automated healthcare sector which is enhanced to provide solutions with advanced deep learning techniques.</p> <p>The book provides feasible solutions through various machine learning approaches and applies them to disease analysis and prediction. An example of this is employing a three-dimensional matrix approach for treating chronic kidney disease, the diagnosis and prognostication of acquired demyelinating syndrome (ADS) and autism spectrum disorder, and the detection of pneumonia. In addition, it provides healthcare solutions for post COVID-19 outbreaks through various suitable approaches, Moreover, a detailed detection mechanism is discussed which is used to devise solutions for predicting personality through handwriting recognition; and novel approaches for sentiment analysis are also discussed with sufficient data and its dimensions.</p> <p>This book not only covers theoretical approaches and algorithms, but also contains the sequence of steps used to analyze problems with data, processes, reports, and optimization techniques. It will serve as a single source for solving various problems via machine learning algorithms.</p>
<p>Preface xvii</p> <p><b>Part I: Basics of Smart Healthcare 1</b></p> <p><b>1 An Overview of IoT in Health Sectors 3<br /></b><i>Sheeba P. S.</i></p> <p>1.1 Introduction 3</p> <p>1.2 Influence of IoT in Healthcare Systems 6</p> <p>1.2.1 Health Monitoring 6</p> <p>1.2.2 Smart Hospitals 7</p> <p>1.2.3 Tracking Patients 7</p> <p>1.2.4 Transparent Insurance Claims 8</p> <p>1.2.5 Healthier Cities 8</p> <p>1.2.6 Research in Health Sector 8</p> <p>1.3 Popular IoT Healthcare Devices 9</p> <p>1.3.1 Hearables 9</p> <p>1.3.2 Moodables 9</p> <p>1.3.3 Ingestible Sensors 9</p> <p>1.3.4 Computer Vision 10</p> <p>1.3.5 Charting in Healthcare 10</p> <p>1.4 Benefits of IoT 10</p> <p>1.4.1 Reduction in Cost 10</p> <p>1.4.2 Quick Diagnosis and Improved Treatment 10</p> <p>1.4.3 Management of Equipment and Medicines 11</p> <p>1.4.4 Error Reduction 11</p> <p>1.4.5 Data Assortment and Analysis 11</p> <p>1.4.6 Tracking and Alerts 11</p> <p>1.4.7 Remote Medical Assistance 11</p> <p>1.5 Challenges of IoT 12</p> <p>1.5.1 Privacy and Data Security 12</p> <p>1.5.2 Multiple Devices and Protocols Integration 12</p> <p>1.5.3 Huge Data and Accuracy 12</p> <p>1.5.4 Underdeveloped 12</p> <p>1.5.5 Updating the Software Regularly 12</p> <p>1.5.6 Global Healthcare Regulations 13</p> <p>1.5.7 Cost 13</p> <p>1.6 Disadvantages of IoT 13</p> <p>1.6.1 Privacy 13</p> <p>1.6.2 Access by Unauthorized Persons 13</p> <p>1.7 Applications of IoT 13</p> <p>1.7.1 Monitoring of Patients Remotely 13</p> <p>1.7.2 Management of Hospital Operations 14</p> <p>1.7.3 Monitoring of Glucose 14</p> <p>1.7.4 Sensor Connected Inhaler 15</p> <p>1.7.5 Interoperability 15</p> <p>1.7.6 Connected Contact Lens 15</p> <p>1.7.7 Hearing Aid 16</p> <p>1.7.8 Coagulation of Blood 16</p> <p>1.7.9 Depression Detection 16</p> <p>1.7.10 Detection of Cancer 17</p> <p>1.7.11 Monitoring Parkinson Patient 17</p> <p>1.7.12 Ingestible Sensors 18</p> <p>1.7.13 Surgery by Robotic Devices 18</p> <p>1.7.14 Hand Sanitizing 18</p> <p>1.7.15 Efficient Drug Management 19</p> <p>1.7.16 Smart Sole 19</p> <p>1.7.17 Body Scanning 19</p> <p>1.7.18 Medical Waste Management 