Details

Emerging Fluorinated Motifs


Emerging Fluorinated Motifs

Synthesis, Properties and Applications
1. Aufl.

von: Dominique Cahard, Jun-An Ma

331,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 03.04.2020
ISBN/EAN: 9783527824328
Sprache: englisch
Anzahl Seiten: 872

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A must-have resource for all the researchers working in the organofluorine and related fields <br> <br> This timely two-volume set uniquely focuses on emerging fluorinated motifs beyond R-CF3 and R-F, like R-CF2H, R-OCF3, R-SCF3 and R-SF5. It also offers descriptions of the properties, synthesis, and applications of these emerging fluorinated motifs in order to help readers design new chemical entities, while providing new interest for researchers in organofluorine chemistry and new tools for those in other areas. <br> <br> Emerging Fluorinated Motifs: Synthesis, Properties and Applications begins with a description of carbon-linked fluorine-containing groups that include monofluoromethyl and difluoromethyl groups. It then details combinations of heteroatoms, Oxygen, Sulfur, Selenium, Nitrogen, and Phosphorus with fluorine-containing groups, outlining subsections of the most popular current motifs. Fluoroalkyl ethers, thioethers, and the recent blossoming of the SF5 unit is covered. Other chapters look at: selenium-linked fluorine-containing motifs; construction of N?CF2H, N?CF3, N?CH2CF3 motifs; and the synthesis and applications of P¿Rf-containing molecules. <br> <br> -Focuses on the synthesis, properties, and applications of emerging fluorinated motifs <br> -Covers carbon-linked fluorine-containing motifs, oxygen-linked fluorine-containing motifs, sulfur-linked fluorine-containing motifs, and more <br> -Appeals to academic and industrial researchers working in organic chemistry, medicinal chemistry, food chemistry, and materials science <br> -Edited by world-renowned experts in organofluorine chemistry <br> <br> Emerging Fluorinated Motifs is intended for academic research institutes, university libraries, researchers, graduate students, postdoctors, and researchers in the chemical industry. <br>
<p>Preface xiii</p> <p><b>Volume 1</b></p> <p><b>Part I Carbon‐Linked Fluorine‐Containing Motifs 1</b></p> <p><b>1 Difluoromethylation and Difluoroalkylation of (Hetero)Arenes: Access to Ar(Het)–CF<sub>2</sub>H and Ar(Het)–CF<sub>2</sub>R 3<br /></b><i>Yu‐Lan Xiao and Xingang Zhang</i></p> <p>1.1 Introduction 3</p> <p>1.2 Difluoromethylation of (Hetero)aromatics 3</p> <p>1.2.1 Transition‐Metal‐Mediated/Catalyzed Nucleophilic Difluoromethylation of (Hetero)aromatics 3</p> <p>1.2.2 Catalytic Metal‐Difluorocarbene‐Involved Coupling (MeDIC) Reaction 10</p> <p>1.2.3 Transition‐Metal‐Catalyzed Radical Difluoromethylation of (Hetero)aryl Metals/Halides and Beyond 11</p> <p>1.2.4 Radical C─H Bond Difluoromethylation of (Hetero)aromatics 19</p> <p>1.3 Difluoroalkylation of Aromatics 22</p> <p>1.3.1 