Details

Elementary Particle Physics


Elementary Particle Physics

Volume 1: Quantum Field Theory and Particles
1. Aufl.

von: Yorikiyo Nagashima, Yoichiro Nambu

162,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 28.07.2010
ISBN/EAN: 9783527630103
Sprache: englisch
Anzahl Seiten: 964

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>ACCOUNTING PRINCIPLES</b> <p>Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. <p><b>From the contents:</b> <ul><Li> Particles and Fields</li> <Li>Lorentz Invariance</li> <Li>Dirac Equation </li> <Li>Field Quantization</li> <Li>Scattering Matrix</li> <Li>QED: Quantum Electrodynamics</li> <Li>Radiative Corrections and Tests of Qed </li> <Li>Symmetries</li> <Li>Path Integral : Basics </li> <Li>Path Integral Approach to Field Theory </li> <Li>Accelerator and Detector Technology </li> <Li>Spectroscopy </li> <Li>The Quark Model </li> <Li>Weak Interaction </li> <Li>Neutral Kaons and CP Violation</li> <Li>Hadron Structure </li> <Li>Gauge Theories </li> <Li>Appendices</li></ul> <p><b>Volume 2 (2013, ISBN 3-527-40966-1)</b> will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.
<p>Foreword V</p> <p>Preface XVII</p> <p>Acknowledgements XXI</p> <p>Part One a Field Theoretical Approach 1</p> <p><b>1 Introduction </b><b>3</b></p> <p>1.1 An Overview of the Standard Model 3</p> <p>1.1.1 What is an Elementary Particle? 3</p> <p>1.1.2 The Four Fundamental Forces and Their Unification 4</p> <p>1.1.3 The Standard Model 7</p> <p>1.2 The Accelerator as a Microscope 11</p> <p><b>2 Particles and Fields </b><b>13</b></p> <p>2.1 What is a Particle? 13</p> <p>2.2 What is a Field? 21</p> <p>2.2.1 Force Field 21</p> <p>2.2.2 Relativistic Wave Equation 25</p> <p>2.2.3 Matter Field 27</p> <p>2.2.4 Intuitive Picture of a Field and Its Quantum 28</p> <p>2.2.5 Mechanical Model of a Classical Field 29</p> <p>2.3 Summary 32</p> <p>2.4 Natural Units 33</p> <p><b>3 Lorentz Invariance </b><b>37</b></p> <p>3.1 Rotation Group 37</p> <p>3.2 Lorentz Transformation 41</p> <p>3.2.1 General Formalism 41</p> <p>3.2.2 Lorentz Vectors and Scalars 43</p> <p>3.3 Space Inversion and Time Reversal 45</p> <p>3.4 Covariant Formalism 47</p> <p>3.4.1 Tensors 47</p> <p>3.4.2 Covariance 48</p> <p>3.4.3 Supplementing the Time Component 49</p> <p>3.4.4 Rapidity 51</p> <p>3.5 Lorentz Operator 53</p> <p>3.6 Poincar&eacute; Group* 56</p> <p><b>4 Dirac Equation </b><b>59</b></p> <p>4.1 Relativistic Schr&ouml;dinger Equation 59</p> <p>4.1.1 Dirac Matrix 59</p> <p>4.1.2 Weyl Spinor 61</p> <p>4.1.3 Interpretation of the Negative Energy 64</p> <p>4.1.4 Lorentz-Covariant Dirac Equation 69</p> <p>4.2 Plane-Wave Solution 71</p> <p>4.3 Properties of the Dirac Particle 75</p> <p>4.3.1 Magnetic Moment of the Electron 75</p> <p>4.3.2 Parity 77</p> <p>4.3.3 Bilinear Form of the Dirac Spinor 78</p> <p>4.3.4 Charge