Details

Emerging Technologies for Health and Medicine


Emerging Technologies for Health and Medicine

Virtual Reality, Augmented Reality, Artificial Intelligence, Internet of Things, Robotics, Industry 4.0
1. Aufl.

von: Dac-Nhuong Le, Chung Van Le, Jolanda G. Tromp, Gia Nhu Nguyen

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.11.2018
ISBN/EAN: 9781119509851
Sprache: englisch
Anzahl Seiten: 318

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Showcases the latest trends in new virtual/augmented reality healthcare and medical applications and provides an overview of the economic, psychological, educational and organizational impacts of these new applications and how we work, teach, learn and provide care.</b></p> <p>With the current advances in technology innovation, the field of medicine and healthcare is rapidly expanding and, as a result, many different areas of human health diagnostics, treatment and care are emerging. Wireless technology is getting faster and 5G mobile technology allows the Internet of Medical Things (IoMT) to greatly improve patient care and more effectively prevent illness from developing.</p> <p>This book provides an overview and review of the current and anticipated changes in medicine and healthcare due to new technologies and faster communication between users and devices.</p> <p>The groundbreaking book presents state-of-the-art chapters on many subjects including:</p> <ul> <li>A review of the implications of Virtual Reality (VR) and Augmented Reality (AR) healthcare applications</li> <li>A review of current augmenting dental care</li> <li>An overview of typical human-computer interaction (HCI) that can help inform the development of user interface designs and novel ways to evaluate human behavior to responses in VR and other new technologies</li> <li>A review of telemedicine technologies</li> <li>Building empathy in young children using augmented reality</li> <li>AI technologies for mobile health of stroke monitoring & rehabilitation robotics control</li> <li>Mobile doctor brain AI App</li> <li>An artificial intelligence mobile cloud computing tool</li> <li>Development of a robotic teaching aid for disabled children</li> <li>Training system design of lower limb rehabilitation robot based on virtual reality</li> </ul>
<p>List of Figures xiii</p> <p>List of Tables xix</p> <p>Foreword xxi</p> <p>Preface xxiii</p> <p>Acknowledgments xxix</p> <p>Acronyms xxxi</p> <p><b>Part I Virtual Reality, Augmented Reality Technologies and Applications for Health and Medicine</b></p> <p><b>1 Reviews of the Implications of VR/AR Health Care Applications 3<br /></b><i>Muhammad Sharif, Ghulam Jillani Ansari, Mussarat Yasmin, Steven Lawrence Fernandes</i></p> <p>1.1 Introduction 4</p> <p>1.2 Virtual Reality and Augmented Reality 5</p> <p>1.2.1 Virtual Realty 5</p> <p>1.2.2 Augmented Reality or Mixed Reality 6</p> <p>1.2.3 Line of Difference between VR/AR 6</p> <p>1.2.4 Formats and Design Elements of VR/AR Technology 7</p> <p>1.2.5 Presence, Reality and Realism 8</p> <p>1.3 Features of VR/AR Technology in Health Care 9</p> <p>1.3.1 Implications of VR/AR Technology in Health Care Services and Applications 9</p> <p>1.3.2 Health Care Services 9</p> <p>1.3.3 Health Care Applications 11</p> <p>1.4 Future Assessments in VR/AR Technology 14</p> <p>1.5 Key Challenges for Adopting VR/AR Technology 14</p> <p>1.6 Conclusion 15</p> <p>References 15</p> <p><b>2 Using 3D Simulation in Medical Education: A Comparative Test of Teaching Anatomy using VR 21<br /></b><i>Chung Van Le, J.G. Tromp, Vikram Puri</i></p> <p>2.1 Introduction 22</p> <p>2.2 Literature Review of Training with Medical VR 23</p> <p>2.3 Methodology of this Study 24</p> <p>2.4 Results 26</p> <p>2.5 Discussion 29</p> <p>References 30</p> <p><b>3 Building Empathy in Young Children using Augmented Reality: A Case Study in Malaysia 35<br /></b><i>N.Zamin, F.A.Khairuddin, D.R.A.Rambli, E.N.M.Ibrahim, M.S.A.Soobni</i></p> <p>3.1 Introduction 36</p> <p>3.2 Motivations 36</p> <p>3.3 Literature Review 36</p> <p>3.4 Proposed Approach 38</p> <p>3.5 Results and Discussions 38</p> <p>3.6 Conclusions 41</p> <p>References 41</p> <p><b>4 Effectiveness of Virtual Reality Mock Interview Training 43<br /></b><i>J. Garcia, J. Tromp, H. Seaton</i></p> <p>4.1 Introduction 44</p> <p>4.2 Virtual Reality Training Literature Review 44</p> <p>4.3 Methodology 45</p> <p>4.3.1 Participants 45</p> <p>4.3.2 Materials 46</p> <p>4.3.3 Procedure 47</p> <p>4.4 Results 47</p> <p>4.5 Disscussion 48</p> <p>4.6 Conclusions 49</p> <p>References 50</p> <p><b>5 Augmenting Dental Care: A Current Perspective 51<br /></b><i>Anand Nayyar, Gia Nhu Nguyen</i></p> <p>5.1 Introduction 52</p> <p>5.1.1 Origin of Augmented Reality 52</p> <p>5.1.2 History of Augmented Reality 53</p> <p>5.2 Augmented Reality Technology in Medical Technology 53</p> <p>5.3 Existing Technologies in Medical/Healthcare Technology 55</p> <p>5.4 Augmenting Dental Care-AR Technologies assisting Dentists for Dental Care 55</p> <p>5.4.1 Augmented Reality Technologies in Oral and Maxillofacial Surgery 56</p> <p>5.4.2 Augmented Reality Technologies in Dental Implant Surgery 58</p> <p>5.4.3 Augmented Reality Technologies in Orthognathic Surgery 59</p> <p>5.4.4 Augmented Reality Apps in Dental Applications 61</p> <p>5.5 Augmented Reality in Dental Education 61</p> <p>5.6 Augmented Reality based Education Technologies for Dentistry 62</p> <p>5.6.1 DentSim 62</p> <p>5.6.2 The Virtual Dental Patient: System for Virtual Teeth Drilling 63</p> <p>5.6.3 Mobile AR Systems for Dental Morphology Learning 64</p> <p>5.6.4 Periosim 64</p> <p>5.7 Conclusion 65</p> <p>References 65</p> <p><b>6 Review of Virtual Reality Evaluation Methods and Psychophysiological Measurement Tools 69<br /></b><i>M.A. Munoz, J.G. Tromp, Cai Zhushun</i></p> <p>6.1 Science Can Help Inform Virtual Reality Development 70</p> <p>6.1.1 Objectives of Evaluations 71</p> <p>6.1.2 Test Oft en and Test Early 73</p> <p>6.1.3 Testing Options in the Early Pre-Prototype Phase 77</p> <p>6.2 Virtual Reality Can Help Inform Psychology and Science 78</p> <p>6.3 Types of Psychophysiological Measures and Tools 79</p> <p>6.3.1 Electrodermal Activity 79</p> <p>6.3.2 Cardiovascular activity 79</p> <p>6.3.3 Muscular Activity: Facial Expressions 80</p> <p>6.3.4 Electrical brain activity: Electroencephalography 81</p> <p>6.4 Outcome of the Evaluation 82</p> <p>6.5 Conclusions 83</p> <p>References 83</p> <p><b>Part II Artificial Intelligence Technologies and Applications for Health and Medicine</b></p> <p><b>7</b> <b>AI Technologies for Mobile Health of Stroke Monitoring & Rehabilitation Robotics Control 89<br /></b><i>B.M. Elbagoury, M.B.H.B. Shalhoub, M.I. Roushdy, Thomas Schrader</i></p> <p>7.1 Introduction 90</p> <p>7.2 Research Chapter Objectives 92</p> <p>7.3 Literature Review 92</p> <p>7.3.1 Pervasive Computing and Mobile Health Technologies 92</p> <p>7.3.2 Rehabilitation Robotics for Stroke Patients 93</p> <p>7.4 Description of the Research Telemedicine Platform 94</p> <p>7.4.1 A State of the Art Telemedicine Robot Rehabilitation System 94</p> <p>7.4.2 Wireless telemedicine module with robot 96</p> <p>7.4.3 Wireless intelligence sensor network extract user’s biofeedback signal 96</p> <p>7.5 A proposed intelligent adaptive behavior control to rehabilitation robotics 96</p> <p>7.6 Materials and Methods 98</p> <p>7.7 Conclusion Summary: Artificial Intelligence Technologies 98</p> <p>References 100</p> <p><b>8 Artificial Intelligence for Smart Cancer Diagnosis 103<br /></b><i>M.H.B. Shalhoub, Naif M. Hassan Bin Shalhoub, Bassant M. Elbagoury, Abdel-Badeeh M. Salem</i></p> <p>8.1 Introduction 104</p> <p>8.2 Background and Related work 105</p> <p>8.2.1 De-noising methods 105</p> <p>8.2.2 Image Segmentation Overview 106</p> <p>8.3 Proposed System Architecture 107</p> <p>8.4 Telemedicine System Modules 109</p> <p>8.4.1 Image Compression 109</p> <p>8.4.2 Image Enhancement and Region of Interest Segmentation 110</p> <p>8.5 Results and discussion 113</p> <p>8.6 Conclusion and Future Work 114</p> <p>References 114</p> <p><b>9 Mobile Doctor Brain AI App: Artificial Intelligence for IoT Healthcare 117<br /></b><i>Bassant M.Elbagoury, Ahmed A.Bakr, Mohamed Roushdy, Th omas Schrader</i></p> <p>9.1 Introduction 118</p> <p>9.2 State of the Art 118</p> <p>9.2.1 Mobile Doctor AI App for Stroke Emergency in Haij Crowd 118</p> <p>9.2.2 Proposed Architecture 119</p> <p>9.3 Proposed System Design 120</p> <p>9.3.1 AI Telemedicine Platform and Proposed System Architecture 120</p> <p>9.3.2 Wireless intelligence sensor network extract user’s biofeedback signal 121</p> <p>9.4 Proposed Artificial Intelligence Techniques for New AI IoT Health-Care Solutions for Stroke Monitoring 122</p> <p>9.4.1 Support vector machine (SVM) 122</p> <p>9.4.2 Case-based Reasoning 125</p> <p>9.4.3 Particle Swarm Intelligence and ARX Model for Stroke Motion Estimation and Optimization 126</p> <p>9.5 Conclusion 126</p> <p>References 126</p> <p><b>10 An Artificial Intelligence Mobile Cloud Computing Tool 129<br /></b><i>M. Hassan Bin Shalhoub, Mohammed H. Bin Shalhoub, Mariam Marzouq Al-Otaibi, Bassant M. Elbagoury</i></p> <p>10.1 Introduction 130</p> <p>10.2 Background and State-of-the-Art 130</p> <p>10.3 Development and Proposing a New Intelligent case-based Reasoning Decision Engine for Cacer Diagnosis 131</p> <p>10.4 Experimental Results of the Proposed System 132</p> <p>10.5 Conclusion 133</p> <p>References 133</p> <p><b>11 Advanced Intelligent Robot Control Interfaces for the VR Simulation 137<br /></b><i>Gal IonelAlexandru, Vladareanu Luige and Shuang Cang</i></p> <p>11.1 Introduction 138</p> <p>11.2 Proposed Mechanical Structure 138</p> <p>11.3 Unit 3D Integration 139</p> <p>11.4 Results 148</p> <p>11.5 Conclusion 150</p> <p>Acknowledgments 150</p> <p>References 150</p> <p><b>12 Analysis of Telemedicine Technologies 153<br /></b><i>Vikram Puri, Jolanda G Tromp, Noell C.L. Leroy, Chung Le Van, Nhu Gia Nguyen</i></p> <p>12.1 Introduction 154</p> <p>12.2 Literature Review 154</p> <p>12.3 Architecture of Telemedicine Technologies 155</p> <p>12.4 Enabling Technologies for Telemedicine 156</p> <p>12.4.1 Telehealth for Congestive