Transition‐Metal‐Catalyzed Phosphonyldifluoromethylation of (Hetero)aromatics 23</p> <p>1.3.2 Transition‐Metal‐Catalyzed Difluoroacetylation of (Hetero)aromatics and Beyond 26</p> <p>1.3.3 Other Catalytic Difluoroalkylations of (Hetero)aromatics 37</p> <p>1.4 Outlook 39</p> <p>References 42</p> <p><b>2 Difluoromethylation and Difluoroalkylation of Aliphatic Unsaturated C=C, C≡C, and −N=C Bonds 47<br /></b><i>Sebastian Barata‐Vallejo and Al Postigo</i></p> <p>2.1 Introduction 47</p> <p>2.2 Difluoromethylation of C═C Double Bonds 49</p> <p>2.2.1 Intermolecular Difunctionalization of C═C Double Bonds 56</p> <p>2.2.1.1 By Means of BrCF<sub>2</sub>P(O)(OR)<sub>2</sub> 56</p> <p>2.2.1.2 By Means of Ph<sub>3</sub>P<sup>+</sup>CF<sub>2</sub>CO<sub>2</sub><sup>−</sup> 59</p> <p>2.2.1.3 By Means of HCF<sub>2</sub>R (R = CO<sub>2</sub>H, SO<sub>2</sub>NHNHBoc) 62</p> <p>2.2.1.4 By Means of Selectfluor 65</p> <p>2.2.1.5 By Means of BrCF<sub>2</sub>CO<sub>2</sub>Et 66</p> <p>2.2.2 Difluoromethylation of C═C Double Bonds and Subsequent Cyclization 69</p> <p>2.2.3 Difluoromethylation of C═C Double Bonds with Rearrangements 73</p> <p>2.3 Difluoromethylation of Isocyanides 76</p> <p>2.4 Difluoromethylation of Alkynes 79</p> <p>2.5 Conclusion and Perspectives 82</p> <p>References 85</p> <p><b>3 Difluoromethylation and Difluoroalkylation in C(sp<sup>3</sup>) Centers and C</b><b>═</b><b>O, C</b><b>═</b><b>C, and C</b><b>═</b><b>N Bonds 89<br /></b><i>Qiqiang Xie and Jinbo Hu</i></p> <p>3.1 Nucleophilic Difluoromethylation and Difluoroalkylation 89</p> <p>3.1.1 By Means of XCF<sub>2</sub>PO(OEt)<sub>2</sub> 89</p> <p>3.1.2 By Means of BrCF<sub>2</sub>CO<sub>2</sub>Et and BrCF<sub>2</sub>CH<b>═</b>CH<sub>2</sub> 89</p> <p>3.1.3 By Means of Difluoromethylcadmium, Difluoromethylcopper, and Difluoromethylzinc Reagents 90</p> <p>3.1.4 By Means of Difluoroalkylated Sulfone Reagents (XCF<sub>2</sub>SO<sub>2</sub>Ar) and Difluoromethylated Sulfoxides 90</p> <p>3.1.5 By Means of Difluoroalkylated Silanes and Trifluoromethylsilane Reagents 94</p> <p>3.1.6 By Means of Difluoromethyl Sulfoximine Reagent 96</p> <p>3.1.7 Miscellaneous Reagents 96</p> <p>3.2 Electrophilic Difluoromethylation and Difluoroalkylation 97</p> <p>3.2.1 By Means of Difluorocarbene Reagents 97</p> <p>3.2.2 By Means of CF<sub>3</sub>X (X ═ H, I, TMS) Reagents 99</p> <p>3.2.3 By Means of I(III)–CF<sub>2</sub>SO<sub>2</sub>Ph Reagent 100</p> <p>3.2.4 By Means of <i>S</i>‐((Phenylsulfonyl)difluoromethyl)thiophenium Salts 100</p> <p>3.3 Free Radical Difluoromethylation and Difluoroalkylation 101</p> <p>3.3.1 By Means of Iododifluoroacetates 101</p> <p>3.3.2 By Means of CF<sub>2</sub>Br<sub>2</sub>, CF<sub>2</sub>BrCl, or TMSCF<sub>2</sub>Br 102</p> <p>3.3.3 By Means of Phosphorus‐containing Reagents 103</p> <p>3.3.4 By Means of BrCF<sub>2</sub>CO<sub>2</sub>Et 104</p> <p>3.3.5 By Means of Halodifluoroketone or ‐Amide 107</p> <p>3.3.6 By Means of HCF<sub>2</sub>I and PhCH<sub>2</sub>CF<sub>2</sub>I 