Conjugation 79</p> <p>4.3.5 Chiral Eigenstates 82</p> <p>4.4 Majorana Particle 84</p> <p><b>5 Field Quantization </b><b>89</b></p> <p>5.1 Action Principle 89</p> <p>5.1.1 Equations of Motion 89</p> <p>5.1.2 Hamiltonian Formalism 90</p> <p>5.1.3 Equation of a Field 91</p> <p>5.1.4 Noether&rsquo;s Theorem 95</p> <p>5.2 Quantization Scheme 100</p> <p>5.2.1 Heisenberg Equation of Motion 100</p> <p>5.2.2 Quantization of the Harmonic Oscillator 102</p> <p>5.3 Quantization of Fields 105</p> <p>5.3.1 Complex Fields 106</p> <p>5.3.2 Real Field 111</p> <p>5.3.3 Dirac Field 112</p> <p>5.3.4 Electromagnetic Field 114</p> <p>5.4 Spin and Statistics 119</p> <p>5.5 Vacuum Fluctuation 121</p> <p>5.5.1 The Casimir Effect<i>*</i> 122</p> <p><b>6 Scattering Matrix </b><b>127</b></p> <p>6.1 Interaction Picture 127</p> <p>6.2 Asymptotic Field Condition 131</p> <p>6.3 Explicit Form of the S-Matrix 133</p> <p>6.3.1 Rutherford Scattering 135</p> <p>6.4 Relativistic Kinematics 136</p> <p>6.4.1 Center of Mass Frame and Laboratory Frame 136</p> <p>6.4.2 Crossing Symmetry 139</p> <p>6.5 Relativistic Cross Section 141</p> <p>6.5.1 Transition Rate 141</p> <p>6.5.2 Relativistic Normalization 142</p> <p>6.5.3 Incoming Flux and Final State Density 144</p> <p>6.5.4 Lorentz-Invariant Phase Space 145</p> <p>6.5.5 Cross Section in the Center of Mass Frame 145</p> <p>6.6 Vertex Functions and the Feynman Propagator 147</p> <p>6.6.1<i> ee&gamma;</i> Vertex Function 147</p> <p>6.6.2 Feynman Propagator 151</p> <p>6.7 Mott Scattering 157</p> <p>6.7.1 Cross Section 157</p> <p>6.7.2 Coulomb Scattering and Magnetic Scattering 161</p> <p>6.7.3 Helicity Conservation 161</p> <p>6.7.4 A Method to Rotate Spin 161</p> <p>6.8 Yukawa Interaction 162</p> <p><b>7 Qed: Quantum Electrodynamics </b><b>167</b></p> <p>7.1 <i>e&ndash;&mu;</i> Scattering 167</p> <p>7.1.1 Cross Section 167</p> <p>7.1.2 Elastic Scattering of Polarized <i>e&ndash;&mu;</i> 171</p> <p>7.1.3 <i>e<sup>_</sup> e<sup>+</sup> + &mu;<sup>_</sup> &mu;<sup>+</sup> </i>Reaction 174</p> <p>7.2 Compton Scattering 176</p> <p>7.3 Bremsstrahlung 181</p> <p>7.3.1 Soft Bremsstrahlung 183</p> <p>7.4 Feynman Rules 186</p> <p><b>8 Radiative Corrections and Tests of Qed* </b><b>191</b></p> <p>8.1 Radiative Corrections and Renormalization* 191</p> <p>8.1.1 Vertex Correction 191</p> <p>8.1.2 Ultraviolet Divergence 193</p> <p>8.1.3 Infrared Divergence 197</p> <p>8.1.4 Infrared Compensation to All Orders* 199</p> <p>8.1.5 Running Coupling Constant 204</p> <p>8.1.6 Mass Renormalization 208</p> <p>8.1.7 Ward&ndash;Takahashi Identity 210</p> <p>8.1.8 Renormalization of the Scattering Amplitude 211</p> <p>8.2 Tests of QED 213</p> <p>8.2.1 Lamb Shift 213</p> <p>8.2.2g - 2 214</p> <p>8.2.3 Limit of QED Applicability 216</p> <p>8.2.4 E821 BNL Experiment 216</p> <p><b>9 Symmetries </b><b>221</b></p> <p>9.1 