20</p> <p>1.7.19 Monitoring the Heart Rate 20</p> <p>1.7.20 Robot Nurse 20</p> <p>1.8 Global Smart Healthcare Market 21</p> <p>1.9 Recent Trends and Discussions 22</p> <p>1.10 Conclusion 23</p> <p>References 23</p> <p><b>2 IoT-Based Solutions for Smart Healthcare 25<br /></b><i>Pankaj Jain, Sonia F Panesar, Bableen Flora Talwar and Mahesh Kumar Sah</i></p> <p>2.1 Introduction 26</p> <p>2.1.1 Process Flow of Smart Healthcare System 26</p> <p>2.1.1.1 Data Source 26</p> <p>2.1.1.2 Data Acquisition 27</p> <p>2.1.1.3 Data Pre-Processing 27</p> <p>2.1.1.4 Data Segmentation 28</p> <p>2.1.1.5 Feature Extraction 28</p> <p>2.1.1.6 Data Analytics 28</p> <p>2.2 IoT Smart Healthcare System 29</p> <p>2.2.1 System Architecture 30</p> <p>2.2.1.1 Stage 1: Perception Layer 30</p> <p>2.2.1.2 Stage 2: Network Layer 32</p> <p>2.2.1.3 Stage 3: Data Processing Layer 32</p> <p>2.2.1.4 Stage 4: Application Layer 33</p> <p>2.3 Locally and Cloud-Based IoT Architecture 33</p> <p>2.3.1 System Architecture 33</p> <p>2.3.1.1 Body Area Network (BAN) 34</p> <p>2.3.1.2 Smart Server 34</p> <p>2.3.1.3 Care Unit 35</p> <p>2.4 Cloud Computing 35</p> <p>2.4.1 Infrastructure as a Service (IaaS) 37</p> <p>2.4.2 Platform as a Service (PaaS) 37</p> <p>2.4.3 Software as a Service (SaaS) 37</p> <p>2.4.4 Types of Cloud Computing 37</p> <p>2.4.4.1 Public Cloud 37</p> <p>2.4.4.2 Private Cloud 38</p> <p>2.4.4.3 Hybrid Cloud 38</p> <p>2.4.4.4 Community Cloud 38</p> <p>2.5 Outbreak of Arduino Board 38</p> <p>2.6 Applications of Smart Healthcare System 39</p> <p>2.6.1 Disease Diagnosis and Treatment 41</p> <p>2.6.2 Health Risk Monitoring 42</p> <p>2.6.3 Voice Assistants 42</p> <p>2.6.4 Smart Hospital 42</p> <p>2.6.5 Assist in Research and Development 43</p> <p>2.7 Smart Wearables and Apps 43</p> <p>2.8 Deep Learning in Biomedical 44</p> <p>2.8.1 Deep Learning 46</p> <p>2.8.2 Deep Neural Network Architecture 47</p> <p>2.8.3 Deep Learning in Bioinformatic 49</p> <p>2.8.4 Deep Learning in Bioimaging 49</p> <p>2.8.5 Deep Learning in Medical Imaging 50</p> <p>2.8.6 Deep Learning in Human-Machine Interface 53</p> <p>2.8.7 Deep Learning in Health Service Management 53</p> <p>2.9 Conclusion 55</p> <p>References 55</p> <p><b>3 QLattice Environment and Feyn QGraph Models—A New Perspective Toward Deep Learning 69<br /></b><i>Vinayak Bharadi</i></p> <p>3.1 Introduction 70</p> <p>3.1.1 Machine Learning Models 70</p> <p>3.2 Machine Learning Model Lifecycle 71</p> <p>3.2.1 Steps in Machine Learning Lifecycle 71</p> <p>3.2.1.1 Data Preparation 72</p> <p>3.2.1.2 Building the Machine Learning Model 72</p> <p>3.2.1.3 Model Training 72</p> <p>3.2.1.4 Parameter Selection 72</p> <p>3.2.1.5 Transfer Learning 73</p> <p>3.2.1.6 Model Verification 73</p> <p>3.2.1.7 Model Deployment 74</p> <p>3.2.1.8 Monitoring 74</p> <p>3.3 A Model Deployment in Keras 75</p> <p>3.3.1 Pima Indian Diabetes Dataset 75</p> <p>3.3.2 Multi-Layered Perceptron Implementation in Keras 76</p> <p>3.3.3 Multi-Layered Perceptron Implementation With Dropout and Added Noise 77</p> <p>3.4 QLattice Environment 80</p> <p>3.4.1 Feyn Models 80</p> <p>3.4.1.1 Semantic Types 82</p> <p>3.4.1.2 Interactions 83</p> <p>3.4.1.3 Generating QLattice 83</p> <p>3.4.2 QLattice Workflow 83</p> <p>3.4.2.1 Preparing the Data 