Heart Failure 156</p> <p>12.4.2 Telemedicine for the Veterans 157</p> <p>12.4.3 Tele-ICU (Intensive Care Unit) 157</p> <p>12.4.4 Helping Patients Adhere to Medication Regimes 158</p> <p>12.4.5 eReferral - reduces consultation time 158</p> <p>12.5 Conclusion 159</p> <p>References 159</p> <p><b>Part III Robotics Technologies and Applications for Health and Medicine</b></p> <p><b>13 Critical Position using Environment Model Applied on Walking Robots 165<br /></b><i>M. Migdalovici, L. Vladareanu, N. Pop, H. Yu, M. Iliescu, V. Vladareanu, D. Baran, G. Vladeanu</i></p> <p>13.1 Introduction 166</p> <p>13.2 On the Environment’s Mathematical Model 166</p> <p>13.3 Physical and Mathematical Models of the Walking Robot Leg 169</p> <p>13.4 On Critical Positions of 3D Walking Robots 171</p> <p>13.5 Mathematical model of beam without damping 173</p> <p>13.6 Mathematical Model of Beam with Viscous Damping 175</p> <p>13.7 Conclusion 175</p> <p>References 176</p> <p><b>14 The Walking Robot Equilibrium Recovery Applied on the NAO Robot 179<br /></b><i>N. Pop, L. Vladareanu, H.Wang, M. Ungureanu, M. Migdalovici, V. Vladareanu, Y. Feng, M. Lin, E. P. Mastan and I. El Emary</i></p> <p>14.1 Introduction 180</p> <p>14.2 The Choice of the Model 180</p> <p>14.3 Mathematical Modeling of Twolink Biped Walking Robot 181</p> <p>14.4 Linear Control Design 182</p> <p>14.4.1 Linear Quadratic Regulator 183</p> <p>14.4.2 Numerical Results using MATLAB 184</p> <p>14.5 Results and Discussion 187</p> <p>14.6 Conclusions 188</p> <p>References 188</p> <p><b>15 Development of a Robotic Teaching Aid for Disabled Children in Malaysia 191<br /></b><i>N.Zamin, N.I. Arshad, N. Rafiey and A.S. Hashim</i></p> <p>15.1 Introduction 192</p> <p>15.2 Case Study - Autism 192</p> <p>15.3 Movitations 192</p> <p>15.4 Proposed Approach 193</p> <p>15.5 Results and Discussions 195</p> <p>15.6 Robotic Intervention Enhance Autistic Students’ Engagement, Interaction and Focus 197</p> <p>15.7 Conclusion 200</p> <p>References 200</p> <p><b>16 Training System Design of Lower Limb Rehabilitation Robot based on Virtual Reality 203<br /></b><i>H. Wang, M. Lin, Z. Jin, X. Wang, J. Niu, H. Yu, L. Zhang, L. Vladareanu</i></p> <p>16.1 Introduction 204</p> <p>16.2 Application Device 204</p> <p>16.2.1 Lower Limb Rehabilitation Robot 204</p> <p>16.2.2 Necessary Sensor Element 205</p> <p>16.3 Trajectory Planning and Smooth Motion 206</p> <p>16.3.1 Design of Training Velocity and Acceleration with Linear Path 206</p> <p>16.3.2 Design of Training Velocity and Acceleration with Circle Path 208</p> <p>16.3.3 Design of Training Velocity and Acceleration with Arbitrary Trajectory 209</p> <p>16.3.4 The Analysis of Ambiguous Points 209</p> <p>16.3.5 The Simulation of Training Velocity and Acceleration in the Planning Trajectory 209</p> <p>16.4 Virtual Reality Training System 212</p> <p>16.4.1 Design of Intention Judgment of Patients 213</p> <p>16.4.2 Design of Adapting Training Posture Function 215</p> <p>16.4.3 Interaction Control Strategy 215</p> <p>16.5 Virtual Reality Software Design 216</p> <p>16.5.1 Virtual Scene Build 216</p> <p>16.5.2 Game Function Design 217</p> <p>16.6 Virtual Reality Training Experiment 219</p> <p>16.6.1 Model Synchronization Test 219</p> <p>16.6.2 Feedback Terrains Test 219</p> <p>16.7 Conclusion 220</p> <p>Contributions 220</p> <p>Acknowledgements 220</p> <p>References 220</p> <p><b>Part IV Internet of Things Technologies and Applications for Health and Medicine</b></p> <p><b>17 Automation of Appliances Using Electroencephalography 225<br /></b><i>Shivam Kolhe, Dhaval Khemani, Chintan Bhatt, and Nilesh Dubey</i></p> <p>17.1 Introduction 226</p> <p>17.2 Background, History and Future Aspects 226</p> <p>17.3 Brain with its Main Parts and Their Functions 227</p> <p>17.3.1 Central Nervous System 228</p> <p>17.3.2 Peripheral Nervous System 229</p> <p>17.3.3 How are the Brain Signals Generated 230</p> <p>17.3.4 What is Neuron Synapse? 232</p> <p>17.4 Working of BCI 233</p> <p>17.4.1 Types of Waves Generated and Detected by Brain 234</p> <p>17.4.2 How to Perform Electroencephalogram 236</p> <p>17.4.3 How to Take Measurements of the Head 237</p> <p>17.4.4 How are EEG Signals Recorded 238</p> <p>17.4.5 Methods to Display EEG on Screen 239</p> <p>17.4.6 Eye Blink EEG Patterns 240</p> <p>17.5 BCI Classes 241</p> <p>17.5.1 Applications of BCI 242</p> <p>17.5.2 Challenges BCI is facing 242</p> <p>17.6 Conclusion 243</p> <p>References 243</p> <p><b>18 Designing a Beautiful Life for Indian Blind Peoples: A Smart Stick 245<br /></b><i>Aatrey Vyas, Dhaval Bhimani, Smit Patel, Hardik Mandora, Chintan Bhatt</i></p> <p>18.1 Introduction 246</p> <p>18.2 Internet of Things 246</p> <p>18.3 Background 247</p> <p>18.4 Purpose Approach 248</p> <p>18.4.1 Ultrasonic Sensor 248</p> <p>18.4.2 NodeMCU 249</p> <p>18.4.3 Global positioning system (GPS) 249</p> <p>18.4.4 Buzzer 250</p> <p>18.4.5 Flow Diagram 251</p> <p>18.5 Implementation 251</p> <p>18.6 Advantages and Disadvantages 256</p> <p>18.7 Conclusion 257</p> <p>References 258</p> <p><b>19 Smart Home: Personal Assistant and Baby Monitoring System 259<br /></b><i>Shivam Kolhe, Sonia Nagpal, Priya Makwana, Chintan Bhatt</i></p> <p>19.1 Introduction 260</p> <p>19.2 Background 261</p> <p>19.3 Proposed Design and Implementation 261</p> <p>19.3.1 Smart Home Personal Assistant 262</p> <p>19.3.2 Baby Monitoring System 265</p> <p>19.4 Online Energy Meter 268</p> <p>19.5 Sensors used and Their Working 269</p> <p>19.5.1 Temperature Sensor 269</p> <p>19.5.2 Soil Moisture Sensor 270</p> <p>19.5.3 PIR (Passive InfraRed) Sensor 272</p> <p>19.6 Conclusion 283</p> <p>References 284</p>
<p><b>Dac-Nhuong Le</b> obtained his PhD in computer science from Vietnam National University, Vietnam in 2015. He is Deputy-Head of Faculty of Information Technology, Haiphong University, Vietnam. His area of research includes: evaluation computing and approximate algorithms, network communication, security and vulnerability, network performance analysis and simulation, cloud computing, IoT and image processing in biomedicine. He has authored 4 computer science books and has multiple research articles in international journals. <p><b>Chung Van Le</b> is the Vice-Director at the Centre of Visualization and Simulation and Lead Software Developer for 3D virtual body system for teaching anatomy and virtual endoscopic techniques for medical students at Duy Tan University in Vietnam. <p><b>Jolanda G. Tromp</b> is a VR/AR/AI/IoT Human-Computer Interaction expert for user-centered design and evaluation for new technologies, with 20 years' experience as a principal Usability Investigator. She has a PhD in Systematic Usability Design and Evaluation for Collaborative Virtual Environments, 2001, University of Nottingham, United Kingdom and a