Continuous Symmetries 222</p> <p>9.1.1 Space and Time Translation 223</p> <p>9.1.2 Rotational Invariance in the Two-Body System 227</p> <p>9.2 Discrete Symmetries 233</p> <p>9.2.1 Parity Transformation 233</p> <p>9.2.2 Time Reversal 240</p> <p>9.3 Internal Symmetries 251</p> <p>9.3.1 U(1) Gauge Symmetry 251</p> <p>9.3.2 Charge Conjugation 252</p> <p>9.3.3 CPT Theorem 258</p> <p>9.3.4 SU(2) (Isospin) Symmetry 260</p> <p><b>10 Path Integral: Basics </b><b>267</b></p> <p>10.1 Introduction 267</p> <p>10.1.1 Bra and Ket 267</p> <p>10.1.2 Translational Operator 268</p> <p>10.2 Quantum Mechanical Equations 271</p> <p>10.2.1 Schr&ouml;dinger Equation 271</p> <p>10.2.2 Propagators 272</p> <p>10.3 Feynman&rsquo;s Path Integral 274</p> <p>10.3.1 Sum over History 274</p> <p>10.3.2 Equivalence with the Schr&ouml;dinger Equation 278</p> <p>10.3.3 Functional Calculus 279</p> <p>10.4 Propagators: Simple Examples 282</p> <p>10.4.1 Free-Particle Propagator 282</p> <p>10.4.2 Harmonic Oscillator 285</p> <p>10.5 Scattering Matrix 294</p> <p>10.5.1 Perturbation Expansion 295</p> <p>10.5.2 S-Matrix in the Path Integral 297</p> <p>10.6 Generating Functional 300</p> <p>10.6.1 Correlation Functions 300</p> <p>10.6.2 Note on Imaginary Time 302</p> <p>10.6.3 Correlation Functions as Functional Derivatives 304</p> <p>10.7 Connection with Statistical Mechanics 306</p> <p><b>11 Path Integral Approach to Field Theory </b><b>311</b></p> <p>11.1 From Particles to Fields 311</p> <p>11.2 Real Scalar Field 312</p> <p>11.2.1 Generating Functional 312</p> <p>11.2.2 Calculation of det A 315</p> <p>11.2.3 <i>n</i>-Point Functions and the Feynman Propagator 318</p> <p>11.2.4 Wick&rsquo;s Theorem 319</p> <p>11.2.5 Generating Functional of Interacting Fields 320</p> <p>11.3 Electromagnetic Field 321</p> <p>11.3.1 Gauge Fixing and the Photon Propagator 321</p> <p>11.3.2 Generating Functional of the Electromagnetic Field 323</p> <p>11.4 Dirac Field 324</p> <p>11.4.1 Grassmann Variables 324</p> <p>11.4.2 Dirac Propagator 331</p> <p>11.4.3 Generating Functional of the Dirac Field 332</p> <p>11.5 Reduction Formula 333</p> <p>11.5.1 Scalar Fields 333</p> <p>11.5.2 Electromagnetic Field 337</p> <p>11.5.3 Dirac Field 337</p> <p>11.6 QED 340</p> <p>11.6.1 Formalism 340</p> <p>11.6.2 Perturbative Expansion 342</p> <p>11.6.3 First-Order Interaction 343</p> <p>11.6.4 Mott Scattering 345</p> <p>11.6.5 Second-Order Interaction 346</p> <p>11.6.6 Scattering Matrix 351</p> <p>11.6.7 Connected Diagrams 353</p> <p>11.7 Faddeev&ndash;Popov&rsquo;s Ansatz* 354</p> <p>11.7.1 A Simple Example* 355</p> <p>11.7.2 Gauge Fixing Revisited* 356</p> <p>11.7.3 Faddeev&ndash;Popov Ghost* 359</p> <p><b>12 Accelerator and Detector Technology </b><b>363</b></p> <p>12.1 Accelerators 363</p> <p>12.2 Basic Parameters of Accelerators 364</p> <p>12.2.1 Particle Species 