84</p> <p>3.4.2.2 Connecting to QLattice 84</p> <p>3.4.2.3 Generating QGraphs 84</p> <p>3.4.2.4 Fitting, Sorting, and Updating QGraphs 85</p> <p>3.4.2.5 Model Evaluation 86</p> <p>3.5 Using QLattice Environment and QGraph Models for COVID-19 Impact Prediction 87</p> <p>References 91</p> <p><b>4 Sensitive Healthcare Data: Privacy and Security Issues and Proposed Solutions 93<br /></b><i>Abhishek Vyas, Satheesh Abimannan and Ren-Hung Hwang</i></p> <p>4.1 Introduction 94</p> <p>4.1.1 Types of Technologies Used in Healthcare Industry 94</p> <p>4.1.2 Technical Differences Between Security and Privacy 95</p> <p>4.1.3 HIPAA Compliance 95</p> <p>4.2 Medical Sensor Networks/Medical Internet of Things/Body Area Networks/WBANs 97</p> <p>4.2.1 Security and Privacy Issues in WBANs/WMSNs/WMIOTs 101</p> <p>4.3 Cloud Storage and Computing on Sensitive Healthcare Data 112</p> <p>4.3.1 Security and Privacy in Cloud Computing and Storage for Sensitive Healthcare Data 114</p> <p>4.4 Blockchain for Security and Privacy Enhancement in Sensitive Healthcare Data 119</p> <p>4.5 Artificial Intelligence, Machine Learning, and Big Data in Healthcare and Its Efficacy in Security and Privacy of Sensitive Healthcare Data 122</p> <p>4.5.1 Differential Privacy for Preserving Privacy of Big Medical Healthcare Data and for Its Analytics 124</p> <p>4.6 Conclusion 124</p> <p>References 125</p> <p><b>Part II: Employment of Machine Learning in Disease Detection 129</b></p> <p><b>5 Diabetes Prediction Model Based on Machine Learning 131<br /></b><i>Ayush Kumar Gupta, Sourabh Yadav, Priyanka Bhartiya and Divesh Gupta</i></p> <p>5.1 Introduction 131</p> <p>5.2 Literature Review 133</p> <p>5.3 Proposed Methodology 135</p> <p>5.3.1 Data Accommodation 135</p> <p>5.3.1.1 Data Collection 135</p> <p>5.3.1.2 Data Preparation 136</p> <p>5.3.2 Model Training 138</p> <p>5.3.2.1 K Nearest Neighbor Classification Technique 139</p> <p>5.3.2.2 Support Vector Machine 140</p> <p>5.3.2.3 Random Forest Algorithm 142</p> <p>5.3.2.4 Logistic Regression 144</p> <p>5.3.3 Model Evaluation 145</p> <p>5.3.4 User Interaction 145</p> <p>5.3.4.1 User Inputs 146</p> <p>5.3.4.2 Validation Using Classifier Model 146</p> <p>5.3.4.3 Truth Probability 146</p> <p>5.4 System Implementation 147</p> <p>5.5 Conclusion 153</p> <p>References 153</p> <p><b>6 Lung Cancer Detection Using 3D CNN Based on Deep Learning 157<br /></b><i>Siddhant Panda, Vasudha Chhetri, Vikas Kumar Jaiswal and Sourabh Yadav</i></p> <p>6.1 Introduction 157</p> <p>6.2 Literature Review 159</p> <p>6.3 Proposed Methodology 161</p> <p>6.3.1 Data Handling 161</p> <p>6.3.1.1 Data Gathering 161</p> <p>6.3.1.2 Data Pre-Processing 162</p> <p>6.3.2 Data Visualization and Data Split 162</p> <p>6.3.2.1 Data Visualization 162</p> <p>6.3.2.2 Data Split 162</p> <p>6.3.3 Model Training 163</p> <p>6.3.3.1 Training Neural Network 163</p> <p>6.3.3.2 Model Optimization 166</p> <p>6.4 Results and Discussion 168</p> <p>6.4.1 Gathering and Pre-Processing of Data 169</p> <p>6.4.1.1 Gathering and Handling Data 169</p> <p>6.4.1.2 Pre-Processing of Data 170</p> <p>6.4.2 Data Visualization 171</p> <p>6.4.2.1 Resampling 173</p> <p>6.4.2.2 3D Plotting Scan 173</p> <p>6.4.2.3 Lung Segmentation 173</p> <p>6.4.3 Training and Testing of Data in 3D