BSc in Psychology (with honors) from the University of Amsterdam, Holland. She is a research consultant for the Center of Visualization and Simulation and the Duy Tan University, Vietnam; for the Mixed Reality Task Group of the State University of New York; and for the Global Simulations Working Group. <p><b>Nguyen Gia Nhu</b>, received his PhD degree in computer science from Ha Noi University of Science, Vietnam National University, Vietnam. He is now the Vice Dean of Graduate School at Duy Tan University. He has more than 40 publications in reputed international conferences, journals and book chapter contributions. His research interests include algorithm theory, network optimization and wireless security.
<p><b>Showcases the latest trends in new virtual/augmented reality healthcare and medical applications and provides an overview of the economic, psychological, educational and organizational impacts of these new applications and how we work, teach, learn and provide care.</b> <p>With the current advances in technology innovation, the field of medicine and healthcare is rapidly expanding and, as a result, many different areas of human health diagnostics, treatment and care are emerging. Wireless technology is getting faster and 5G mobile technology allows the Internet of Medical Things (IoMT) to greatly improve patient care and more effectively prevent illness from developing. <p>This book provides an overview and review of the current and anticipated changes in medicine and healthcare due to new technologies and faster communication between users and devices. <p>The groundbreaking book presents state-of-the-art chapters on many subjects including: <ul> <li>A review of the implications of Virtual Reality (VR) and Augmented Reality (AR) healthcare applications</li> <li>A review of current augmenting dental care</li> <li>An overview of typical human-computer interaction (HCI) that can help inform the development of user interface designs and novel ways to evaluate human behavior to responses in VR and other new technologies</li> <li>A review of telemedicine technologies</li> <li>Building empathy in young children using augmented reality</li> <li>AI technologies for mobile health of stroke monitoring & rehabilitation robotics control</li> <li>Mobile doctor brain AI App</li> <li>An artificial intelligence mobile cloud computing tool</li> <li>Development of a robotic teaching aid for disabled children</li> <li>Training system design of lower limb rehabilitation robot based on virtual reality</li> </ul> <p><b>Audience</b> <p>This book is intended for academic and industrial engineers exploring and developing applications in virtual/augmented reality, artificial intelligence and the Internet of Things in the healthcare and medical fields. The book is also suitable for course adoption because it showcases how to develop and evaluate complex novel technologies and how to establish good user-experience, user-interface and return on investment.

Diese Produkte könnten Sie auch interessieren:

MDX Solutions
MDX Solutions
von: George Spofford, Sivakumar Harinath, Christopher Webb, Dylan Hai Huang, Francesco Civardi
PDF ebook
53,99 €
Concept Data Analysis
Concept Data Analysis
von: Claudio Carpineto, Giovanni Romano
PDF ebook
107,99 €
Handbook of Virtual Humans
Handbook of Virtual Humans
von: Nadia Magnenat-Thalmann, Daniel Thalmann
PDF ebook
150,99 €