364</p> <p>12.2.2 Energy 366</p> <p>12.2.3 Luminosity 367</p> <p>12.3 Various Types of Accelerators 369</p> <p>12.3.1 Low-Energy Accelerators 369</p> <p>12.3.2 Synchrotron 373</p> <p>12.3.3 Linear Collider 377</p> <p>12.4 Particle Interactions with Matter 378</p> <p>12.4.1 Some Basic Concepts 378</p> <p>12.4.2 Ionization Loss 381</p> <p>12.4.3 Multiple Scattering 389</p> <p>12.4.4 Cherenkov and Transition Radiation 390</p> <p>12.4.5 Interactions of Electrons and Photons with Matter 394</p> <p>12.4.6 Hadronic Shower 401</p> <p>12.5 Particle Detectors 403</p> <p>12.5.1 Overview of Radioisotope Detectors 403</p> <p>12.5.2 Detectors that Use Light 404</p> <p>12.5.3 Detectors that Use Electric Signals 410</p> <p>12.5.4 Functional Usage of Detectors 415</p> <p>12.6 Collider Detectors 422</p> <p>12.7 Statistics and Errors 428</p> <p>12.7.1 Basics of Statistics 428</p> <p>12.7.2 Maximum Likelihood and Goodness of Fit 433</p> <p>12.7.3 Least Squares Method 438</p> <p><b>13 Spectroscopy </b><b>443</b></p> <p>13.1 Pre-accelerator Age (1897&ndash;1947) 444</p> <p>13.2 Pions 449</p> <p>13.3 <i>&pi;N</i> Interaction 454</p> <p>13.3.1 Isospin Conservation 454</p> <p>13.3.2 Partial Wave Analysis 462</p> <p>13.3.3 Resonance Extraction 466</p> <p>13.3.4 Argand Diagram: Digging Resonances 472</p> <p>13.4 <i>ƿ</i> (770) 475</p> <p>13.5 Final State Interaction 478</p> <p>13.5.1 Dalitz Plot 478</p> <p>13.5.2 <i>K</i> Meson 481</p> <p>13.5.3 Angular Momentum Barrier 484</p> <p>13.5.4 <i>&omega;</i> Meson 485</p> <p>13.6 Low-Energy Nuclear Force 487</p> <p>13.6.1 Spin&ndash;Isospin Exchange Force 487</p> <p>13.6.2 Effective Range 490</p> <p>13.7 High-Energy Scattering 491</p> <p>13.7.1 Black Sphere Model 491</p> <p>13.7.2 Regge Trajectory* 494</p> <p><b>14 The Quark Model </b><b>501</b></p> <p>14.1 SU(3) Symmetry 501</p> <p>14.1.1 The Discovery of Strange Particles 502</p> <p>14.1.2 The Sakata Model 505</p> <p>14.1.3 Meson Nonets 507</p> <p>14.1.4 The Quark Model 509</p> <p>14.1.5 Baryon Multiplets 510</p> <p>14.1.6 General Rules for Composing Multiplets 511</p> <p>14.2 Predictions of SU(3) 513</p> <p>14.2.1 Gell-Mann&ndash;Okubo Mass Formula 513</p> <p>14.2.2 Prediction of <i>&Omega;</i> 514</p> <p>14.2.3 Meson Mixing 516</p> <p>14.3 Color Degrees of Freedom 519</p> <p>14.4 SU(6) Symmetry 522</p> <p>14.4.1 Spin and Flavor Combined 522</p> <p>14.4.2 SU(6) _ O(3) 525</p> <p>14.5 Charm Quark 525</p> <p>14.5.1 <i>J</i><i>/&psi;</i> 525</p> <p>14.5.2 Mass and Quantum Number of J/&psi; 527</p> <p>14.5.3 Charmonium 527</p> <p>14.5.4 Width of <i>J</i><i>/&psi;</i> 533</p> <p>14.5.5 Lifetime of Charmed Particles 536</p> <p>14.5.6 Charm Spectroscopy: SU(4) 537</p> <p>14.5.7 The Fifth Quark b (Bottom) 539</p> <p>14.6 Color Charge 539</p> <p>14.6.1 Color Independence 542</p> <p>14.6.2 Color Exchange Force 544</p> <p>14.6.3 Spin Exchange Force 545</p> <p>14.6.4 Mass Formulae of Hadrons 547</p> <p><b>15 Weak Interaction </b><b>553</b></p> <p>15.1 Ingredients of the Weak Force 553</p> <p>15.2 Fermi Theory 555</p> <p>15.2.1 Beta Decay 555</p> <p>15.2.2 Parity Violation 562</p> <p>15.2.3 <i>&pi; </i>Meson Decay 564</p> <p>15.3 Chirality of the Leptons 567</p> <p>15.3.1 Helicity and Angular Correlation 567</p> <p>15.3.2 Electron Helicity 569</p> <p>15.4 The Neutrino 571</p> <p>15.4.1 Detection of the Neutrino 571</p> <p>15.4.2 Mass of the Neutrino 572</p> <p>15.4.3 Helicity of the Electron Neutrino 576</p> <p>15.4.4 The Second Neutrino <i>&nu;<sub>&mu;</sub></i> 578</p> <p>15.5 The Universal V&ndash;A Interaction 579</p> <p>15.5.1 Muon Decay 579</p> <p>15.5.2 CVC Hypothesis 584</p> <p>15.6 Strange Particle Decays 589</p> <p>15.6.1 <i>&Delta;S</i> = <i>&Delta;Q</i> Rule 589</p> <p>15.6.2 <i>&Delta;I</i> = 1/2 Rule 591</p> <p>15.6.3 <i>K<sub>l</sub></i><i><sub>3</sub> : K<sup>+</sup> </i><i>&rarr;</i><i> &pi;<sup>0</sup> + l<sup>+</sup> + &nu;</i> 592</p> <p>15.6.4 Cabibbo Rotation 596</p> <p>15.7 Flavor Conservation 598</p> <p>15.7.1 GIM Mechanism 598</p> <p>15.7.2 Kobayashi&ndash;Maskawa Matrix 600</p> <p>15.7.3 Tau Lepton 601</p> <p>15.7.4 The Generation Puzzle 605</p> <p>15.8 A Step Toward a Unified Theory 608</p> <p>15.8.1 Organizing the Weak Phenomena 608</p> <p>15.8.2 Limitations of the Fermi Theory 610</p> <p>15.8.3 Introduction of SU(2) 614</p> <p><b>16 Neutral Kaons and CP Violation* </b><b>617</b></p> <p>16.1 Introduction 618</p> <p>16.1.1 Strangeness Eigenstates and CP Eigenstates 618</p> <p>16.1.2 Schr&ouml;dinger Equation for <i>K</i><i><sup>0</sup> - K<sup>0</sup></i> States 619</p> <p>16.1.3 Strangeness Oscillation 622</p> <p>16.1.4 Regeneration of K1 626</p> <p>16.1.5 Discovery of CP Violation 630</p> <p>16.2 Formalism of CP and CPT Violation 632</p> <p>16.2.1 CP, T, CPT Transformation Properties 632</p> <p>16.2.2 Definition of CP Parameters 635</p> <p>16.3 CP Violation Parameters 640</p> <p>16.3.1 Observed Parameters 640</p> <p>16.3.2 <i>є</i> and <i>є&rsquo;</i> 644</p> <p>16.4 Test of T and CPT Invariance 653</p> <p>16.4.1 Definition of T- and CPT-Violating Amplitudes 654</p> <p>16.4.2 T Violation 654</p> <p>16.4.3 CPT violation 656</p> <p>16.4.4 Possible Violation of Quantum Mechanics 662</p> <p>16.5 Experiments on CP Parameters 664</p> <p>16.5.1 CPLEAR 664</p> <p>16.5.2 NA48/KTeV 666</p> <p>16.6 Models of CP Violation 673</p> <p><b>17 Hadron Structure </b><b>679</b></p> <p>17.1 Historical Overview 679</p> <p>17.2 Form Factor 680</p> <p>17.3 <i>e&ndash;p</i> Elastic Scattering 683</p> <p>17.4 Electron Proton Deep Inelastic Scattering 687</p> <p>17.4.1 Cross-Section Formula for Inelastic Scattering 687</p> <p>17.4.2 Bjorken Scaling 690</p> <p>17.5 Parton Model 693</p> <p>17.5.1 Impulse Approximation 