107</p> <p>3.3.7 By Means of HCF<sub>2</sub>SO<sub>2</sub>Cl and HCF<sub>2</sub>SO<sub>2</sub>Na or Zn(SO<sub>2</sub>CF<sub>2</sub>H)<sub>2</sub> 108</p> <p>3.3.8 By Means of Difluoromethylated Sulfones, Sulfoximines, Thioethers, and Sulfonium Salts 109</p> <p>3.3.9 By Means of TMSCF<sub>2</sub>CO<sub>2</sub>Et and ArCF<sub>2</sub>CO<sub>2</sub>H 112</p> <p>References 112</p> <p><b>4 Monofluoromethylation Reactions of Aliphatic Substrates and (Hetero)Arenes 119<br /></b><i>Qiqiang Xie and Jinbo Hu</i></p> <p>4.1 Nucleophilic Monofluoromethylation 119</p> <p>4.1.1 By Means of Fluoromalonates 119</p> <p>4.1.2 By Means of Fluoromethyl Phenyl Sulfone 119</p> <p>4.1.3 By Means of Fluorobis(phenylsulfonyl)methane 121</p> <p>4.1.4 By Means of 2‐Fluoro‐2‐Sulfonylketone 122</p> <p>4.1.5 By Means of 2‐Fluoro‐1,3‐benzodithiole‐1,1,3,3‐tetraoxide (FBDT) 123</p> <p>4.1.6 By Means of TMSCF(SO<sub>2</sub>Ph)<sub>2</sub> (TFBSM) 123</p> <p>4.1.7 By Means of PhSO(NTBS)CH<sub>2</sub>F 123</p> <p>4.1.8 By Means of CH<sub>2</sub>FI 124</p> <p>4.1.9 By Means of Monofluoromethyl Phosphonium Salts 124</p> <p>4.2 Electrophilic Monofluoromethylation 125</p> <p>4.2.1 By Means of CH<sub>2</sub>FX (X = Cl, Br, I, OTf, OTs, OMs) 125</p> <p>4.2.2 By Means of <i>S</i>‐(monofluoromethyl)diarylsulfonium Tetrafluoroborate 125</p> <p>4.2.3 By Means of Monofluoromethylsulfoxinium Salts 126</p> <p>4.2.4 By Means of Monofluoromethylsulfonium Ylides 127</p> <p>4.2.5 By Means of Monofluoromethyl Phosphonium Salts 127</p> <p>4.3 Free Radical Monofluoromethylation 128</p> <p>4.3.1 By Means of (PhSO<sub>2</sub>)<sub>2</sub>CFI 128</p> <p>4.3.2 By Means of (H<sub>2</sub>FCSO<sub>2</sub>)<sub>2</sub>Zn (MFMS) 128</p> <p>4.3.3 By Means of CH<sub>2</sub>FSO<sub>2</sub>Cl 128</p> <p>4.3.4 By Means of PhSO(NTs)CH<sub>2</sub>F 129</p> <p>4.3.5 By Means of Monofluoromethyl Sulfone 130</p> <p>4.4 Transition‐Metal‐Catalyzed/Mediated Monofluoromethylation 130</p> <p>4.4.1 By Means of CH<sub>2</sub>FI 130</p> <p>4.4.2 By Means of PhSO<sub>2</sub>CHFI 131</p> <p>4.4.3 By Means of CH<sub>2</sub>FBr 131</p> <p>4.4.4 By Means of PTSO<sub>2</sub>CH<sub>2</sub>F 132</p> <p>References 132</p> <p><b>5 Synthesis of <i>gem</i>‐Difluorocyclopropanes 135<br /></b><i>Dmitriy M. Volochnyuk and Oleksandr O. Grygorenko</i></p> <p>5.1 Introduction 135</p> <p>5.2 Intramolecular Wurtz (Freund) Reaction 140</p> <p>5.3 Nucleophilic Fluorination of Pre‐existing Ring System 140</p> <p>5.4 Cyclopropanation of 1,1‐Difluoroalkenes 142</p> <p>5.5 Difluorocyclopropanation of Alkenes and Alkynes 143</p> <p>5.5.1 Fragmentation of Trihalomethyl Anions CF<sub>2</sub>X<sup>−</sup> (X = Cl, Br) 145</p> <p>5.5.2 Reduction of CF<sub>2</sub>Br<sub>2</sub> with Zn or Other Reductants 146</p> <p>5.5.3 Decarboxylative Difluorocarbene Generation 149</p> <p>5.5.4 Difluorocarbene Generation by Nucleophilic Cleavage of a Carbene Precursor 153</p> <p>5.5.5 Decomposition of CF<sub>3</sub>‐substituted Organometallic Derivatives 