Architecture 175</p> <p>6.5 Conclusion 178</p> <p>References 178</p> <p><b>7 Pneumonia Detection Using CNN and ANN Based on Deep Learning Approach 181<br /></b><i>Priyanka Bhartiya, Sourabh Yadav, Ayush Gupta and Divesh Gupta</i></p> <p>7.1 Introduction 182</p> <p>7.2 Literature Review 183</p> <p>7.3 Proposed Methodology 185</p> <p>7.3.1 Data Gathering 185</p> <p>7.3.1.1 Data Collection 185</p> <p>7.3.1.2 Data Pre-Processing 186</p> <p>7.3.1.3 Data Split 186</p> <p>7.3.2 Model Training 187</p> <p>7.3.2.1 Training of Convolutional Neural Network 189</p> <p>7.3.2.2 Training of Artificial Neural Network 191</p> <p>7.3.3 Model Fitting 193</p> <p>7.3.3.1 Fit Generator 193</p> <p>7.3.3.2 Validation of Accuracy and Loss Plot 193</p> <p>7.3.3.3 Testing and Prediction 193</p> <p>7.4 System Implementation 194</p> <p>7.4.1 Data Gathering, Pre-Processing, and Split 194</p> <p>7.4.1.1 Data Gathering 194</p> <p>7.4.1.2 Data Pre-Processing 195</p> <p>7.4.1.3 Data Split 196</p> <p>7.4.2 Model Building 196</p> <p>7.4.3 Model Fitting 197</p> <p>7.4.3.1 Fit Generator 197</p> <p>7.4.3.2 Validation of Accuracy and Loss Plot 197</p> <p>7.4.3.3 Testing and Prediction 198</p> <p>7.5 Conclusion 199</p> <p>References 199</p> <p><b>8 Personality Prediction and Handwriting Recognition Using Machine Learning 203<br /></b><i>Vishal Patil and Harsh Mathur</i></p> <p>8.1 Introduction to the System 204</p> <p>8.1.1 Assumptions and Limitations 206</p> <p>8.1.1.1 Assumptions 206</p> <p>8.1.1.2 Limitations 206</p> <p>8.1.2 Practical Needs 206</p> <p>8.1.3 Non-Functional Needs 206</p> <p>8.1.4 Specifications for Hardware 207</p> <p>8.1.5 Specifications for Applications 207</p> <p>8.1.6 Targets 207</p> <p>8.1.7 Outcomes 207</p> <p>8.2 Literature Survey 208</p> <p>8.2.1 Computerized Human Behavior Identification Through Handwriting Samples 208</p> <p>8.2.2 Behavior Prediction Through Handwriting Analysis 209</p> <p>8.2.3 Handwriting Sample Analysis for a Finding of Personality Using Machine Learning Algorithms 209</p> <p>8.2.4 Personality Detection Using Handwriting Analysis 210</p> <p>8.2.5 Automatic Predict Personality Based on Structure of Handwriting 210</p> <p>8.2.6 Personality Identification Through Handwriting Analysis: A Review 210</p> <p>8.2.7 Text Independent Writer Identification Using Convolutional Neural Network 210</p> <p>8.2.8 Writer Identification Using Machine Learning Approaches 211</p> <p>8.2.9 Writer Identification from HandwrittenText Lines 211</p> <p>8.3 Theory 212</p> <p>8.3.1 Pre-Processing 212</p> <p>8.3.2 Personality Analysis 215</p> <p>8.3.3 Personality Characteristics 216</p> <p>8.3.4 Writer Identification 217</p> <p>8.3.5 Features Used 219</p> <p>8.4 Algorithm To Be Used 220</p> <p>8.5 Proposed Methodology 224</p> <p>8.5.1 System Flow 225</p> <p>8.6 Algorithms <i>vs</i>. Accuracy 226</p> <p>8.6.1 Implementation 228</p> <p>8.7 Experimental Results 231</p> <p>8.8 Conclusion 232</p> <p>8.9 Conclusion and Future Scope 232</p> <p>Acknowledgment 232</p> <p>References 233</p> <p><b>9 Risk Mitigation in Children With Autism Spectrum Disorder Using Brain Source Localization 237<br /></b><i>Joy Karan Singh, Deepti Kakkar and Tanu Wadhera</i></p> <p>9.1 Introduction 238</p> <p>9.2 Risk Factors Related to Autism 239</p> <p>9.2.1 Assistive Technologies for Autism 240</p> <p>9.2.2 Functional Connectivity as a Biomarker for Autism 241</p> <p>9.2.3 Early Intervention and Diagnosis 242</p> <p>9.3 Materials and Methodology 243</p> <p>9.3.1 Subjects 243</p> <p>9.3.2 Methods 243</p> <p>9.3.3 Data Acquisition and Processing 243</p> <p>9.3.4 sLORETA as a Diagnostic Tool 244</p> <p>9.4 Results and Discussion 245</p> <p>9.5 Conclusion and Future Scope 247</p> <p>References 247</p> <p><b>10 Predicting Chronic Kidney Disease Using Machine Learning 251<br /></b><i>Monika Gupta and Parul Gupta</i></p> <p>10.1 Introduction 252</p> <p>10.2 Machine Learning Techniques for Prediction of Kidney Failure 253</p> <p>10.2.1 Analysis and Empirical Learning 254</p> <p>10.2.2 Supervised Learning 255</p> <p>10.2.3 Unsupervised Learning 256</p> <p>10.2.3.1 Understanding and Visualization 257</p> <p>10.2.3.2 Odd Detection 257</p> <p>10.2.3.3 Object Completion 258</p> <p>10.2.3.4 Information Acquisition 258</p> <p>10.2.3.5 Data Compression 258</p> <p>10.2.3.6 Capital Market 258</p> <p>10.2.4 Classification 259</p> <p>10.2.4.1 Training Process 260</p> <p>10.2.4.2 Testing Process 260</p> <p>10.2.5 Decision Tree 261</p> <p>10.2.6 Regression Analysis 263</p> <p>10.2.6.1 Logistic Regression 263</p> <p>10.2.6.2 Ordinal Logistic Regression 265</p> <p>10.2.6.3 Estimating Parameters 266</p> <p>10.2.6.4 Multivariate Regression 268</p> <p>10.3 Data Sources 269</p> <p>10.4 Data Analysis 272</p> <p>10.5 Conclusion 274</p> <p>10.6 Future Scope 274</p> <p>References 274</p> <p><b>Part III: Advanced Applications of Machine Learning in Healthcare 279</b></p> <p><b>11 Behavioral Modeling Using Deep Neural Network Framework for ASD Diagnosis and Prognosis 281<br /></b><i>Tanu Wadhera, Deepti Kakkar and Rajneesh Rani</i></p> <p>11.1 Introduction 282</p> <p>11.2 Automated Diagnosis of ASD 284</p> <p>11.2.1 Deep Learning 289</p> <p>11.2.2 Deep Learning in ASD 290</p> <p>11.2.3 Transfer Learning Approach 290</p> <p>11.3 Purpose of the Chapter 292</p> <p>11.4 Proposed Diagnosis System 293</p> <p>11.5 Conclusion 294</p> <p>References 295</p> <p><b>12 Random Forest Application of Twitter Data Sentiment Analysis in Online Social Network Prediction 299<br /></b><i>Arnav Munshi, M. Arvindhan and Thirunavukkarasu K.</i></p> <p>12.1 Introduction 300</p> <p>12.1.1 Motivation 300</p> <p>12.1.2 Domain Introduction 300</p> <p>12.2 Literature Survey 302</p> <p>12.3 Proposed Methodology 304</p> <p>12.4 Implementation 311</p> <p>12.5 Conclusion 311</p> <p>References 311</p> <p><b>13 Remedy to COVID-19: Social Distancing Analyzer 315<br /></b><i>Sourabh Yadav</i></p> <p>13.1 Introduction 315</p> <p>13.2 Literature Review 318</p> <p>13.3 Proposed Methodology 321</p> <p>13.3.1 Person Detection 321</p> <p>13.3.1.1 Frame Creation 324</p> <p>13.3.1.2 Contour Detection 325</p> <p>13.3.1.3 Matching with COCO Model 326</p> <p>13.3.2 Distance Calculation 326</p> <p>13.3.2.1 Calculation of Centroid 326</p> <p>13.3.2.2 Distance Among Adjacent Centroids 327</p> <p>13.4 System Implementation 328</p> <p>13.5 Conclusion 333</p> <p>References 334</p> <p><b>14 IoT-Enabled Vehicle Assistance System of Highway Resourcing for Smart Healthcare and Sustainability 337<br /></b><i>Shubham Joshi and Radha Krishna Rambola</i></p> <p>14.1 Introduction 338</p> <p>14.2 Related Work 340</p> <p>14.2.1 Adoption of IoT in Vehicle to Ensure Driver Safety 341</p> <p>14.2.2 IoT in Healthcare System 341</p> <p>14.2.3 The Technology Used in Assistance Systems 343</p> <p>14.2.3.1 Adaptive Cruise Control (ACC) 343</p> <p>14.2.3.2 Lane Departure Warning 343</p> <p>14.2.3.3 Parking Assistance 343</p> <p>14.2.3.4 Collision Avoidance System 343</p> <p>14.2.3.5 Driver Drowsiness Detection 344</p> <p>14.2.3.6 Automotive Night Vision 344</p> <p>14.3 Objectives, Context, and Ethical Approval 344</p> <p>14.4 Technical Background 345</p> <p>14.4.1 IoT With Health 345</p> <p>14.4.2 Machine-to-Machine (M2M) Communication 345</p> <p>14.4.3 Device-to-Device (D2D) Communication 345</p> <p>14.4.4 Wireless Sensor Network 346</p> <p>14.4.5 Crowdsensing 346</p> <p>14.5 IoT Infrastructural Components for Vehicle Assistance System 346</p> <p>14.5.1 Communication Technology 346</p> <p>14.5.2 Sensor Network 347</p> <p>14.5.3 Infrastructural Component 348</p> <p>14.5.4 Human Health Detection by Sensors 348</p> <p>14.6 IoT-Enabled Vehicle Assistance System of Highway Resourcing for Smart Healthcare and Sustainability 349</p> <p>14.7 Challenges in Implementation 353</p> <p>14.8 Conclusion 353</p> <p>References 354</p> <p><b>15 Aids of Machine Learning for Additively Manufactured Bone Scaffold 359<br /></b><i>Nimisha Rahul Shirbhate and Sanjay Bokade</i></p> <p>15.1 Introduction 360</p> <p>15.1.1 Bone Scaffold 360</p> <p>15.1.2 Bone Grafting 362</p> <p>15.1.3 Comparison Bone Grafting and Bone Scaffold 363</p> <p>15.2 Research Background 364</p> <p>15.3 Statement of Problem 364</p> <p>15.4 Research Gap 365</p> <p>15.5 Significance of Research 366</p> <p>15.6 Outline of Research Methodology 366</p> <p>15.6.1 Customized Design of Bone Scaffold 366</p> <p>15.6.2 Manufacturing Methods and Biocompatible Material 367</p> <p>15.6.2.1 Conventional Scaffold Fabrication 368</p> <p>15.6.2.2 Additive Manufacturing 369</p> <p>15.6.2.3 Application of Additive Manufacturing/3D Printing in Healthcare 370</p> <p>15.6.2.4 Automated Process Monitoring in 3D Printing Using Supervised Machine Learning 376</p> <p>15.7 Conclusion 377</p> <p>References 377</p> <p>Index 381</p>
<p><b>Monika Mangla,</b> received her PhD from Thapar Institute of Engineering & Technology, Patiala, Punjab, in 2019. Currently, she is working as an assistant professor in the Department of Computer Engineering at Lokmanya Tilak College of Engineering (LTCoE), Navi Mumbai.</p> <p><b>Nonita Sharma </b>is working as assistant professor, National Institute of Technology, Jalandhar. She received the B. Tech degree in Computer Science Engineering in 2002, the M. Tech degree in Computer Science engineering in 2004, and her PhD degree in Wireless Sensor Network from the National Institute of Technology, Jalandhar, India in 2017. <p><b>Poonam Mittal</b> received her PhD from J.C Bose University of Science and Technology YMCA, Faridabad, India, in 2019. Currently, she is working as an assistant professor in the Department of Computer Engineering at J.C Bose University of Science and Technology YMCA, Faridabad, India. <p><b>Vaishali Mehta Wadhwa</b> obtained her PhD in Facility Location Problems from Thapar University. Her