693</p> <p>17.5.2 Electron&ndash;Parton Scattering 696</p> <p>17.6 Scattering with Equivalent Photons 699</p> <p>17.6.1 Transverse and Longitudinal Photons 699</p> <p>17.6.2 Spin of the Target 702</p> <p>17.6.3 Photon Flux 703</p> <p>17.7 How to Do Neutrino Experiments 705</p> <p>17.7.1 Neutrino Beams 705</p> <p>17.7.2 Neutrino Detectors 709</p> <p>17.8 <i>&nu;&ndash;p</i> Deep Inelastic Scattering 712</p> <p>17.8.1 Cross Sections and Structure Functions 712</p> <p>17.8.2 <i>&nu;, &nu;&ndash;q</i> Scattering 715</p> <p>17.8.3 Valence Quarks and Sea Quarks 716</p> <p>17.8.4 Comparisons with Experimental Data 717</p> <p>17.8.5 Sum Rules 719</p> <p>17.9 Parton Model in Hadron&ndash;Hadron Collisions 721</p> <p>17.9.1 Drell&ndash;Yan Process 721</p> <p>17.9.2 Other Hadronic Processes 724</p> <p>17.10 A Glimpse of QCD&rsquo;s Power 725</p> <p><b>18 Gauge Theories </b><b>729</b></p> <p>18.1 Historical Prelude 729</p> <p>18.2 Gauge Principle 731</p> <p>18.2.1 Formal Definition 731</p> <p>18.2.2 Gravity as a Geometry 733</p> <p>18.2.3 Parallel Transport and Connection 734</p> <p>18.2.4 Rotation in Internal Space 737</p> <p>18.2.5 Curvature of a Space 739</p> <p>18.2.6 Covariant Derivative 741</p> <p>18.2.7 Principle of Equivalence 743</p> <p>18.2.8 General Relativity and Gauge Theory 745</p> <p>18.3 Aharonov&ndash;Bohm Effect 748</p> <p>18.4 Nonabelian Gauge Theories 754</p> <p>18.4.1 Isospin Operator 754</p> <p>18.4.2 Gauge Potential 755</p> <p>18.4.3 Isospin Force Field and Equation of Motion 757</p> <p>18.5 QCD 760</p> <p>18.5.1 Asymptotic Freedom 762</p> <p>18.5.2 Confinement 767</p> <p>18.6 Unified Theory of the Electroweak Interaction 770</p> <p>18.6.1 SU(2) _ U(1) Gauge Theory 770</p> <p>18.6.2 Spontaneous Symmetry Breaking 774</p> <p>18.6.3 Higgs Mechanism 778</p> <p>18.6.4 Glashow&ndash;Weinberg&ndash;Salam Electroweak Theory 782</p> <p>18.6.5 Summary of GWS Theory 784</p> <p><b>19 Epilogue </b><b>787</b></p> <p>19.1 Completing the Picture 788</p> <p>19.2 Beyond the Standard Model 789</p> <p>19.2.1 Neutrino Oscillation 789</p> <p>19.2.2 GUTs: Grand Unified Theories 791</p> <p>19.2.3 Supersymmetry 792</p> <p>19.2.4 Superstring Model 795</p> <p>19.2.5 Extra Dimensions 796</p> <p>19.2.6 Dark Matter 797</p> <p>19.2.7 Dark Energy 798</p> <p><b>Appendix A Spinor Representation </b><b>803</b></p> <p>A.1 Definition of a Group 803</p> <p>A.1.1 Lie Group 804</p> <p>A.2 SU(2) 805</p> <p>A.3 Lorentz Operator for Spin 1/2 Particle 809</p> <p>A.3.1 SL(2, C) Group 809</p> <p>A.3.2 Dirac Equation: Another Derivation 811</p> <p><b>Appendix B Coulomb Gauge </b><b>813</b></p> <p>B.1 Quantization of the Electromagnetic Field in the Coulomb Gauge 814</p> <p><b>Appendix C Dirac Matrix and Gamma Matrix Traces </b><b>817</b></p> <p>C.1 Dirac Plane Wave Solutions 817</p> <p>C.2 Dirac &gamma; Matrices 817</p> <p>C.2.1 Traces of the <i>&gamma;</i> Matrices 818</p> <p>C.2.2 Levi-Civita Antisymmetric Tensor 819</p> <p>C.3 Spin Sum of |<i>Mfi</i>|<sup>2</sup> 819</p> <p>C.3.1 A Frequently Used Example 820</p> <p>C.3.2 Polarization Sum of the Vector Particle 822</p> <p>C.4 Other Useful Formulae 823</p> <p><b>Appendix D Dimensional Regularization </b><b>825</b></p> <p>D.1 Photon Self-Energy 825</p> <p>D.2 Electron Self-Energy 830</p> <p><b>Appendix E Rotation Matrix </b><b>833</b></p> <p>E.1 Angular Momentum Operators 833</p> <p>E.2 Addition of the Angular Momentum 835</p> <p>E.3 Rotational Matrix 835</p> <p><b>Appendix F C, P, T Transformation </b><b>839</b></p> <p><b>Appendix G SU(3), SU(n) and the Quark Model </b><b>841</b></p> <p>G.1 Generators of the Group 841</p> <p>G.1.1 Adjoint Representation 842</p> <p>G.1.2 Direct Product 843</p> <p>G.2 SU(3) 844</p> <p>G.2.1 Structure Constants 844</p> <p>G.2.2 Irreducible Representation of a Direct Product 846</p> <p>G.2.3 Tensor Analysis 851</p> <p>G.2.4 Young Diagram 854</p> <p><b>Appendix H Mass Matrix and Decaying States </b><b>859</b></p> <p>H.1 The Decay Formalism 859</p> <p>Appendix I Answers to the Problems 865</p> <p>Appendix J Particle Data 915</p> <p>Appendix K Constants 917</p> <p>References 919</p> <p>Index 929&nbsp;</p>
"A timely volume for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics." (PR-Inside.com, 15 February 2011)<br /> <br />
<p><b><i>Yorikiyo Nagashima</b> is Professor Emeritus at the Department of Physics of Osaka University, Japan. An organizer of international conferences, he is also a member of the most important collaboration groups in his field of expertise, including those related to neutrino research. Professor Nagashima was the spokesman of the VENUS group, one of the major detectors of the Japanese first collider accelerator TORISTAN, where he served the first and second term at the start of the project. Professor Nagashima has authored or co-authored 296 papers, some of them cited up to 250 times.</i></p>
<p>Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics.</p> <p><b>From the contents:</b> <ul><Li> Particles and Fields</li> <Li>Lorentz Invariance</li> <Li>Dirac Equation </li> <Li>Field Quantization</li> <Li>Scattering Matrix</li> <Li>QED: Quantum Electrodynamics</li> <Li>Radiative Corrections and Tests of Qed </li> <Li>Symmetries</li> <Li>Path Integral : Basics </li> <Li>Path Integral Approach to Field Theory </li> <Li>Accelerator and Detector Technology </li> <Li>Spectroscopy </li> <Li>The Quark Model </li> <Li>Weak Interaction </li> <Li>Neutral Kaons and CP Violation</li> <Li>Hadron Structure </li> <Li>Gauge Theories </li> <Li>Appendices</li></ul> <p><b>Volume 2 (2013, ISBN 3-527-40966-1)</b> will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
126,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
196,99 €