164</p> <p>5.5.6 Lewis Base‐promoted Cleavage of the Ruppert–Prakash‐type Reagents XCF<sub>2</sub>SiMe<sub>3</sub> (X = F, Cl, Br) 169</p> <p>5.5.7 Photodissociation of Difluorodiazirine 182</p> <p>5.5.8 Thermal Decomposition of Hexafluoropropene Oxide 183</p> <p>5.6 Michael‐induced Ring Closure (MIRC) 183</p> <p>5.7 Reactions at the Double Bond of <i>gem</i>‐Difluorocyclopropenes 185</p> <p>5.8 Conclusions 187</p> <p>References 187</p> <p><b>Part II Oxygen‐Linked Fluorine‐Containing Motifs 195</b></p> <p><b>6 Indirect Construction of the OCF<sub>3</sub> Motif 197<br /></b><i>Pingping Tang and Xiaohuan Jiang</i></p> <p>6.1 Introduction 197</p> <p>6.2 Fluorination of Trichloromethyl Ethers 197</p> <p>6.3 Deoxyfluorination of Fluoroformates 198</p> <p>6.4 Oxidative Fluorodesulfurization 198</p> <p>6.5 Decarboxylative Fluorination 199</p> <p>6.6 Direct Trifluoromethylation 200</p> <p>6.7 Intramolecular OCF<sub>3</sub> Migration 202</p> <p>References 204</p> <p><b>7 Reagents for Direct Trifluoromethoxylation 207<br /></b><i>Pingping Tang and Xiaohuan Jiang</i></p> <p>7.1 Introduction 207</p> <p>7.2 Trifluoromethyl Hypofluorite (FTM) 207</p> <p>7.3 Chloroxytrifluoromethane 209</p> <p>7.4 Bistrifluoromethyl Peroxide (BTMP) 210</p> <p>7.5 Bis(trifluoromethyl) Trioxide 210</p> <p>7.6 <i>N</i>‐Trifluoromethoxy Benzimidazole 211</p> <p>7.7 <i>N</i>‐Trifluoromethoxypyridinium 213</p> <p>7.8 <i>N</i>‐Trifluoromethoxy Triazolium Salts 214</p> <p>7.9 Trifluoromethyl Trifluoromethanesulfonate (TFMT) 215</p> <p>7.10 Organometallic Trifluoromethoxides 217</p> <p>7.11 Perfluoroalkylsulfurane 219</p> <p>7.12 Perfluoroalkylsulfurane Oxide 219</p> <p>7.13 2,4‐Dinitro(trifluoromethoxy)benzene (DNTFB) 221</p> <p>7.14 Trifluoromethyl Sulfonates (TFMS) 221</p> <p>7.15 Trifluoromethyl Benzoate (TFBz) 222</p> <p>References 223</p> <p><b>8 Direct Trifluoromethoxylation of Aromatics and Heteroaromatics 225<br /></b><i>Johnny W. Lee, Katarzyna N. Lee, and Ming‐Yu Ngai</i></p> <p>8.1 Introduction 225</p> <p>8.2 Direct Anionic Trifluoromethoxylation 226</p> <p>8.3 Direct Radical Trifluoromethoxylation 239</p> <p>8.4 Conclusion and Future Perspective 249</p> <p>References 249</p> <p><b>9 Direct Trifluoromethoxylation of Aliphatic Compounds 251<br /></b><i>Chaohuang Chen and Guosheng Liu</i></p> <p>9.1 Direct Trifluoromethoxylation of Alkenes 251</p> <p>9.1.1 Radical Trifluoromethoxylation of Alkenes 251</p> <p>9.1.2 Pd(II)‐Catalyzed Oxidative Trifluoromethoxylation of Alkenes 252</p> <p>9.1.3 Silver(I)‐catalyzed Trifluoromethoxylation of Alkenes 255</p> <p>9.1.4 Direct Trifluoromethoxylation at sp<sup>3</sup>‐Carbon Atoms 258</p> <p>9.1.4.1 Trifluoromethoxylation of Alkyl Halides and Alkyl Triflates 258</p> <p>9.1.4.2 Trifluoromethoxylation of Alkyl Alcohols and Alkyl Silanes 259</p> <p>9.1.4.3 Trifluoromethoxylation of C–H Bonds 260</p> <p>9.1.4.4 Nucleophilic Trifluoromethoxylation of Epoxides 262</p> <p>9.2 Trifluoromethoxylation of α‐Diazo Esters 