research interests include approximation algorithms, location modeling, IoT, cloud computing and machine learning. She has multiple articles and 2 patents to her name. <p><b>Thirunavakkarasu K. </b>is a distinguished academician with over twenty-two years of experience in teaching and working in the software industry. Curently, he is heading the Department of BCA and Specialization at Galgotias University. He has done Bachelor in computer science from the University of Madras in 1994 and received 3 master’s degrees in computer science. <p><b>Shahnawaz Khan </b>is an assistant professor and serving as Secretary-General of Scientific Research Council at University College of Bahrain. He holds a PhD (Computer Science) from the Indian Institute of Technology (BHU), India.
<p><b>The book aims to devise new machine learning paradigms to address prevalent challenges in the field of healthcare from multiple perspectives.</b> <p>Internet of Things (IoT) refers to the computer network consisting of ‘things’ or physical objects. These things comprise sensors or software or a method to connect and exchange data with other devices. This book, <i>Emerging Technologies for Healthcare,</i> focuses primarily on the use and applications of IoT and deep learning approaches for providing automated healthcare solutions. It gives insightful information of data and provides feasible solutions through various approaches of machine learning and its applicability to disease analysis and prediction. An example of this is employing a three-dimensional matrix approach for treating chronic kidney disease, the diagnosis and prognostication of acquired demyelinating syndrome (ADS) and autism spectrum disorder, and the detection of pneumonia. In addition to this, providing healthcare solutions for post COVID-19 outbreaks through various suitable approaches is also highlighted. Furthermore, a detailed detection mechanism is discussed which is used to come up with solutions for predicting personality through handwriting recognition; and novel approaches for sentiment analysis are also discussed with sufficient data and its dimensions. <p>This book covers not only theoretical approaches and algorithms, but also contains a sequence of steps to analyze problems with data, process, reports, and optimization techniques. The book serves to be a single source for various problem-solving by machine learning algorithms. It begins with IoT-based solutions for the automated healthcare sector and extends to providing solutions of deep learning as an advanced technology. <p><b>Audience</b><br> The book will be used by research scholars, engineers, IT professionals, IT manufacturing industries involved in the associated healthcare fields, network administrators, health care practitioners, cybersecurity experts, and government research agencies.

Diese Produkte könnten Sie auch interessieren:

MDX Solutions
MDX Solutions
von: George Spofford, Sivakumar Harinath, Christopher Webb, Dylan Hai Huang, Francesco Civardi
PDF ebook
53,99 €
Concept Data Analysis
Concept Data Analysis
von: Claudio Carpineto, Giovanni Romano
PDF ebook
107,99 €
Handbook of Virtual Humans
Handbook of Virtual Humans
von: Nadia Magnenat-Thalmann, Daniel Thalmann
PDF ebook
150,99 €