263</p> <p>9.3 Summary and Outlook 264</p> <p>References 265</p> <p><b>10 Extension to the Construction of ORf Motifs (OCF<sub>2</sub>H, OCFH<sub>2</sub>, OCH<sub>2</sub>CF<sub>3</sub>, OCFHCH<sub>3</sub>) 267<br /></b><i>Jin‐Hong Lin and Ji‐Chang Xiao</i></p> <p>10.1 Introduction 267</p> <p>10.2 Construction of the OCF<sub>2</sub>H Group 269</p> <p>10.2.1 Insertion of Difluorocarbene into O─H Bond 269</p> <p>10.2.2 Decarboxylative Fluorination 272</p> <p>10.2.3 Direct Electrophilic Difluoromethylation 272</p> <p>10.2.4 Difluoromethoxylation 273</p> <p>10.2.5 Nucleophilic Fluorination 274</p> <p>10.3 Construction of the OCFH<sub>2</sub> Group 275</p> <p>10.3.1 Monofluoromethylation 275</p> <p>10.3.2 Fluorination 278</p> <p>10.4 Construction of the OCH<sub>2</sub>CF<sub>3</sub> Group 280</p> <p>10.4.1 Trifluoroethoxylation 281</p> <p>10.4.2 Trifluoroethylation 283</p> <p>10.5 Construction of the OCFHCH<sub>3</sub> Group 285</p> <p>10.6 Conclusions and Perspectives 285</p> <p>References 285</p> <p><b>Volume 2</b></p> <p>Preface xvii</p> <p><b>Part III Sulfur‐Linked Fluorine‐Containing Motifs 289</b></p> <p><b>11 Indirect Trifluoromethylthiolation Methods 291</b><br /><i>Xiu‐Hua Xu and Feng‐Ling Qing</i></p> <p><b>12 Reagents for Direct Trifluoromethylthiolation 309</b><br /><i>He Liu, Hangming Ge, and Qilong Shen</i></p> <p><b>13 Trifluoromethylthiolation of Aromatic and Heteroaromatic Compounds 343</b><br /><i>Wenbin Yi, Zhidong Song, Jie Liu, Yasir Mumtaz, and Wei Zhang</i></p> <p><b>14 Synthesis of Trifluoromethylthiolated Alkenes and Alkynes 373</b><br /><i>Matthew N. Hopkinson</i></p> <p><b>15 Direct Trifluoromethylthiolation Toward C(sp<sup>3</sup>)–SCF<sub>3</sub> Compounds 403</b><br /><i>Yumeng Liang, Dominique Cahard, and Norio Shibata</i></p> <p><b>16 Extension to the SCF<sub>2</sub>H, SCH<sub>2</sub>F, and SCF<sub>2</sub>R Motifs (R = PO(OEt)<sub>2</sub>, CO<sub>2</sub>R, Rf) 449</b><br /><i>Tatiana Besset and Thomas Poisson</i></p> <p><b>17 Synthesis and Applications of Fluorinated Sulfoxides (RSOR<sub>F</sub>) and Sulfones (RSO<sub>2</sub>R<sub>F</sub>) 477</b><br /><i>Vinayak Krishnamurti, Colby Barrett, and G.K. Surya Prakash</i></p> <p><b>18 Pentafluorosulfanylation of Aromatics and Heteroaromatics 551</b><br /><i>Petr Beier</i></p> <p><b>19 Pentafluorosulfanylation of Aliphatic Substrates 571</b><br /><i>Günter Haufe</i></p> <p><b>20 Extension to SF<sub>4</sub>CF<sub>3</sub> and SF<sub>4</sub>FG Groups 611</b><br /><i>Peer Kirsch</i></p> <p><b>21 Properties and Applications of Sulfur(VI) Fluorides 621</b><br /><i>Nicholas D. Ball</i></p> <p><b>22 Construction of S–R<sub>F</sub> Sulfilimines and S–R<sub>F</sub> Sulfoximines 675</b><br /><i>Emmanuel Magnier</i></p> <p><b>Part IV Selenium‐Linked Fluorine‐Containing Motifs 691</b></p> <p><b>23 When Fluorine Meets Selenium 693</b><br /><i>Thierry Billard and Fabien Toulgoat</i></p> <p><b>Part V Nitrogen‐Linked Fluorine‐Containing Motifs 723</b></p> <p><b>24 Construction of <i>N</i>‐CF<sub>2</sub>H, <i>N</i>‐CF<sub>3</sub>, and <i>N</i>‐CH<sub>2</sub>CF<sub>3</sub> Motifs 725</b><br /><i>Thierry Milcent and Benoit Crousse</i></p> <p><b>Part VI Phosphorus‐Linked Fluorine‐Containing Motifs 763</b></p> <p><b>25 Synthesis and Applications of P–R<sub>f</sub>‐Containing Molecules 765</b><br /><i>Fa‐Guang Zhang and Jun‐An Ma</i></p> <p>Index 809</p>
<p><b><i>Dominique Cahard, PhD,</i></b><i> is Director of Research at the French National Center for Scientific Research, CNRS. His current research interests concern innovative methodologies for asymmetric synthesis of fluorinated molecules and the synthesis of fluorinated biomolecules.</i> <p><b><i>Jun-An Ma, PhD,</i></b><i> is a Full Professor of organic chemistry at Tianjin University, P. R. of China. His current research efforts are focused on organofluorine chemistry, catalytic asymmetric synthesis, and the rational design & construction of biological molecules.</i>
<p><b>A must-have resource for all the researchers working in the organofluorine and related fields</b> <p>This timely two-volume set uniquely focuses on emerging fluorinated motifs beyond R-F and R-CF<sub>3</sub>, like R-CF<sub>2</sub>H, R-OCF<sub>3</sub>, R-SCF<sub>3</sub> and R-SF<sub>5</sub>. It also offers descriptions of the properties, synthesis, and applications of these emerging fluorinated motifs in order to help readers design new chemical entities, while providing new interest for researchers in organofluorine chemistry and new tools for those in other areas. <p><i>Emerging Fluorinated Motifs: Synthesis, Properties, and Applications</i> begins with a description of carbon-linked fluorine-containing groups that include monofluoromethyl and difluoromethyl groups. It then details combinations of heteroatoms, Oxygen, Sulfur, Selenium, Nitrogen, and Phosphorus with fluorine-containing groups, outlining subsections of the most popular current motifs. Fluoroalkyl ethers, thioethers, and the recent blossoming of the SF<sub>5</sub> unit is covered. Other chapters look at: selenium-linked fluorine-containing motifs; construction of N–CF<sub>2</sub>H, N–CF<sub>3</sub>, N–CH<sub>2</sub>CF<sub>3</sub> motifs; and the synthesis and applications of P–Rf-containing molecules. <ul> <li>Focuses on the synthesis, properties, and applications of emerging fluorinated motifs</li> <li>Covers carbon-linked fluorine-containing motifs, oxygen-linked fluorine-containing motifs, sulfur-linked fluorine-containing motifs, and more</li> <li>Appeals to academic and industrial researchers working in organic chemistry, medicinal chemistry, food chemistry, and materials science</li> <li>Edited by world-renowned experts in organofluorine chemistry</li> </ul> <p><i>Emerging Fluorinated</i> Motifs is intended for academic research institutes, university libraries, researchers, graduate students, postdoctors, and researchers in the chemical industry.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €